泡桐丛枝植原体质粒基因pPaWBNy-1-ORF5和pPaWBNy-2-ORF4的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由植原体引起的泡桐丛枝病(paulownia witches’-broom,PaWB)在我国分布广泛,为害严重,是中国泡桐树种上最严重的病害之一。泡桐丛枝病由种苗种根等无性繁殖材料和韧皮部取食的介体昆虫传播,目前已鉴定的介体昆虫有茶翅蝽(Halyomorpha halys(St l))、烟草盲蝽(Crytopeltis tenuis (Reuter))和小绿叶蝉(Empoasca flavescens(Fabricius))。为了研究泡桐丛枝植原体质粒的功能,进一步明确泡桐丛枝病介体昆虫-植原体之间的分子互作和介体昆虫的传播特性,本论文对以下四个方面进行研究。
     本研究从实验室保存的含泡桐丛枝植原体质粒pPaWBNy-1的3.0kb的克隆和感病泡桐组培苗中分离到虫传相关基因pPaWBNy-1-ORF5和pPaWBNy-2-ORF4的亲水性肽段编码区,连接到原核表达载体。通过优化表达条件,得到分子量约为15kDa的His-ORF5和分子量约为38kDa的GST-ORF4融合蛋白。纯化融合蛋白,制备了这两个融合蛋白的兔抗体。Western blot分析发现,制备的两个抗体特异性好、灵敏度高,间接ELISA测定两者的效价为1:8100和1:4096。
     利用制备的抗体,分析了pPaWBNy-1-ORF5和pPaWBNy-2-ORF4在不同材料的表达情况,发现在感病的泡桐组培苗和野外采集的感病泡桐中皆未检测到两基因的表达,而在饲毒的茶翅蝽中检测到分子量约17kDa的pPaWBNy-1-ORF5编码蛋白和18kDa的PaWBNy-2-ORF4编码蛋白。推测pPaWBNy-1-ORF5和pPaWBNy-2-ORF4编码蛋白参与介体昆虫茶翅蝽传播泡桐丛枝植原体。利用原核表达的His-ORF5融合蛋白微注射茶翅蝽,制备了可用于体内分子互作的蛋白样本。以纯化的His-ORF5融合蛋白作为探针,用Far Western blot试验在茶翅蝽胸腹部提取的蛋白中鉴定到分子量为52kDa和36kDa的两个与pPaWBNy-1-ORF5编码蛋白互作的茶翅蝽蛋白,而在血淋巴提取的蛋白中鉴定到分子量为52kDa的互作蛋白。对于这两个蛋白序列的测定,将会有助于确定pPaWBNy-1-ORF5和pPaWBNy-2-ORF4编码蛋白的功能,有助于进一步理解泡桐丛枝植原体与介体昆虫茶翅蝽互作的分子机制。
     采集了北京中国林科院院内泡桐林中的茶翅蝽,建立了北京茶翅蝽种群的稳定饲养、饲毒和微注射的技术体系。使用网捕法和振落法采集了河南南阳泡桐林和越冬场所的蝽象,一共采集了四种蝽象:茶翅蝽、麻皮蝽(Erhtesina fullo (Thunberg))、珀蝽(Plautiafimbriata (Fabricus))和宽胫格蝽(Cappaea tibialis Hsiao et Cheng),它们的数量分别为293、41、8和8头。对越冬场所和泡桐林中的蝽象样本分别提取DNA和蛋白。巢式和半巢式PCR检测带毒情况,在麻皮蝽和宽胫格蝽中没有检测到植原体;而越冬茶翅蝽的带毒率为29.2%,泡桐林中茶翅蝽的带毒率为16.7%。提取的茶翅蝽蛋白进行免疫印迹试验,能够检测到分子量约17kDa的pPaWBNy-1-ORF5编码蛋白表达。
     使用质粒基因RepA的引物进行半巢式PCR检测珀蝽中的植原体,发现一头珀蝽检测结果为阳性,对PCR产物克隆和测序,序列分析发现其与泡桐丛枝植原体的RepA同源性为99.4%。对阳性珀蝽的蛋白进行免疫印迹试验,鉴定到一个分子量约18kDa的pPaWBNy-2-ORF4编码蛋白。以上结果证明该头珀蝽携带泡桐丛枝植原体。珀蝽是否也是泡桐丛枝植原体的介体昆虫,需要通过传播试验加以证实。
Paulownia witches'-broom (PaWB) disease associated with phytoplasma is a devastatingdisease of paulownia in China. Most species of Chinese paulownia are sensitive to PaWBdisease. PaWB disease could be transmitted by vegetative propagation materials(eg: seedlingand root cutting)and phloem-feeding insects. The vector insects of PaWB phytoplasma wereHalyomorpha halys (St l), Crytopeltis tenuis (Reuter) and Empoasca flavescens (Fabricius). Tobetter understand the function of PaWB phytoplasma plasmids and molecular interactions ofPaWB phytoplasma-vector and insect transmission, we conducted the following researches.
     We use a clone containing a3.0kb segment of PaWB phytoplasma plasmid pPaWBNy-1and genome DNA extracted from infected paulownia plantlets as DNA templates, PCRamplification of pPaWBNy-1-ORF5and pPaWBNy-2-ORF4hydrophilic peptide codingregions. The amplified DNA fragments were inserted into the prokaryotic expression vectorand the recombinant plasmid was transformed into the Escherichia coli Rosseta(DE3) strain.Under the optimal experimental condition, the15kDa of His-tagged ORF5and38kDa ofGST-tagged ORF4fusion proteins were expressed efficiently in E.coli Rosseta(DE3). Thefusion proteins were purified and injected into white rabbit to raise antiserum. The titers of twoantisera were determined to be1:8100and1:4096by indirect ELISA, respectively.
     Using the two antisera, we analysed the expression of pPaWBNy-1-ORF5andpPaWBNy-2-ORF4genes in different specimens of host plant and vector insect, the tworesultant antibodies didn't react with the proteins extracted from infected paulownia plantletsand field-collected symptomed paulownia, but detected17kDa of pPaWBNy-1-ORF5codingprotein and18kDa of pPaWBNy-2-ORF4coding protein in H. halys exposing to PaWBphytoplasma infected paulownia. It was inferred that pPaWBNy-1-ORF5andpPaWBNy-2-ORF4might be involved in the insect transmission of H. halys. The in vivointeraction protein specimens were prepared with H. halys by injecting His-tagged ORF5 fusion protein into the hemolymph of H. halys. Then far Western blot experiments were carriedout on H. halys protein blot with phytoplasma proteins as the overlay to identify the protein ofH. halys involved in the interaction with the pPaWBNy-1-ORF5coding protein. Two proteinsof the thoracoab dominal of H. halys were identified, one with a molecular mass of52kDa andthe second with a mass of36kDa. Moreover, a52kDa protein from the hemolymph of H.halys were identified. Sequencing those insect proteins, will help us to determinepPaWBNy-1-ORF5protein function, therefore, to promote to understand the molecularmechanism of PaWB phytoplasma interacting with vector insect H. halys.
     H. halys nymphs were collected from paulownia plantations in the yard of Chinese Academyof Froestry. We developed a stable rearing, acquisition method as well as abdominalmicroinjection methods of Beijing population of H. halys. Adults of the stink bugs werecollected by means of sweeping net and beating tray in infested paulownia plantations byPaWB phytoplasma and overwintering sites in Nanyang, Henan province. A total of350stinkbugs were collected:293of H. halys,41of Erhtesina fullo (Thunberg),8of Plautia fimbriata(Fabricus) and8of Cappaea tibialis Hsiao et Cheng. DNA and protein were extracted fromstink bugs collected from Nangyang. Semi-nested PCR and nested PCR amplification of theRepA gene specific to PaWB plasmid was performed using the extracted DNA as templates.The results indicated that E. fullo and C. tibialis didn't carry PaWB phytoplasma, while thepositive detection rate was29.2%of overwinter H. halys, and16.7%of H. halys collected frompaulownia plantations. Western blot analysis using pPaWBNy-1-ORF5antibody revealed thatthat a specific17kDa protein band in H. halys protein, which indicated thatpPaWBNy-1-ORF5gene expressed in H. halys.
     In semi-nested PCR using RepA gene primers, from a total of8individual stink bugs tested,1of P. fimbriata samples gave a positive singal. The amplified DNA fragment was cloned andsequenced, the sequence alignment revealed that the sequence was99.4%identical to RepAgene paulownia witches'-broom phytoplasma (EF426472). In Western blot analysis, a18kDapolypeptide was detected in total protein from P. fimbriata. This results indicated that pPaWBNy-2-ORF4gene expressed in P. fimbriata. Whether the P. fimbriata is the vector'insect of PaWB phytoplasma, need to be confirmed through the transmissionassay.
引文
Ahrens U, Seemuller E. Detection of DNA of plant pathogenic mycoplasma-like organisms by a polymerasechain reaction that amplifies a sequence of the16SrRNA gene. Phytopathology,1992,82(8):828-832.
    Albertazzia G, Milca J, Caffagnia A, et al. Gene expression in grapevine cultivars in response to Bois Noirphytoplasma infection. Plant Science,2009,176(6):792-804.
    Aldaghi M, Massart S, Bertaccini A, et al. Identification of host genes potentially implicated in the Maluspumila and‘Candidatus Phytoplasma mali’ interactions.21st International Conference on Virus andother Graft transmissible Diseases of Fruit Crops,2010,427:162-166.
    Aldrich JR, Khrimian A, Camp MJ. Methyl2,4,6-decatrienoates attract stink bugs and Tachinid Parasitoids.Journal of Chemical Ecology,2007,33:801-815.
    Almal A, Palermo1S, Boccardo G, et al. Transmission of chrysanthemum yellow, a subgroup16SrI-Bphytoplasma, to grapevine by four leafhopper species. Journal of Plant Pathology,2001,83(3):181-187.
    Arashida R, Kakizawa S, Ishii Y, et al. Cloning and characterization of the antigenic membrane protein(Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangeaphyllody phytoplasma. Phytopathology,2008,98(7):769-775.
    Bai XD, Correa VR, Toru o TY, et al. AY-WB phytoplasma secretes a protein that targets plant cell nuclei.Molecular Plant Microbe Interactions,2009,22(1):18-30.
    Bai XD, Zhang JH, Ewing A, et al. Living with genome instability: the adaptation of phytoplasmas todiverse environments of their insect and plant hosts. Journal of Bacteriology,2006,188(10):3682-3696.
    Baker WL. Transmission by leafhoppers of the virus causing phloem necrosis of American elm. Science,1948,108(2803):307-308.
    Basset A, Khush RS, Braun A, et al. The phytopathogenic bacteria Erwinia carotovora infects Drosophilaand activates an immune response. Proceedings of the National Academy of Sciences,2000,97(7):3376-3381.
    Batlle A, Altabella N, Sabate J, et al. Study of the transmission of stolbur phytoplasma to different cropspecies, by Macrosteles quadripunctulatus. Annals of Applied Biology,2008,152:235-242.
    Beanland L, Hoy CW, Miller SA, et al. Influence of Aster yellows phtoplasma on the fitness of asterleafhopper (Homoptera:Cicadellidae). Annals of the Entomological Society of America,2000,93(2):271-276.
    Berg M, Davies DL, Clark MF, et al. Isolation of the gene encoding an immunodominant membrane proteinof the apple proliferation phytoplasma, andexpression and characterization of the gene product.Microbiology,1999,145(8):1937-1943.
    Berg M, Melcher U, Fletcher J. Characterization of Spiroplasma citri adhesion related protein SARP1,whichcontains a domain of a novel family designated sarpin. Gene,2001,275(1):57-64.
    Berho N, Duret S, Renaudin J. Absence of plasmids encoding adhesion-related proteins innon-insect-transmissible strains of Spiroplasma citri. Microbiology,2006a,152:873-886.
    Berho N, Duret S, Danet JL, et al. Plasmid pSci6from Spiroplasma citri GII-3confers insect transmissibilityto the non-transmissible strain S.citri44. Microbiology,2006b,152:2703-2716.
    Blomquist CL, Barbara DJ, Davies DL, et al. An immunodominant membrane protein gene from the WesternX-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology,2001,147:571-580.
    Bosco D, D’Amelio R. Transmission specificity and competitionn of multiple phytoplasmas in the insectvector. In: Weintraub P, Jones P, eds. Phytoplasmas:genomes, plant hosts, and vectors. Wallingford, UK:CABI.2010, pp293-308.
    Bosco D, Minucci C, Boccardo G, et al. Differential acquisition of chrysanthemum yellows phytoplasma bythree leafhopper species. Entomologia Experimentalis et Applicata,1997,83:219-224.
    Bosco D, Galetto L, Leoncini P, et al. Interrelationships between “Candidatus Phytoplasma asteris” and itsleafhopper vectors (Homoptera: Cicadellidae). Journal of Economic Entomology,2007,100(5):1504-1511.
    Bressan A, Clair D, Sémétey O, et al. Insect injection and artificial feeding bioassays to test the vectorspecificity of Flavescence dorée phytoplasma. Phytopathology,2006,96:790-796.
    Bressan A, Girolami V, Boudon-Padieu E. Reduced fitness of the leafhopper vector Scaphoideus titanusexposed to Flavescence dorée phytoplasma. Entomologia Experimentalis et Applicata,2005,115:283-290.
    Breton M, Duret S, Danet JL, et al. Sequences essential for transmission of Spiroplasma citri by itsleafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based onincompatibility. Applied and Environmental Microbiology,2010,76(10):3198-3205.
    Caldas C, Cherqui A, Pereira A, et al. Purification and caracterization of an etracellular potease fromXenorhabdus nematophila involved in insect immunosuppression. Applied and EnvironmentalMicrobiology,2002,68(3):1297-1304.
    Carginale V, Maria G, Capassoa C, et al. Identification of genes expressed in response to phytoplasmainfection in leaves of Prunus armeniaca by messenger RNA differential display. Gene,2004,332:29-34.
    Carraro L, Ferrini F, Labonne G, et al. Seasonal infectivity of Cacopsylla pruni, vector of European stonefruit yellows phytoplasma. Annals of Applied Biology,2004,144:191-195.
    Carraro L, Loi N, Ermacora P. Transmission characteristics of the European stone fruit yellows phytoplasmaand its vector Cacopsylla pruni. European Journal of Plant Pathology,2001,107:695-700.
    Carraro L, Ferrini F, Ermacora P, et al. Role of wild Prunus species in the epidemiology of European stonefruit yellows. Plant Pathology,2002,51:513-517.
    Chiykowski LN. Endria inimica (Say) a new leafhopper vector of celery-infecting strain of aster yellowsvirus in barley and wheat. Canadian Journal of Botany,1963,41(5):669-672.
    Chiykowski LN, Sinha RC. Sex and age of Macrosteles fascifrons in relation to the transmission of theclover proliferation causal agent. Annals of the Entomological Society of America,1970,63:1614-1617.
    Christensen NM, Axelsen KB, Nicolaisen M, et al. Phytoplasmas and their interactions with hosts. Trends inPlant Science,2005,10(11):526-535.
    Davis MJ, Tsai JH, Cox RL, et al. Cloning of chromosomal and extrachromosomal DNA of themycoplasmalike organism that causes maize bushy stunt disease. Molecular Plant Microbe Interactions,1988,1(8):195-302.
    Davis RE, Lee IM, Dally EL. Molecular cloning and detection of chromasomal and extra-chromosomaIDNA of the mycoplasmalike organism associated with little leaf disease in periwinkle(Catharanthusroseus). Molecular Plant Pathology,1990,80(9):789-793.
    Davisa RE, Dallya EL, Jomantienea R, et al. Cryptic plasmid pSKU146from the wall-less plant pathogenSpiroplasma kunkelii encodes an adhesin and components of a type IV translocation-related conjugationsystem. Plasmid,2005,53:179-190.
    Denes AS, Sinha RC. Alteration of clover phyllody mycoplasma DNA after in vitro culturing ofphyllody-diseased clover. Canadian Journal of Plant Pathology,1992,14(3):189-196.
    Doi Y, Teranaka M, Yoora K, et al. Mycoplasma or PTL-group-like micoorganisms found in the phloemelements of plants infected with mulberry dwarf, potato witches-broom, aster yellows or paulowniawitches-broom. Annals of the Phytopathological Society of Japan,1967,33:259-266.
    Duret S, Berho N, Danet JL, et al. Spiralin is not essential for helicity, motility, or pathogenicity but isrequired for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps.Applied and Environment Microbiology,2003,69(10):6225-6234
    Elliot SL, Adler FR, Sabelis MW. How virulent should a parasite be to its vector? Ecology,2003,84(10):2568-2574.
    Fletcher J, Wayadande A, Melcher U, et al. The phytopathogenic mollicute-insect vector interface: a closerlook. Phytopathology,1998,88(12):1351-1358.
    Foissac X, Bove JM, Saillard C. Sequence analysis of Spiroplasma phoeniceum and Spiroplasma kunkeliispiralin genes and comparison with other spiralin genes. Current Microbiology,1997,35:240-243.
    Frost KE, Willis DK, Groves RL. Detection and variability of aster yellows Phytoplasma titer in its insectvector,Macrosteles quadrilineatus (Hemiptera:Cicadellidae). Journal of Economic Entomology,2011,104(6):1800-1815.
    Funayama K. Importance of apple fruits as food for the brown-marmorated stink bug Halyomorpha alys(St l)(Heteroptera:Pentatomidae). Applied Entomology and Zoology,2004,39(4):617-623.
    Funayama K. A new rearing method using carrots as food for the brown-marmorated stink bug,Halyomorpha halys (St l)(Heteroptera: pentatomidae). Applied Entomology and Zoology,2006,41(3):415-418.
    Galetto L, Nardi M, Saracco P, et al. Variation in vector competency depends on chrysanthemum yellowsphytoplasma distribution within Euscelidius variegatus. Entomologia Experimentalis et Applicata,2009,131:200-207.
    Galetto L, Bosco D, Balestrini R, et al. The major antigenic membrane protein of “Candidatus Phytoplasmaasteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS ONE,2011a,6(7):e22571.
    Galetto L, Marzachi C, Demichelis S, et al. Host plant determines the phytoplasma transmission competenceof Empoasca decipiens(Hemiptera:Cicadellidae). Journal of Economic Entomology,2011b,104(2):360-366.
    Gasparich GE. Spiroplasmas and phytoplasmas: microbes associated with plant hosts. Biologicals,2010,38:193-203.
    Gildow FE, Gray SM. The aphid salivary gland basal lamina as a selective barrier associated withvector-specific transmission of barley yellow dwarf luteovirus. Phytopathology,1993,83(12):1293-1302.
    Hinnebusch BJ, Fischer ER, Schwan TG. Evaluation of the role of the Yersinia pestis plasminogen activatorand other plasmid-encoded factors in temperature-dependent blockage of the flea. The Journal ofInfectious Diseases,1998.178:1406-1415.
    Hinnebusch BJ, Perry RD, Schwan TG. Role of Yersinia pestis hemin storage (hms) locus in the transmissionof plague by fleas. Science.1996,273:367-370.
    Hogenhout S, Oshima K, Ammar ED, et al. Phytoplasmas:bacteria that manipulate plants and insects.Molecular Plant Pathology,2008,9(4):403-423.
    Hogenhout SA, Van der Hoorn RAL, Terauchi R, et al. Emerging concepts in effector biology ofplant-associated organisms. Molecular Plant Microbe Interactions,2009,22:115-122.
    Hoshi A, Oshima K, Kakizawa S, et al. A unique virulence factor for proliferation and dwarfism in plantsidentified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences,2009,106:6416-6421.
    Hren M, Nikoli P, Rotter A, et al.'Bois noir' phytoplasma induces significant reprogramming of the leaftranscriptome in the field grown grapevine. BMC Genomics,2009,10:460-476.
    Hurst GDD, Anbutsu H, Kutsukake M, et al. Hidden from the host:Spiroplasma bacteria infectingDrosophila do not cause an immune response, but are suppressedby ectopic immune activation. InsectMolecular Biology,2003,12:93-97.
    Ishii Y, Kakizawa S, Hoshi A, et al. In the non-insect-transmissible line of onion yellows phytoplasma(OY-NIM), the plasmid-encoded transmembrane protein ORF3lacks the major promoter region.Microbiology,2009a,155:2058-2067.
    Ishii Y, Oshima K, Kakizawa S, et al. Process of reductive evolution during10years in plasmids of anon-insect-transmissible phytoplasma. Gene,2009b,446:51-57.
    Jarausch B, Schwind N, Fuchs A, et al. Characteristics of the spread of apple proliferation by its vectorCacopsylla picta. Phytopathology,2011,101:1471-1480.
    Ji D, Kim Y. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of anantibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. Journal of Insect Physiology,2004,50(6):489-496.
    Ji XL, Gai YP, Lu BY, et al. Shotgun proteomic analysis of mulberry dwarf phytoplasma.Proteome Science,2010,8:20.
    Ji XL, Gai YP, Zheng CC, et al. Comparative proteomic analysis provides new insights into mulberry dwarfresponses in mulberry (Morus alba L.). Proteomics,2009,9:5328-5339.
    Jia DS, Chen HY, Mao QZ, et al. Restriction of viral dissemination from the midgut determinesincompetence of small brown planthopper as a vector of Southern rice black-streaked dwarf virus. VirusResearch,2012,167:404-408.
    Joshi BD, Berg M, Rogers J, et al. Sequence comparisons of plasmids pBJS-O of Spiroplasma citri andpSKU146of S. kunkelii: implications for plasmid evolution. BMC Genomics,2005,6:175-185.
    Jovi J, Cvrkovi T, Mitrovi M. et al. Stolbur phytoplasma transmission to maize by Reptalus panzeri andthe disease cycle of maize redness in Serbia. Phytopathology,2009,99:1053-1061.
    Kakizawa S, Oshima K, Nishigawa H, et al. Secretion of immunodominant membrane protein from onionyellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology,2004,150:135-142.
    Kessler S, Schaerer S, Delabays N, et al. Host plant preferences of Hyalesthes obsoletus,the vector of thegrapevine yellows disease ‘bois noir’,in Switzerland. Entomologia Experimentalis et Applicata,2011,139:60-67.
    Khan SA. Plasmid rolling-circle replication: highlights of two decades of research. Plasmid,2005,53:126-136.
    Killiny N, Castroviejo M, Colette S. Spiroplasma citri spiralin acts in vitro as a lectin binding toglycoproteins from its insect vector Circulifer haematoceps.Phytopathology,2005,95(5):541-548.
    Kison H, Seemüller E. Differences in strain virulence of the European stone fruit yellows phytoplasma andsusceptibility of stone fruit trees on various rootstocks to this pathogen. Journal of Phytopathology,2001,149:533-541.
    Koji S, Fujinuma S, Midega CAO, et al. Seasonal abundance of Maiestas banda (Hemiptera:Cicadellidae),avector of phytoplasma,and other leafhoppers and planthoppers (Hemiptera:Delphacidae) associatedwith Napier grass (Pennisetum purpureum) in Kenya. Journal of Pest Science,2012,85(1):37-46.
    Kuboyama T, Huang CC, Lu XY, et al. A plasmid isolated from phytopathogenic onion yellows phytoplasmaand its heterogeneity in the pathogenic phytoplasma mutant. Molecular Plant Microbe Interactions,1998,11(11):1031-1037.
    Kunkel LO. Studies on aster yellows. American Journal of Botany,1926,13:646-705.
    Kunkel LO. Leafhopper transmission of corn stunt. Proceedings of the National Academy of Sciences,1946,32:246-247
    Kuske CR, Kirkpatrick BC. Identification and characterization of plasmids from the western aster yellowsmycoplasmalike organism. Journal of Bacteriology,1990,172(3):1628-1633.
    Kwon MO, Wayadande AC, Fletcher J. Spiroplasma citri movement into the intestines and salivary glands ofits leafhopper vector,Circulifer tenellus. Phytopathology,1999,89:1144-1151.
    La YJ, Park WC. Insect transmission of paulownia witches. broom mycoplasma-like organism to periwinkleplant by tobacco leaf bug, Cyrtopeltis tenuis Reuter. Korean Journal of Plant Pathology,1994,10(3):211-214.
    Labroussaa F, Dubrana MP, Arricau-Bouvery N, et al. Involvement of a minimal actin-binding region ofSpiroplasma citri phosphoglycerate kinase in spiroplasma transmission by its leafhopper vector. PLoSONE,2011,6(2): e173571-7.
    Lee IM, Gundersen-Rindal DE, Davis R.E, et al. Revised classification scheme of phytoplasmas based onRFLP analysis of16S rRNA and ribosomal protein gene sequences. International Journal of SystematicBacteriology,1998a,48:1153-1169.
    Lee IM, Gundersen-Rindal DE, Bertaccini A. Phytoplasma:ecology and genomic diversity. Phytopathology,1998b,88(12):1359-1366.
    Lee KC, Kang CH, Lee DW, et al. Seasonal occurrence trends of hemipteran bug pests monitored bymercury light and aggregation pheromone traps in sweet persimmon orchards. Korean Journal ofApplied Entomology,2002,41:233-238.
    Lee S, Han S, Cha B. Mixed infection of16S rDNA I and V groups of phytoplasma in a single Jujube tree.The Plant Pathology Journal,2009,25(1):21-25.
    Lefol C, Caudwell A, Lherminier J, et al. Attachment of the Flavescence doree pathogen (MLO) toleafhopper vectors and other insects. Annals of Applied Biology,1993,123:611-622.
    Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annual Review of Immunology,2007,25:697-743.
    Lin·CL, Zhou·T, Li·HF, et al. Molecular characterisation of two plasmids from paulownia witches'-broomphytoplasma and detection of a plasmid encoded protein in infected plants. European Journal of PlantPathology,2009,123:321-330.
    MacLean AM, Sugio A, Makarova OV, et al. Phytoplasma effector SAP54induces indeterminate leaf-likeflower development in Arabidopsis plants. Plant Physiology,2011,157(2):831-841.
    Malagnini V, Pedrazzoll F, Gualandil V, et al. Astudy of the effects of ‘Candidatus Phytoplasma mali’ on thepsyllid Cacopsylla melanoneura (Hemiptera:Psyllidae). Journal of Invertebrate Pathology,2010,103(1):65-67.
    Margaria P, Palmano S. Response of the vitis vinifera L. cv.‘Nebbiolo’ proteome to Flavescence doréephytoplasma infection. Proteomics,2011,11:212-224.
    Maramorosch K. Direct evidence of the multiplication of aster-yellows virus in its insect vector.Phytopathology,1952,42:59-64.
    Maramorosch K. Historical reminiscences of phytoplasma discovery. Bulletin of Insectology (Supplement).2011,64:S5-S8.
    Mattila JT, Munderloh UG, Kurtti TJ. Rickettsia peacockii, an endosymbiont of Dermacentor andersoni,does not elicit or inhibit humoral immune responses from immunocompetent D.andersoni or Ixodesscapularis cell lines. Developmental and Comparative Immunology,2007,31(11):1095-1106.
    Mayer CJ, Vilcinskas A, Gross J. Phytopathogen lures its insect vector by altering host plant odor. Journal ofChemical Ecology,2008,34:1045-1049.
    Mercedes A, Nault LR. Survial in Dalbulus leafhopper vector improves after esposure to maize stuntingpathogens. Entomologia Experimentalis et Applicata,2001,100:311-324.
    Mitchell PL. Heteroptera as vectors of plant pathogens. Neotropical Entomology,2004,33(5):519-545.
    Miyata S, Oshima K, Kakizawa S, et al. Two different thymidylate kinase gene homologues,including onethat has catalytic activity, are encoded in the onion yellows phytoplasma genome. Microbiology,2003,149:2243-2250.
    Moya-Raygoza G, Nault LR. Transmission biology of maize bushy stunt phytoplasma by the corn leafhopper(Homoptera:Cicadellidae). Annals of the Entomological Society of America,1998,91:668-676
    Mrirelles RM, Henriques-Pons A, Soares MJ, et al. Penetration of the salivary gland of Rhodnius domesticusNeiva Pinto,1923(Hemiptera:Reduviidae) by Trypanosoma rangeli Tejera,1920(Protozoa:Kinetoplastida). Parasitology Research,2005,97:259-269.
    Murral DJ, Nault LR, Hoy CW, et al. Effects of temperature and vector age on transmission of two Ohiostrains of aster yellows phytoplasma by the aster leafhopper (Homoptera: Cicadellidae). Journal ofEconomic Entomology,1996,89:1223-1232.
    Nakashima K, Hayashi TA. Extrachromosomal DNAs of rice yellow dwarf and sugarcane white leafphytoplasmas. Annals of the Phytopathological Society of Japan,1995,61:456-462.
    Nakashima K, Hayashi TA. Sequence analysis of extrachromosomal DNA of sugarcane white leafphytoplasma. Annals of the Phytopathological Society of Japan,1997,63:21-25.
    Nakashima K, Kato S, Iwanami S, et al. Cloning and detection of chromosomal and extrachromosomal DNAfrom mycoplasmalike organisms that cause yellow dwarf disease of rice. Applied and EnvironmentalMicrobiology,1991,57(12):3570-3575.
    Namba S. Phytoplasmas:A century of pioneering research. Journal of General Plant Pahtology,2011,77:345-349.
    Nielsen AL, Hamilton GC. Life history of the invasive species Halyomorpha halys (Hemiptera:Pentatomidae) in northeastern United States. Annals of the Entomological Society of America,2009,102(4):608-616.
    Nielsen AL, Hamilton GC, Matadha D. Developmental rate estimation and life table analysis forHalyomorpha halys (Hemiptera: pentatomidae) physiological ecology. Environmental Entomology,2008,37(2):348-355.
    Nishigawa H, Oshima K, Miyata S, et al. Complete set of extrachromosomal DNAs from three pathogeniclines of onion yellows phytoplasma and use of PCR to differentiate each line. Journal of General PlantPahtology,2003,69:194-198.
    Nishigawa H, Oshima K, Kakizawa S, et al. A plasmid from a non-insect-transmissible line of a phytoplasmalacks two open reading frames that exist in the plasmid from the wild-type line. Gene,2002,298:195-201.
    Nishigawa H, Miyata S, Oshima K, et al. In planta expression of a protein encoded by the extrachromosomalDNA of a phytoplasma and related to geminivirus replication proteins. Microbiology,2001,147:507-513.
    Nishimura Y, Shimojima M, Tano Y, et al. Human P-selectin glycoprotein ligand-1is a functional receptorfor enterovirus71. Nature Medicine,2009,15:794-97.
    Njieu GT, Sansonetti PJ. Mechanism of Shigella entry into epithelial cell. Current Opinion in Microbiology,1999,2:51-55.
    Oshima K, Ishii Y, Kakizawa S, et al. Dramatic transcriptional changes in an intracellular parasite enablehost switching between plant and insect. PLoS ONE,2011,6(8): e23242.
    Oshima K, Kakizawa S, Nishigawa H, et al. A plasmid of phytoplasma encodes a unique replication proteinhaving both plasmid-and virus-like domains: clue to viral ancestry or result of virus/plasmidrecombination? Virology,2001a,285:270-277.
    Oshima KT, Shiomi T, Kuboyama T, et al. Isolation and characterization of derivative lines of the onionyellows phytoplasma that do not cause stunting or phloem hyperplasia. Phytopathology,2001b,91:1024-1029.
    Oshima K, Miyata S, Sawayanagi T, et al. Minimal set of metabolic pathways suggested from the genome ofonion yellows phytoplasma. Journal of General Plant Pahtology,2002,68:225-236.
    Oshima K, Kakizawa S, Nishigawa H, et al. Reductive evolution suggested from the complete genomesequence of a plant-pathogenic phytoplasma. Nature Genetics,2004,36(1):27-29.
    Palermo S, Arzone A, Bosco D. Vector-pathogen-host plant relationships of chrysanthemum yellows (CY)phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatu.Entomologia Experimentalis et Applicata,2001,99:347-354.
    Park Y, Stanley D. The entomopathogenic bacterium, Xenorhabdus nematophila,impairs hemocyticimmunity by inhibition of eicosanoid biosynthesis in adult crickets, Gryllus Wrmus. Biological Control,2006,38:247-253.
    Peiffer ML, Gildow FE,Gray SM. Two distinct mechanisms regulate luteovirus transmission efficiency andspecificity at the aphid salivary gland. Journal of General Virology,1997,78:495-503
    Posnette AF, Ellenberger CE. Further studies of green petal and other leafhopper-transmitted virusesinfecting strawberry and clover. Annals of Applied Biology,1963,51(1):69-83.
    Purcell AH. Insect vector relationships with procaryotic plant pathogens. Annual Review of Phytopathology,1982,20:397-417.
    Purcell AH. Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected withmollicute plant pathogens. Entomologia Experimentalis et Applicata,1988,46:187-196.
    Rekab D, Carraro L, Schneider B, et al. Geminivirus-related extrachromosomal DNAs of the X-cladephytoplasmas share high sequence similarity. Microbiology,1999,145:1453-1459.
    Rouze-Jouan J, Terradot L, Pasquer F, et al. The passage of potato leafroll virus through Myzus persicae gutmembrane regulates transmission efficiency. Journal of General Virology,2001,82:17-23.
    Rudzinska-Langwald A, Kaminska M. Cytopathological evidence for transport of phytoplasma in infectedplants. Acta Societatis Botanicorum Poloniae,1999,68(4):261-266.
    Saillard C, Carle P, Duret NS, et al. The abundant extrachromosomal DNA content of the Spiroplasma citriGII3-3X genome. BMC Genomics,2008,9:195-207.
    Sein F, Adsuar J. Transmission of the bunchy top disease of papaya (Carica papaya L.) by the leafhopperEmpoasca papayae Oman. Science,1947,106(2745):130.
    Shiozawa H. Transmission of paulownia witches’ broom by sting bugs Halyomorpha mista UHLER. JapanPlant Protection,1986,4:45-50.
    Siller W, Kuhbandner B, Marwitz R, et al. Occurrence of mycoplasma-like organisms in parenchyma cell ofcuscuta odorata. Journal of Phytopathology.1987,119(2):147-159.
    Sisterson MS. Transmission of insect-vectored pathogens:effects of vector fitness as a function of infectivitystatus. Environmental entomology,2009,38(2):345-355.
    Studier FW, Moffatt BA. Use of bacteriophage T7RNA polymerase to direct selective high-level expressionof cloned genes. Journal of Molecular Biology,1986,189(1):113-130.
    Straus, E. Phytoplasma research begins to bloom. Science,2009,325:388-390.
    Sugio A, Hogenhout SA. The genome biology of hytoplasma: modulators of plants and insects. CurrentOpinion in Microbiology,2012,15:247-254.
    Sugio A, Kingdom HN, MacLean AM, et al. Phytoplasma protein effector SAP11enhances insect vectorreproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of theNational Academy of Sciences,2011,108(48):1254-1263.
    Suzuki S, Oshima K, Kakizawa S, et al. Interaction between the membrane protein of a pathogen and insectmicrofilament complex determines insect-vector specificity. Proceedings of the National Academy ofSciences,2006,103(11):4252-4257.
    Swenson KG. Relation of age,sex and mating of Macrosteles fascifrons to transmission of aster yellows.Phytopathology,1971,61:657-659.
    Tedeschi R,Visentin C, Alma A, et al. Epidemiology of apple proliferation (AP) in northwesternItaly:evaluation of the frequency of a AP-positive in naturally infected populations of Cacopsyllamelanoneura (Homoptera:Psyllidae). Annals of Applied Biology.2003,142:285-290.
    Thébaud G, Yvon M, Alary R, et al. Efficient transmission of ‘Candidatus Phytoplasma prunorum’ is delayedby eight months due to a long latency in its host-alternating vector. Phytopathology,2009,99:265-273.
    Thein MM, Jamjanya T, Kobori Y, et al. Dispersal of the leafhoppers Matsumuratettix hiroglyphicus andYamatotettix flavovittatus (Homoptera:Cicadellidae),vectors of sugarcane white leaf disease. AppliedEntomology and Zoology,2012,47:255-262.
    Toru o TY, Music MS, Simi S, et al. Phytoplasma PMU1exists as linear chromosomal and circularextrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts.Molecular Microbiology,2010,77(6):1406-1415.
    Tran-Nguyen LT, Kube M, Schneider B, et al. Comparative genome analysis of “Candidatus Phytoplasmaaustraliense”(Subgroup tuf-Australia I; rp-A) and “Ca.Phytoplasma asteris” strains OY-M and AY-WB.Journal of Bacteriology,2008,190(11):3979-3991.
    Vage FE, Davis RE, Barbosa P, et al. Detection of a plant pathogen in a nonvector insect specises by thepolymerase chain reaction. Phytopathology,1993,83:621-624.
    Vallet-Gely I, Lemaitre B, Boccard F. Bacterial strategies to overcome insect defences Nature,2008,6:302-313.
    Vivian A, Murillo J, Jackson RW. The roles of plasmids in phytopathogenic bacteria:mobile arsenals?Microbiology,2001,147:763-780.
    Wang J, Zhu XP, Gao R, et al. Genetic and serological analyses of elongation factor EF-Tu of paulowniawitches’-broom phytoplasma (16SrI-D). Plant Pathology,2010,59:972-981.
    Wayadande AC, Baker GR, Fletcher J. Comparative ultrastructure of the salivary glands of twophytopathogen vectors, the beet leafhopper,Circulifer tenellus (Baker) and the corn leafhopper,Dalbulus maidis Delong and wolcott (Homoptera:Cicadellidae). International Journal of InsectMorphology and Embryology,1997,26(2):113-120.
    Wayadande AC, Nault LR. Leafhoppers on leaves: a analysis of feeding behavior using conditionalprobabilities. Journal of Insect Behavior,1996,9(1):3-22.
    Wei W, Kakizawa S, Jung HY, et al. An antibody against the SecA membrane protein of one phytoplasmareacts with those of phylogenetically different phytoplasmas. Phytopathology,2004,94(7):683-686.
    Wei W, Davis RE, Lee IM, et al. Computer simulated RFLP analysis o f16S rRNA genes:identification often new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology,2007,57:1855-1867.
    Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annual Review of Entomology,2006,51:91-111.
    Wolfe HR, Anthon EW, Jones LS. Transmission of western X-disease of peaches by the leafhopper,Colladonus geminatus (Van D.). Phytopathology,1950,40(10):971.
    Yamayoshi S, Yamashita Y, Li J, et al. Scavenger receptor B2is a cellular receptor for enterovirus71. NatureMedicine,2009,15:798-801.
    Yu J, Wayadande AC, Fletcher J. Spiroplasma citri surface protein P89implicated in adhesion to cells of thevector Circulifer tenellus. phytopathology,2000,90:716-722.
    Zahavi T, Peles S, Harari AR, et al. Push and pull strategy to reduce Hyalesthes obsoletus population invineyards by Vitex agnus castus as trap plant. Bulletin of insectology,2007,60(2):297-298.
    Zhou DG, Mooseker MS, Galan JE. Role of the S.typhimurium actin-binding protein SipA in bacterialinternalization. Science,1999,283:2092-2095.
    蔡乐,董民,杜相革.京郊有机苹果园茶翅蝽发生规律及控制策略.北方园艺,2008,11:166-168.
    陈育民,杨俊秀,景耀.丛枝病对泡桐生理及叶片微观构造的影响.陕西林业科技,1991,2:68-70.
    陈育民.丛枝病对泡桐叶片解剖构造生理生化及材性的影响.西北林学院学报,1992,7(4):50-57.
    东秀珠,蔡妙英等编著.常见细菌系统鉴定手册.北京:科学出版社,2001.
    范国强,蒋建平.泡桐丛枝病发生与叶片蛋白质和氨基酸变化关系的研究.林业科学研究,1997,10(6):570-573.
    范国强,李有,郑建伟,等.泡桐丛枝病发生相关蛋白质的电泳分析.林业科学,2003,39(2):119-122.
    范国强,曾辉,翟晓巧.泡桐丛枝病发生特异相关蛋白质亚细胞定位及质谱鉴定.林业科学,2008,44(4):83-87.
    范国强,张胜,翟晓巧,等.抗生素对丛枝病泡桐植原体和特异相关蛋白质的影响.林业科学,2007,43(3):138-142.
    顾沛雯,吴云锋,安凤秋.小麦蓝矮植原体寄主范围的鉴定及RFLP分析.植物病理学报,2007,37(4):390-397.
    顾沛雯,吴云锋,吴科科,等.介体条沙叶蝉传播小麦蓝矮病植原体特性研究.植物保护,2007,33(4):24-28.
    郭颂.泡桐丛枝植原体侵染的泡桐组培苗cDNA文库构建及植原体相关蛋白与文库的筛选.中国农业大学,2011,硕士学位论文.
    何放亭,武红巾,陈子文等. C/A值与甘薯丛枝病症状发生的关系.植物病理学报,1997,27(1):43-46.
    河南省林业厅主编.河南森林昆虫志.河南:河南科学技术出版社,1988,30-31.
    胡梅操.烟盲蝽发生危害及其防治的研究.江西农业学报,1993,5(2):150-156.
    胡勤学,周咏芝,马修理,等.泡桐丛枝病指示植物的病理变化-I.同工酶、酚及相关酶.中南林学院学报,1992,12(1):57-63.
    金开璇,付仓生,李振兰.泡桐丛枝病传毒昆虫研究(I).林业科技通讯,1981,12:23-24.
    金开璇.泡桐丛枝病对泡桐立木生长影响的研究.林业实用技术,1980,5:25-26.
    李蓓,纪玲玲,吴云锋,等.小麦蓝矮病植原体胸酸苷激酶基因(tmk)的分离、原核表达及酶活性分析.微生物学报,2008,48(6):739-744.
    李长安.茶翅蝽Halyomorpha halys(St l)的生物学研究及其防治.山西大学学报,1982,1:82-84.
    李凡,吴建宇,秦西云,等.云南烟草丛枝症病害研究-V传染途径.云南农业大学学报,1999,14(1):99-103.
    李荣幸,程绍荣,刘廷志,等.泡桐对丛枝病的抗性差异及其自然鉴定.河南农业大学学报,1987,21(2):170-176.
    李鑫,尹翔宇,马丽,等.茶翅蝽的行为与控制利用.西北农林科技大学学报(自然科学版),2007,35(10):139-145.
    李永.我国几种木本植物植原体的分子检测与鉴定.中国林业科学研究院,2004,硕士学位论文.
    李玉花主编.蛋白质分析实验技术指南.北京:高等教育出版社,2011.
    李正跃.云南烟田生态系统媒介害虫的生物学及其传毒机制研究.中国农业大学,2004,博士学位论文.
    林彩丽.泡桐丛枝病植原体质粒分子特征及其编码蛋白功能研究.中国农业大学,2008,博士学位论文.
    刘仲健,罗焕亮,张景宁.植原体病理学.北京:中国林业出版社,1999.
    路慧,陈红印.三营养级体系烟盲蝽对温室内不同作物种类的选择性.植物保护,2007,33(5):75-79.
    罗飞,朱水芳,张成良,等.泡桐丛枝病媒介昆虫体内植原体的检测和鉴定.北京:中国农业科技出版社,1998,280-283.
    牟海青,朱水芳,徐霞,等.植原体病害研究概况.植物保护,2011,37(3):17-22.
    牟海青,周涛,赵文军,等.泡桐丛枝植原体抗原膜蛋白抗血清的制备及应用.植物病理学报,2011,41(2):161-170.
    茹广欣,袁金玲,冯胜,等.泡桐不同无性系生长性状及抗病性分析.河南农业大学学报,2001,35(1):53-56.
    茹广欣,朱秀红,李荣幸,等.泡桐种源抗丛枝病形状的遗传变异.林业科学研究,2005,18(6):669-675.
    邵莉,秦西云,孙玉桐,等.烟草盲蝽生物学特性研究.烟草科技,1997,3:45-46.
    邵平绪,洪瑞芬,仝德全,等.泡桐丛枝病传病昆虫研究(I),茶翅蝽传病试验及电镜观察.山东林业科技,1981,2:42-43.
    石怀兴,曾洪梅,邱德文.伯氏致病杆菌IDP16蛋白抑制大蜡螟的免疫反应.微生物学报,2012,52(7):885-893.
    时超美.昆虫酚氧化酶原活化及其在免疫中的作用.昆虫知识,2000,37(5):310-314.
    宋晓斌,张学武,郑文锋,等.罹丛枝病泡桐组织组织结构的解剖观察.陕西林业科技,1993,4:38-40.
    宋传生,林彩丽,田国忠,等.苦楝丛枝植原体质粒的测定与分子特征.微生物学报,2011,51(9):1158-1167.
    孙志强,傅建敏,乔杰,等.茶翅蝽对植原体的传播能力.林业科学研究,1999,12(6):606-611.
    孙志强,乔杰,傅建敏,等.泡桐林内小绿叶蝉种群活动规律.森林病虫通讯,1999,3:14-16.
    田国忠,金开璇,袁巧平,等.感染MLO泡桐组培苗代谢变化与致病机理的关系.中国科学(B),1994,24(5):484-490.
    田国忠,李永,梁文星,等.丛枝病植原体侵染对泡桐组培苗组织内H2O2产生的影响.林业科学,2010,46(9):96-104.
    田国忠,张文军,朱水芳,等.植原体病害诊断与病原检测和鉴定技术与方法评价.中国植物病理学会2010年学术年会论文集.2010.
    王洁,田国忠,徐启聪,等.泡桐丛枝病病树周围几种植物上植原体的分子检测.中国农业科学,2010,43(2):304-312.
    温秀军,孙朝晖,孙士学,等.抗枣疯病枣树品种及品系的选择.林业科学,2001,37(5):87-92.
    张翠疃,李大乱,苏海峰,等.茶翅蝽和黄斑蝽生物学特性研究.林业科学研究,1993,6(3):271-275.
    张君明,王合,赵连祥,等.茶翅蝽在生态苹果园的危害和防治策略.昆虫知识,2007,44(6):898-901.
    张曙光,范怀忠.华南花生丛枝病—由叶蝉传递的花生类菌原体性新病害的研究简报.华南农学院学报,1981,2(2):104-105.
    赵冬香,陈宗懋,程家安.茶小绿叶蝉优势种的归属.茶叶科学,2000,20(2):101-104.
    赵会杰,吴光英,林学梧,等.泡桐丛枝病与超氧物歧化酶的关系.植物生理学通讯,1995,31(4):266-267.
    赵锦,刘孟军,周俊义,等.抗枣疯病种质资源的筛选与应用.植物遗传资源学报,2006,7(4):398-403.
    郑文锋,宋晓斌,任锁堂,等.泡桐丛枝病病原及传毒途径的研究.陕西林业科技,1990,1:23-25.
    朱本明,陈作义,沈菊英,等.泡桐丛枝病病树中的类菌原体与病毒.生物化学与生物物理学报,1982,14(4):393-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700