四种北方阔叶树苗木对土壤镉铅污染的反应及抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用温室盆栽的方法研究了茶条槭(Acer ginnala Maxim)、山梨(Pyrus ussuriensis Maxim)、五角槭(Acer mono Maxim)和山荆子(Malus bacata Borkh)一年生幼苗对土壤重金属(镉和铅)胁迫的生理生化和生长反应,分析了重金属在植物体内的分配和富集状况,并对四树种的重金属抗性进行了综合评定。每树种设置的浓度梯度,镉为10、50、100、200 mg.kg~(-1)(以Cd~(2+)计),铅为100、500、1000、2000 mg.kg~(-1)(以pb~(2+)计),同时设置对照(分别表示为CK、Cd10、Cd50、Cd100、Cd200、Pb100、Pb500、Pb1000、Pb2000)。研究结果如下:
     1 镉铅污染对四树种苗木光合作用的影响。
     随着土壤中镉铅浓度的增加,四树种叶片的叶绿素含量降低,最高浓度处理(Cd200、Pb2000)与对照相比均达显著水平(P<0.05)。其中五角槭最为明显,Cd200和Pb2000处理分别比对照降低65.3%和49.2%,山梨(59.8%、31.7%)和茶条槭(54.9%、23.9%)居中,山荆子降幅最小(22.8%、12.0%)。叶绿素降低的同时,植物叶片的净光合速率也发生了变化。五角槭的光合速率随镉处理浓度的增加而降低,Cd200处理与对照相比降低81.1%;其它三树种先升后降,山荆子变化较大,其次为茶条槭,山梨变化最小;随铅浓度的增加,山梨的净光合速率持续下降,Pb2000处理与对照相比降低49.9%;其它三树种先升后降,其中五角槭最为敏感,Pb100处理时与对照相比高出124.0%,Pb2000处理略低于对照1.4%。镉铅胁迫下,多数树种的叶绿素荧光参数F_v/F_m、Φ_(PSⅡ)、qP和qNP有不同程度的下降,但变化幅度相对较小。
     2 镉铅污染对四树种苗木叶片膜脂过氧化和保护酶活性的影响。
     随土壤中重金属浓度的增加四树种叶片的相对电导率上升,且种间差异明显。镉胁迫下,五角槭最为敏感,Cd200处理比对照增加了5.9%,其次为山荆子(5.1%)、和山梨(4.9%),茶条槭受影响最小(4.6%);Pb2000处理下,变化最大的仍为五角槭(5.7%),其次为山梨(5.2%)和茶条槭(3.8%),山荆子变化最小(3.3%)。四树种苗木叶片的SOD活性随镉铅浓度的增加先升后降,最高浓度镉处理(Cd200),山梨(26.2%)和五角槭(20.2%)的降幅大于山荆子(15.0%)和茶条槭(11.6%);Pb2000处理下,山梨和五角槭分别略低于对照2.8%和3.1%,山荆子和茶条槭的SOD活性仍分别高于对照3.2%和5.3%。POD活性随土壤中镉铅浓度的增加持续上升。山梨变化最大,Cd200和Pb2000处理时分别高出对照177.8%和88.9%,五角槭(150.0%、75.0%)和茶条槭(122.2%、100%)居中,
    
    山荆子变化最小(53.9%、38.5%)。
    3锡铅污染对四树种苗木生长及生物量的影响。
     从植物外观来看,重金属胁迫下叶片出现失绿症状,以含锡处理最为明显,
    树种中以茶条械和五角械最为突出。低浓度锡铅刺激多数树种地径、苗高、新枝
    和叶片的生长,随着锡铅浓度的增加,各指标下降,其中五角械受影响最大,其
    它三树种差异不明显。锡铅对地下部根系的毒害先于地上部分,茶条械和山荆子
    的新根生物量随土壤中锅铅浓度的增加而下降,最高浓度处理(CdZoo、Pb加oo)
    分别降为对照的2.3%、73.4%和18.7%、45.25%:其它两树种的新根生物量因重
    金属种类而不同,在锡胁迫下,山梨的新根生物量先升后降,五角械持续下降;
    在铅胁迫下,五角械的各处理均高于对照,山梨均低于对照。
    4锡铅在四树种苗木体内的分配和富集。
     在Cd200处理下,山梨对锡迁移能力最强,能将根系所吸收福的巧.95%迁移
    到茎部,15.80%迁移到叶片,山荆子和五角械分别将15.94%和6.46%的锡迁移
    到地上部分,茶条械迁移能力最差,迁移到茎和叶的仅占1.94%和0.59%。四树
    种吸收的锡在各器官的累积量均为根>茎>叶。Pb2000处理下,山荆子相对迁移能
    力较强,根系吸收的铅10.22%迁移到茎部,8.34%迁移到叶部,其它三树种差异
    不明显。各器官铅累积量的排列顺序,除山梨的叶部铅含量大于茎外,其它三树
    种均为根>茎>叶。最高浓度(Cd200,PbZooo)处理下,山梨对锡铅的富集能力
    最强,各器官的富集系数均明显高于其它三者。比较各树种茎部对锡铅的富集系
    数为山梨>山荆子>五角械>茶条械。
    5四树种抗性的综合评定。
     采用隶属函数法对四树种重金属抗性进行综合评定。结果显示,四树种对土
    壤锡的抗性为山荆子>茶条械>山梨>五角械;对铅的抗性为茶条械>山梨>山荆子>
    五角械。
The reaction of the physiological and biochemical and growth of Acer ginnala Maxim, Pyrus ussuriensis, Acer mono Maxim and Malus bacata Borkh were studied under the
    stress of heavy metals (Cd2+ and Pb2+ ) in the soil by the seedlings in pots in greenhouse, the distribution and accumulation of heavy metals were analyzed in the four species and the resistance of the four species to heavy metals was evaluated. Every species was designed under different concentration gradient, Cd2+: 10 50 100 200mg kg-1(pure Cd2+), Pb2+ 100, 500 , 1000 2000 mg kg -1 (pure Pb2+), simultaneity CK was designed (showed CK Cd10 Cd50 Cd100 Cd200 Pb100 Pb500, Pb1000 Pb2000 in text). The results were as follows:
    1 The effects of Cd2+ and Pb2+ on photosynthesis of the seedlings With enhancing of the concentration of the Cd2+ and Pb2+, chlorophyll content in leaves of four tree species declined, It was achieved significant level in contrast with the hig -hest concentration treatment(Cd200, Pb2000) and CK ( P<0.05 ) . Acer mono Maxim was the most distinct, Pyrus ussuriensis Maxim and Acer ginnala Maxim were at second place, Malus bacata Borkh was the least. With the decline of chlorophyll, pure photosynthetic rate of plant leaves change. With Cd2+ concentration enhanced, photosynthetic rate of Acer mono Maxim decline, other three tree species first increase then descend, the variety of Malus bacata Borkh was the most, followed by Malus bac -ata Borkh, Pyrus ussuriensis Maxim was the least; pure photosynthetic rate of Pyrus ussuriensis Maxim continually decrease, with enhancing of the Pb2* concentration, that of other three tree species were first raised then decreased. Under the stress ofCd2* an -d Pb2+, chlorophyll
    fluorescence parameters Fv/Fm psII qP and qNP of most tree
    species differently decreased, but variety was relative less.
    2 The effects of Cd2+ and Pb2+ on the cell membrane lipid peroxidation and the
    activity of protectiase of the seedlings
    Relative conductivity rate of four tree species leaves enhanced with increase of heavy metals and the difference among tree species was significant. Under the stress of Cd2+, Acer mono Maxim was the most sensitive, followed by Pyrus ussuriensis Maxim and Malus bacata Borkh, Acer ginnala Maxim was least; Under the stress of Pb2+, the variety of Acer mono Maxim was most, followed by Malus bacata Borkh and Acer gin -nala Maxim, the variety of Malus bacata Borkh was least. The activity of SOD of
    
    
    four tree species seedlings first enhanced then decreased with the enhancing of the concentration of Cd2+ and Pb2+, while under the highest concentration treatment (Cd200 Pb2000) , the decreasing degree was Pyrus ussuriensis Maxim and Acer mono Maxim >Acer ginnala Maxim and Malus bacata Bork. POD activity raised conti -nually with the increasing of Cd2* and Pb2"1" concentration. The variety of Pyrus ussuriensis Maxi -m was maximal, followed by Acer ginnala Maxim and Acer mono Maxim, the variety of Malus bacata Borkh was minimal.
    3 The effects of Cd2+ and Pb2+ pollution on growth and biomass of the seedlings From the appearances of plant, leaves appeared chlorosis symptom under the stress of heavy metals, Cd2+ treatment was the most obvious, the symptoms of Acer ginnala Ma -xim and Acer mono Maxim were the most outstanding among four tree species. The lo -wer concentration of Cd2+ and Pb2+ can stimulate the growth of base diameters, seedli -ng heights, new branches and leaves of most tree species. With the enhancing of Cd2+ and Pb2+ concentration, each indexes decreased, thereinto, the effect on Acer mono Ma -xim was maximal, while the effect on other three tree species were insignificant. The poison of Cd2+ and Pb2+ on underground roots was ahead of that on the overground, the new root growth quantity of Acer ginnala Maxim and Malus bacata Borkh decreased with the Cd2+ and Pb2+ concentration increased; the new root growth quantityof other t -wo tree species was different under different heavy metals treatments. Under the stress of Cd2+, the new root growth quantity of Pyrus ussuriensis Maxim fi
引文
1. Alia. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochem., 1995,39:45
    2. Armstrong W & Boatman DJ. Some field observation relating the growth of bog plant to soil aeration. Ecol., 1992 55:101-110
    3. Baker AJ. Metal tolerance New Phytol., 1987,106:93-111
    4. Baszynski T&Wasda L Photosynthetic activities of cadimium-treated tomato plants. Physiol Plant, 1980,48:365~370.
    5. Bazzaz MB & Govidjee. Effect of Czdm ium nitrate on the spectral characteristic and light reaction of chloroplasts. Environ lett, 1974(6):1-20
    6. Cakmak I & Horst WJ. Effect of alumimium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean. Physiol Plantarum, 1991,83:463-468
    7. Casterlin IL & Barnett NM. Isolation and characterization of cadmium binding components in soybean plant. Plant Physiol, 1977,59(suppl):124
    8. Chis B. Superoxide dismutase and stress tolerance Annu Rev Plant Physiol Plant Mol Biol, 1992, 42(1):83-116
    9. Clarke BB & Brennan E. Differential cadmium accumulation and phytotoxicity in sixteen cultivars. Air Waste Management Association, 1989,39:1319-1322
    10. Clarke BB & Brennan E.. Tobacco leaves accumulate cadmium from root application of heavy metals. Tobacco Sci., 1983,28:152
    11. Creiposson S & Growder AA.Ameliortion of copper and nickel toxicity by iron plaque on roots of rice.Can.J.Bot., 1992, 70:824-830
    12. Florijn PJ &Nelemans JA.and van Beusichem M.L. Cadmium uptake by lettuce varieties. Netherlands Agri.Sci., 1991,39:103-114
    13. Fridovich I. Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In Pryor W A., eds Free Radical in Biology. New York: Academ ic Press,1976:
    14. Fridovich I. The biology of oxygen radicals. The syperoxide radical is an agent of oxygen toxicity: superoxide dismutase provide an important defence. Science, 1978,201:875-880
    15. Ginnopol Itis C N &Ries S K. Super-oxide dismutase Purification and quantiative relationship with water-soluble protein in seedling. Plant Physiol, 1977,59:315-318
    16. Grill E. Phytochelations, a class of heavy-metal-binding peptides of from plants are functionally analogous to metallothioneins. Proc. Natl.Acad.Sci USA, 1987,84:439-443
    17. Kavr Kishor PB & Hong ZL & Miao GH, Hu C.AA.Verma DPS. Overexpression of pyrroline carborylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995,108:1387-1394
    18. Kennedy CD &Gonsalves FAN. The action of divalent zinc, cadmium, meroury, copper and lead on the trans-root potential and H+ efflux of excised roots. J Exp Bot, 1987,38:800-817
    19. Kneer R & Zenk MH. Phytochelations protect plant enzymes from heavy metal poisoning. Phytochem., 1992, 31(8):2663-2667
    20. Kuboi T, Relationship between tolerance and accumulation characteristices of cadmium in higher plants. Plant and Soil, 1987,104:275-280
    21. Lamoreaux RJ & Chaney WR.Grow and water movement in different plant materials. Indian Exp Biol, 1977,6:201-205
    
    
    22. Lottermoser BG. Natural enrichment of topsoils with chromium and other heavy metals, Port Macquarie, New south wales, Austrilia. Australian Journal of soil Research, 1997,35:1165-1176
    23. Ma JF & Hiradate S & Matsumoto H. High aluminum resistance in buckwheat Ⅱ Oxalic acid detoxifies aluminum internally, Plant Physiol, 1998,117:753-759
    24. Maitani T, Knbota H,Sato K et al,. The composition of metals bound to class Ⅲ metallothionein (phytochelatin and its desglycyl peptide)induced by various metals in root cultures of Rubta Tinctorum.Plant hysiol, 1996,110:1145-1150
    25. Markus JA & Mcbratuey AB. An urban soil study: heavy metals in Glebe, Australian. Australian Journal of Soil Research, 1996,34:453-465
    26. Mench M & Martin E Mobilization of cadmium and other metals from two soils by root exudates of Zea may L, Nicotians tabacum L and Nicotiana rusticca L. plant soil, 1991,132:187-196
    27. Mench M & Tancogne J., Gomez A. and Juste C.. Cadmium bioavailability to Nicotiana tabacum L., Nicotiana rustica L., and Zeamays L. grown in soil amended or not amended with cadmium nitrate. Biol. Fertil Soils., 1989,8:48-53
    28. Miles C D. Inhibition of phyotosystem Ⅱ isolated chloroplast by cadm nm. Plant physiol, 1972,49:820-825
    29. Molone C & Kceppe DE & Miller RJ. Localization of lead accumulation by com plants. Plant Physiol, 1974,3:388-394
    30. Neumann D, Lichtenberger O, Gunther D, et.al. Heat-shock proteins induce heavy-metal tderance in higher plants. Planta, 1994,194:360-367
    31. Otte M.L., Dekker M., Rozema J. et al.. Uptake of arsenic by estuarine plants and interactions with phosphate in the field Rhine estuary and under outdoor experimental condition. Sci. Total Environ, 1990, 97/98:839-854
    32. Page A.L.. Cadmium In: Effect of heavy metal pollution on plant Vol.1 Effect of trace metal on plant function (edi. by N.W. Leep), Appied Science Publishers. London and NewJersry, 1981, 77-109
    33. Patel P.M., Wallace A., Hartsock,T. et.al. Zinc, nickel, and cadmium uptake and translocation to seed pods and their effects on gas exchange rates of bush bean plants grown in calcareous soil from northern Mojave Desert.. Plant Nutr., 1980,2:67-72
    34. Patra J & Ionka N & Panda BB. Tolerance and cotolerance of the grass Chloris barbata SW, to mercury, cadmium and zinc. New Phytol, 1994,128:165-171.
    35. Paula KP & Thompson JE. Evidence for the accumulation of peroxidized lipids in membranes of senescing cotyledons. Plant Physiol, 1984,75:1152-1157
    36. Pouyat RV & Mcbonnell MJ. Heavy metal accumulations in forest soils along an urban-rural gradient in southeastem New York, USA. Water AIR and Soil Poillution, 1991,57(80):797-807
    37. Prasad MNV. Cadmium toxicity and tolerance in vascular paints. Envir. Exper. Botany, 1995,35 (4): 525-545
    38. Rauser WE& Acker CA.Localization of cadmium in granules within differentiating and mature root cells. Can J Bot, 1987,65:643-646
    39. Rauser WE. Phytochelations and related peptides: Structure, biosynthesis and peptides. Plant Physiol, 1995,109:1141-1149
    40. Robinson NJ, Tommey AM, Kusle C, et.al.. Plant metallothioneins. Biochem J.1993, 295:1-10
    41. Saradhi P.P.. Proline accumulztes in plant exposed to UV radiation and protects the magairst UV induced peroxidation. Biochem Biophys Res Gonumn, 1995,209:125-130
    42. Scandalios JG. Oxygen stress and superoxide dismutase. Plant Physiol, 1993,101(1):7-12
    
    
    43. Smilde K. W.. Heavy-metal accumulation in crops including Populus euramericana grown on sewage sludge amended with metal salts. Plant and Soil, 1981,62:3-14
    44. Smirnoff N & Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes Phytochem, 1989,28(4): 1075-1060
    45. Tadeusz B, Lucyna W, Maria K et al. Photosynthetic activities of cadmium-treated tomato plants. Physiol. Plant, 1980,48:365-370
    46. Tomsett AB & Thurman DA. Molecular biology of metal tolerance of plants. Plant Cell Erwiron, 1988, 11:383-394
    47. Tu SI & Nungesser & Brauer D. Characterization of the effects of divalent cations on the coupled activities of the H+-ATP ase in tonoplast vesicles. Plant Physiol, 1989,70:1636-1643
    48. Wang J. Computer simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles. Plant Physiol, 1991.97:1154-1160
    49. William, H. Smith. Air Pollution and Forest, Springer-Veriag New york Inc 1981
    50. WuJT. Intracellular proline accumulation in some algae exposed to copper and cadmium. Bot Bull Acad Sin, 1995,36:89-93
    51.卞咏梅,陈树元.HF对几种植物体内脯氨酸的影响.植物学理学通讯.1998,6:19-21
    52.柴团耀,张玉秀.菜豆重金属胁迫响应基因:cDNA克隆及其表达分析,植物生理学报,1998,24(4):399-404
    53.常学秀,段昌群,王焕校.根分泌作用与植物对重金属毒害的抗性.应用生态学报,2000,11(2):315-320
    54.常学秀,王焕校,文传浩.Cd~(2+)、Al~(3+)对蚕豆胚根根尖细胞遗传学毒性效应研究.农业环境保护 1999,18(1):1-3
    55.陈怀满.土壤中Cd、P、Zn的含量对水稻产量和矿质元素浓度的影响.土壤学报,1985,22:85-92
    56.陈能场,陈怀满.重金属在根际中的化学行为,土壤学进展,1993,21(1):73-79
    57.陈贻竹.低温对植物叶片SOD、CAT活性和H_2O_2含量的影响,植物生理学报,1988,14(4):323-328
    58.戴金平,沈征言,简令成低温锻炼对黄瓜幼苗几种酶活性的影响.植物学报,1991,38(8):627-632
    59.段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用及蚕豆根尖微核技术的探讨.植物学报,1995,37(1):1-24
    60.郭笃发.环境中镉和铅的来源及其对人和动物的危害.环境科学进展,1994,2(3):71-76
    61.黄会一,蒋德明,张春兴等.木本植物对土壤中镉的吸收、累积和耐性.中国环境科学.1989,9(5):323-330
    62.黄晓华,周青,程宏英等.五种常绿树木对铅污染胁迫的反应.城市环境与城市生态,2000,13(6):48-50
    63.江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报,2001,7(1):92-99
    64.蒋德明,黄会一,张春兴等.木本植物对土壤镉污染物吸收蓄积能力及其种间差异.城市环境与城市生态.1992,5(1):27-29.
    65.蒋文智,黎继岚.镉对烟草光合作用的影响.植物生理学通讯.1989,(6):27-31
    66.金明红,冯宗炜,张福珠.臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响.环境科学,2000,21(3):2-5
    67.孔祥生,郭秀璞,张妙霞.镉胁迫对玉米幼苗生长及生理生化的影响.华中农业大学学报,1999,18(2):111-113
    68.冷平生,李树蓉.桧柏富集重金属研究初报.北京农学院学报,1995,10(1):87-92
    69.李方远.铅对小麦幼苗某些生理特性的影响.河南科学,2001,19(2):209-211
    70.李合生主编.植物生理生化实验原理和技术.高等教育出版社,2001
    71.李元.镉铁及其复合污染对烟草生理的影响.生态学报,1990,10(4):494-500
    
    
    72.廖自基著.环境中微量重金属元素的污染危害与迁移转化.科学出版社,1989
    73.林健,邱卿如,陈建安等.公路旁土壤中重金属和类金属污染评价.环境与健康杂志,2000,17(5):284-286
    74.林琦,郑春荣,陈怀满等.根际环境中镉的形态转化.土壤学报,1998,35(4)461-467
    75.林治庆,黄会一.木本植物对汞耐性的研究.生态学报,1989,9(4):315-319
    76.刘华,凌启阆,向左云等.一种钙调素结合蛋白对小麦脂膜H+-ATP酶活性的调节.植物生理学报,1998,24(1):91-94
    77.刘秀梅,聂俊华,王庆仁.六种植物对铅的吸收与耐性研究.植物生态学报,2002,26(5):533-537
    78.刘学铭,王菊芳,余若黔等.不同氮水平下异养小球藻生物量和叶绿素含量的变化.植物生理学通讯,1999,35(3):198-201
    79.马成仓.Hg对油菜叶细胞膜的损伤及细胞自身的保护作用.应用生态学报,1998,9(3):323-326
    80.彭鸣,王焕校,吴玉树.镉、铅诱导的玉米幼苗细胞超微结构的变化.中国环境科学,1991,11(6):426-431
    81.秦天才,阮捷,王腊娇.镉对植物光合作用的影响.环境科学与技术,2000(90):33-35
    82.秦天才,吴玉树,王焕校等.镉、铅及其相互作用对小白菜生理生化特性的影响.生态学报,1998,14(1):46-50
    83.邱金龙,金巧玲,王钧.活性氧与植物抗病反应.植物生理学通讯,1998,34(1):56-61
    84.任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响.应用与环境生物学报.2000,6(2):112-116
    85.施为光.成都市街道地表物中的重金属.城市环境与城市生态,1995,8(3):25-28
    86.苏玲,章永松,林咸永等.微管植物的镉毒和耐性机制.植物营养与肥料学报,2000,6(1):106-112
    87.孙塞初.水生维管植物受镉污染后的生理变化及受害机制初探.植物生理学报,1985,11(2):113-121
    88.汤章诚.逆境条件下植物PRO累积及其可能的意义,植物生理学通讯,1984,10(1):15-21
    89.王焕校.污染生态学基础.昆明:云南大学出版社.1990
    90.王焕校著.污染生态学.高等教育出版社,2000
    91.王庆仁,崔岩山,董艺婷.植物修复—重金属污染土壤整治有效途径.生态学报,2001,21(2):326-331
    92.王校常,施卫明,曹志洪.重金属的植物修复——绿色清洁的污染治理技术.核农学报,2000,14(5):315-320
    93.吴燕玉,陈涛,张学询.沈阳市张土灌区cd污染生态研究.生态学报,1989,9(1):21-26
    94.夏立江,王宏康著.土壤污染及其防治.华东理工大学出版社,2001,63-67
    95.许嘉林,杨居荣编著.陆地生态系统中的重金属.中国环境科学出版社,1995
    96.薛大熠,马艳青,黄炎武.低温胁迫对辣椒幼苗抗坏血酸含量的影响.华中农业大学学报,1996,22(2):143-146
    97.严小龙,张福锁.植物营养遗传学.北京:中国农业出版社.1996
    98.严重玲,洪业汤,付舜珍等.镉铅胁迫对烟草叶片中活性氧清除系统的影响.生态学报.1997,17(5):488-492
    99.杨丹慧,许春辉.镉离子对菠菜叶绿体光系统Ⅱ的影响.植物学报,1989,31(9):702-707.
    100.杨广东,朱祝军,计玉妹.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响.植物营养与肥料学报,2002,8(1):115~118
    101.杨居荣,贺建群,黄翌等.农作物镉耐性的种内和种间差Ⅱ种内差.应用生态学报,1995,6(增刊):132-136
    102.杨居荣.镉铅在植物细胞内的分布及可溶性结合形态.中国环境科学,1993,13(4):325-331
    103.杨树华,曲仲湘,王焕校.铅在水稻中的迁移和积累及其对生长的影响.生态学报,1986,6(4):312-322
    104.杨志敏,郑绍建,刘秀兰等.磷对小麦细胞镉锌的积累极其在亚细胞内分布的影响,环境科学
    
    学报,1999,19(6):694-695
    105.余国营,吴玉树,王焕校.不同化合形态镉锌及其复合污染对小麦生理的影响.生态学报,1992,12(1):93-96
    106.余国营.不同化合形态镉锌及其复合污染对小麦生理的影响.生态学报,1992,12(1):93-96
    107.张福锁著.环境胁迫与根际营养,北京:中国农业出版社,1998
    108.郑春荣,陈怀满.重金属复合污染对水稻生长的影响.土壤,1989,21(1):10-14
    109.郑逢中,林鹏,郑文教.红树植物秋茄幼苗对镉耐性的研究.生态学报,1994,14(4):408-413
    110.郑少玲,严小龙.盐胁迫下不同水稻基因型根内Na~+和Cl~+分布情况比较.华中农业大学学报,1996,17(4):24-28
    111.周红卫,施国新,杜开和等.Cd2+污染对水生花生生理生化及超微结构的影响.应用生态学报,2003,14(9):1581-1584
    112.周军英.SO_2、NO_2对西红柿叶片的毒害及SOD活性的影响.中国环境科学1993,13(6):429-432
    113.周青,黄晓华,王东燕.镧-甘氨酸配合物对镉伤害小白菜的影响.环境科学,1999,20(1)91-94
    114.周青,黄晓华,张剑华.La对镉伤害大豆幼苗的生理生态作用.中国环境科学,1998,18(5):442-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700