毛白杨外生菌根预共生阶段的免疫机制启动模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以毛白杨(Populus tomentosa Carr.)和外生菌根(Ectomycorrhizae,ECM)真菌-美味牛肝菌(Boletus edulis Bull. ex Fr.)为试验材料,建立水培互作试验体系,针对菌-根之间在预共生阶段的信号分泌、识别及传导,收集含有水溶性信号因子的信号液,检测其对杨树根系先天免疫机制的诱导以及第二信使跨膜转运的触发,重点分析Ca2+和H2O2的跨膜转运与防御相关基因之间的级联关系,探讨ECM预共生阶段寄主植物早期免疫机制的启动模式。主要研究结果如下:
     1、设计两种模拟ECM早期共生阶段进行信号分泌、传导与识别的水培互作试验体系,分析其对候选共生相关基因表达的影响。在真菌侵染模拟体系中,根系中SOD, POD,PAL, APX和CIPK25种候选共生相关基因的表达水平在5d内呈显著上调趋势,说明ECM真菌对寄主根系的直接接触,能够快速诱导这两类基因的转录表达。在信号传导模拟体系中,根系SOD, POD, PAL和APX4种基因的表达呈缓慢上升趋势,与真菌侵染模拟体系中的表达趋势一致,除APX之外,其它3个基因的转录水平在互作过程中均显著上调,并且SOD, POD和APX的mRNA含量在互作第3d达到最高值;CIPK2基因在互作过程中呈显著上调表达,互作1d后该基因的转录水平即可达到一个小高峰,并且显著高于对照和真菌侵染模拟体系,说明该体系下的ECM真菌能够分泌水溶性信号因子,有效地诱导寄主共生相关基因上调表达,初步验证了信号传导模拟体系对研究ECM早期信号事件的可行性和有效性,并且该体系下的ECM真菌,在互作第3d所分泌的信号因子能够有效诱导寄主共生相关基因的上调表达。
     2、在信号传导模拟体系的基础上,收集、制备菌-根共生信号液以及毛白杨根系分泌物、真菌分泌物的水溶液,对比分析其对根系SOD、POD和CIPK2基因转录水平的影响。结果表明,根系分泌物对基因的上调表达没有诱导作用,而真菌分泌物则能够显著诱导这些基因表达的上调,并且均在互作12h达到最高值。信号液对寄主共生相关基因转录水平的上调诱导作用最为显著,其中对CIPK2基因表达上调的诱导最为迅速,分别于3h和9h时达到极显著水平,呈“双高峰”的形式保持基因表达的上调趋势;SOD基因的转录水平于6h达到一个小高峰,并于12h达到最高值;而POD基因的表达量在整个互作期间均处于上调状态,并且上调幅度大,变化显著。通过对比分析认为,在正常生长状态下,ECM真菌的分泌物能够诱导寄主根系防御基因的表达,但在菌-根互相体系中,双方通过信号因子的交流而感知彼此的存在后,进一步分泌水溶性共生信号并将其传递,此时,寄主感知真菌源共生信号后,以启动自身免疫机制的方式作出回应,从而提高防御基因的表达。
     3、利用非损伤扫描离子选择性电极技术(Scanning Ion-selective Electrode Technique,SIET)研究共生信号诱导下根系的Ca2+跨膜转运的动态变化模式。根系伸长区的Ca2+流在稳定环境下处于小内流状态,当用信号液瞬时处理根系后,Ca2+首先呈现出巨大的外流状态,但在随后的30min内,外流逐渐减弱,并稳定于小外流状态。伴随着信号因子与根系之间的识别与诱导,Ca2+的跨膜转运流向逐渐转变为稳定的内流状态,并且流速随时间逐渐增大,而对照则逐渐回归平稳的小内流状态。此外,根系在真菌分泌物和根系分泌物的瞬时处理下,Ca2+的跨膜转运形式与信号液处理的一致,而后期则逐渐恢复到与对照一样的小内流状态,说明共生信号液里含有某种信号分子诱导根系表皮细胞的Ca2+跨膜内流,或者是植物本身在识别了真菌源共生信号后,将Ca2+作为第二信使,通过自身的调控使其处于内流状态,从而将真菌源共生信号在体内进行传递。
     4、利用非损伤扫描极谱电极技术(Scanning Polarographic Electrode Technique,SPET)研究信号因子诱导下根系释放H2O2的动态模式。根系伸长区的H2O2在平衡条件下表现为内吸外排的平衡状态,在不同的瞬时处理下,根系起初释放大量的H2O2,但在最后均逐渐趋向于小吸收状态。随着信号因子的诱导,根系释放H2O2的水平也在不断提高,并在互作9h时达到最大。此外,真菌分泌物也能在24h内诱导根系产生H2O2,而根系分泌物的处理则总体上抑制了H2O2的释放,仅在3h处于较低的释放水平,然后一直表现为平衡或内吸状态。本试验首次展示了根系受ECM信号因子的诱导产生H2O2的动态模式。
     5、通过药理学实验分析H2O2和Ca2信号与防御反应之间的关系,探讨ECM免疫机制的启动模式。药理学试验证明,LaCl3(质膜钙离子通道抑制剂)能够有效抑制寄主根系Ca2+外流以及H2O2的产生,使Ca2+和H2O2一直处于内流状态。而DPI(质膜NADPH氧化酶抑制剂)只能有效抑制寄主根系H2O2的产生,但对Ca2+跨膜转运的动态模式没有影响,只是在3h时降低了Ca2+跨膜外流的速度。此外,LaCl3处理寄主根系后,能够显著抑制CIPK2、SOD和POD基因的转录水平,而DPI的处理只抑制了SOD和POD基因的转录水平,并不影响CIPK2基因的正常表达。因此推测寄主免疫机制的启动模式表现为,毛白杨在ECM预共生阶段,信号因子诱导寄主根系Ca2+跨膜内流,其与CIPK2基因结合后,调控根系产生大量的H2O2,以此诱导防御基因SOD和POD基因的转录表达。
Establishment of popla(rPopulus tomentosa)and ectomycorrhizal fung(iBoletus edulis)hydroponic interaction experiment system and collection the signal liquid containingwater-soluble signal factors to detect the innate immunity response characteristics and secondmessenger transmembrane transport of host plant roots during the presymbiotic stage. Focusingon analysis of cascade relationship between Ca2+and hydrogen peroxide(H2O2) transmembranetransport and symbiosis related genes, discussion the startup mode about host plants earlyimmune mechanism during the presymbiotic stage of ECM. The main results and conclusionsare as follow:
     1. Design two kinds of hydroponic interaction experiment system to simulate signalsconduction events between fungi and plant in the early stage of ECM symbiosis, analysis theeffect of symbiotic signals on the candidate symbiosis-related genes expression. In thesimulation system of ECM fungi infection in host plant roots, the expression profiles of SOD,POD, PAL, APX and CIPK2showed significantly rising trend in5days, indicating that ECMfungi direct contact on host roots, will be quickly induced the transcriptional expression ofthese genes. While in the simulation system of signals transduction, genes expression patternsof SOD, POD, PAL and APX showed slowly rising state in plant roots, but these trends wereconsistent with the fungi infection system, in addition to APX, the transcription levels of otherthree genes all showed significantly increased during the interaction process, and the mRNAcontent of SOD, POD and APX reached the highest value in the interaction of the third day.The expression profile of CIPK2kept a significantly up-regulated state in the interactionprocess, which reached the peak after the first day and significantly higher than the control andthe simulation system of fungi infection, proved that ECM fungi effectively induced theexpression of symbiotic related genes in plant roots through secreted water-soluble signalfactors, and preliminary verified the effectiveness of signaling simulation system to studysymbiosis signaling events during the ECM prosymbiotic stage. In addition, through a comprehensive comparative analysis, on the third day after interaction, considered that thesymbiotic signals secreted by ECM fungi can effectively induce symbiosis-related genesexpression for plant roots in this system.
     2. Preparated and collected symbiosis signal liquid based on signal transductionsimulation system, as well as collected aqueous solutions of roots exudates and fungi exudates,contrasted analysis the impact on symbiosis-related genes expression in these treatment. Rootexudates have no significant effect on the expression of SOD、POD and CIPK2, but theexpression of these genes induced by fungi exudates showed significantly increased andreached the highest value in the interaction of12h. Symbiotic signals have the mostsignificantly induction for root genes expression, and which induced the most rapidly changesin transcription level of CIPK2, respectively significantly induced up-regulated expression in3h and9h to form a “double peak” showed continued upregulated. SOD reached two peaks inthe6h and12h, respectively, and its transcription level in12h achieved the highest value, PODup-regulated expression of the whole process showed significantly and rapidly trend. Throughthe contrast analysis that up-regulated expression of the roots immune genes can be induced byECM fungi secretion, but in the recognition process, fungi or roots through communicationsignal factors to sense the presence of each other, and further secret of soluble signalingmolecules to expand pre-symbiotic interaction phase of signal transduction, at this time, hostplant roots will improve the expression of immune response genes and initiative their earlyimmune mechanisms after perceived fungi source signaling molecules.
     3. By means of scanning ion-selective electrode technique to research dynamic changes ofCa2+transmembrane transport in root organizations induced by symbiotic signal factors. TheCa2+flow on root elongation zone showed a small inflow state in a stable environment, but thehuge outflow occured when was instantaneous treated with signals solution, and graduallystabilized at a small outflow of state. With roots were induced by signal factors, Ca2+transmembrane transport flows gradually transformed into a stable inflow state, and the flowrate increased with time, while the control is gradually returned to a steady small inflow state.In addition, under the instantaneous treated of fungi secretions and root secretions, the formation of Ca2+transmembrane transport was consistent with signals solution, while thelatter was gradually restored to the small inflow state like control, suggested that the symbioticsignals solution contained some kinds of signal molecules which induced Ca2+internal flowacross the membrane in roots epidermal cells, or taked the Ca2+as second messenger toregulate Ca2+influx after identified fungi signals, finally transducted the symbiotic relatedsignals in the plant body.
     4. Researched the dynamic changes of H2O2production mode in root organizationsinduced by symbiotic signal factors through scanning ion-selective electrode technique. H2O2showed a stable state in equilibrium conditions, while the root released large amounts of H2O2under different transient treatments, and gradually moving to small absorbed state at last. Withthe signal factors inducted, the level of it released H2O2were also rising and reached themaximum when interacted at9hours. Fungi secretions induced root produced H2O2within24hours, but root secretions inhibited the release on the whole which showed the balance orabsorbed state except released at a very lowly level in3hours. This experiment firstlydemonstrated for the dynamic mode of H2O2generated induced by signal factors in plant roots.
     5. By means of drug pharmacology experiments studied the action of H2O2and Ca2+signals in the early immune response, and explored the initiation mode of immune in ECMpresymbiotic stage. Pharmacological experiments demonstrated that the Ca2+outflow and H2O2production were effectively inhibited by LaCl3(plasma membrane calcium channel inhibitor),effectively inhibited Ca2+efflux host roots and H2O2generation, so that the root tissues havebeen in a absorption state for Ca2+and H2O2. While the DPI (plasma membrane NADPHoxidase inhibitors) could only effectively inhibited the production of H2O2in host roots, didnot affect the dynamic mode for Ca2+transmembrane transport, only reduced the speed of Ca2+outflows across membrane in3hours. In terms of gene expression profiles, the transcriptionlevel of CIPK2, SOD and POD genes were significantly inhibited when host plant roots betreatmented by LaCl3. But by means of DPI only inhibited the transcription levels of SOD andPOD genes, did not affect the normal expression of CIPK2genes. Thus speculated that signalfactors induced the Ca2+inflowed host roots across membrane during the prosymbiotic stage, and combined with CIPK2gene to regulate roots produced a large number of H2O2, in order toinduce transcriptional expression of immune related genes and initiative the host plants earlyimmune mechanisms.
引文
Acioli-Santos Bartolomeu, Sebastiana Mónica, Pessoa Fernando, et al. Fungal transcript pattern during thepreinfection stage (12h) of ectomycorrhiza formed between Pisolithus tinctorius and Castanea sativaroots, identified using cDNA microarrays. Current microbiology,2008,57(6):620-625.
    Akiyama K, Matsuzaki K, Hayashi H, et al. Plant sesquiterpenes induce hyphal branching in arbuscularmycorrhizal fungi. Nature,2005,435(7043):824-827.
    Albrecht C, Asselin A, Piché Y, et al. Chitinase activities are induced in Eucalyptus globulus roots byectomycorrhizal or pathogenic fungi, during early colonization. Physiologia Plantarum,1994,91(1):104-110.
    Bécard G, Kosuta S, Tamasloukht M, et al. Partner communication in the arbuscular mycorrhizal interaction.Canadian Journal of Botany,2004,82(8):1186-1197.
    Béguiristain T, Lapeyrie F. Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphaeduring ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development.New phytologist,1997,136(3):525-532.
    Baptista P, Martins A, Pais MS, et al. Involvement of reactive oxygen species during early stages ofectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza,2007,17(3):185-193.
    Baptista P, Tavares RM, Lino-Neto T. Signaling in Ectomycorrhizal Symbiosis Establishment. In: Diversityand Biotechnology of Ectomycorrhizae, Springer,2011:157-175.
    Barker SJ, Tagu D. The roles of auxins and cytokinins in mycorrhizal symbioses. Journal of Plant GrowthRegulation,2000,19(2):144-154.
    Barker SJ, Tagu D, Delp G. Regulation of root and fungal morphogenesis in mycorrhizal symbioses. Plantphysiology,1998,116(4):1201-1207.
    Bates TR, Lynch JP. Plant growth and phosphorus accumulation of wild type and two root hair mutants ofArabidopsis thaliana (Brassicaceae). American Journal of Botany,2000,87(7):958-963.
    Bending G D, Turner M K, Jones J E. Interactions between crop residue and soil organic matter quality andthe functional diversity of soil microbial communities. Soil Biology and Biochemistry,2002,34(8):1073-1082.
    Benková E, Hejátko J. Hormone interactions at the root apical meristem. Plant molecular biology,2009,69(4):383-396.
    Boller T. Chemoperception of microbial signals in plant cells. Annual review of plant biology,1995,46(1):189-214.
    Bonfante P, Balestrini R, Martino E, et al. Morphological analysis of early contacts between pine roots andtwo ectomycorrhizal Suillus strains. Mycorrhiza,1998,8(1):1-10.
    Bonfante P, Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis.Nature Communications,2010,1:48.
    Bonfante P, Requena N. Dating in the dark: how roots respond to fungal signals to establish arbuscularmycorrhizal symbiosis. Current Opinion in Plant Biology,2011,14(4):451-457.
    Breuninger M, Requena N. Recognition events in AM symbiosis: analysis of fungal gene expression at earlyappressorium stage. Fungal Genet Biol,2004,41(8):794-804.
    Brundrett MC, Cairney JW. Ectomycorrhizas in plant communities. In: Microorganisms in PlantConservation and Biodiversity, Springer,2002:105-150.
    Brunner I, Amiet R, Zollinger M, et al. Ectomycorrhizal syntheses with Picea abies and three fungal species:a case study on the use of an in vitro technique to identity naturally occurring ectomycorrhizae.Mycorrhiza,1992,2(2):89-96.
    Bücking H, Abubaker J, Govindarajulu M, et al. Root exudates stimulate the uptake and metabolism oforganic carbon in germinating spores of Glomus intraradices. New Phytologist,2008,180(3):684-695.
    Buee M, Reich M, Murat C, et al.454Pyrosequencing analyses of forest soils reveal an unexpectedly highfungal diversity. New phytologist,2009,184(2):449-456.
    Cairney J, Burke R. Fungal enzymes degrading plant cell walls: their possible significance in theectomycorrhizal symbiosis. Mycological Research,1994,98(12):1345-1356.
    Cardenas L, Holdaway-Clarke TL, Sanchez F, et al. Ion changes in legume root hairs responding to Nodfactor. Plant Physiol,2000,123(2):443-451.
    Charvet-Candela V, Hitchin S, Ernst D, et al. Characterization of an Aux/IAA cDNA upregulated in Pinuspinaster roots in response to colonization by the ectomycorrhizal fungus Hebeloma cylindrosporum.New phytologist,2002,154(3):769-777.
    Colpaert JV, Wevers JHL, Krznaric E, et al. How metal tolerant ecotypes of ectomycorrhizal fungi protectplants from heavy metal pollution. Annals of forest science,2011,68(1):17-24.
    Creelman RA, Mullet JE. Biosynthesis and action of jasmonates in plants. Annual review of plant biology,1997,48(1):355-381.
    D’Haeze W, Holsters M. Nod factor structures, responses, and perception during initiation of noduledevelopment. Glycobiology,2002,12(6):79-105.
    Dauphin A, Gerard J, Lapeyrie F, et al. Fungal hypaphorine reduces growth and induces cytosolic calciumincrease in root hairs of Eucalyptus globulus. Protoplasma,2007,231(12):83-88.
    Dexheimer J, Pargney JC. Comparative anatomy of the host-fungus interface in mycorrhizas. Cellular andmolecular life sciences,1991,47(4):312-321.
    Diaz EC, Martin F, Tagu D. Eucalypt α-tubulin: cDNA cloning and increased level of transcripts inectomycorrhizal root system. Plant molecular biology,1996,31(4):905-910.
    Ditengou FA, Béguiristain T, Lapeyrie F. Root hair elongation is inhibited by hypaphorine, the indolealkaloid from the ectomycorrhizal fungus Pisolithus tinctorius, and restored by indole-3-acetic acid.Planta,2000,211(5):722-728.
    Ditengou FA, Lapeyrie F. Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteractsactivities of indole-3-acetic acid and ethylene but not synthetic auxins in eucalypt seedlings. MolecularPlant-Microbe Interactions,2000,13(2):151-158.
    Ditengou FA, Raudaskoski M, Lapeyrie F. Hypaphorine, an indole-3-acetic acid antagonist delivered by theectomycorrhizal fungus Pisolithus tinctorius, induces reorganisation of actin and the microtubulecytoskeleton in Eucalyptus globulus ssp bicostata root hairs. Planta,2003,218(2):217-225.
    Duplessis S, Courty PE, Tagu D, et al. Transcript patterns associated with ectomycorrhiza development inEucalyptus globulus and Pisolithus microcarpus. New phytologist,2005,165(2):599-611.
    Duplessis S, Sorin C, Voiblet C, et al. Cloning and expression analysis of a new hydrophobin cDNA from theectomycorrhizal basidiomycete Pisolithus. Current Genetics,2001,39(5):335-339.
    Duponnois R, Garbaye J. Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccarialaccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries. Plant and Soil,1991,138(2):169-176.
    Felten J, Kohler A, Morin E, et al. The ectomycorrhizal fungus Laccaria bicolor stimulates lateral rootformation in poplar and Arabidopsis through auxin transport and signaling. Plant physiology,2009,151(4):1991-2005.
    Felten J, Legué V, Ditengou FA. Lateral root stimulation in the early interaction between Arabidopsisthaliana and the ectomycorrhizal fungus Laccaria bicolor: Is fungal auxin the trigger? Plant signaling&behavior,2010,5(7):864.
    Felten J, Martin F, Legué V. Signalling in Ectomycorrhizal Symbiosis. Signaling and Communication inPlant Symbiosis,2012:123-142.
    Feugey L, Strullu DG, Poupard P, et al. Induced defence responses limit Hartig net formation inectomycorrhizal birch roots. New phytologist,1999,144(3):541-547.
    Frettinger P, Herrmann S, Lapeyrie F, et al. Differential expression of two class III chitinases in two types ofroots of Quercus robur during pre-mycorrhizal interactions with Piloderma croceum. Mycorrhiza,2006,16(3):219-223.
    Fries N, Serck-Hanssen K, Dimberg LH, et al. Abietic acid, and activator of basidiospore germination inectomycorrhizal species of the genus Suillus (Boletaceae). Experimental mycology,1987,11(4):360-363.
    Fukaki H, Tasaka M. Hormone interactions during lateral root formation. Plant molecular biology,2009,69(4):437-449.
    Gáper J, Repá I, Cudlín P. In vitro mycorrhizae syntheses of Inocybe lacera and Suillus bovinus with Piceaabies. Book of abstracts of the XIII Congress of European Mycologists, Alcalá de Henares,1999:41.
    Gay G, Normand L, Marmeisse R, et al. Auxin overproducer mutants of Hebeloma cylindrosporumRomagnesi have increased mycorrhizal activity. New phytologist,1994,128(4):645-657.
    Genre A, Chabaud M, Balzergue C, et al. Short-chain chitin oligomers from arbuscular mycorrhizal fungitrigger nuclear Ca2+spiking in Medicago truncatula roots and their production is enhanced bystrigolactone. New Phytologist,2013,198(1):190-202.
    Geurts R, Fedorova E, Bisseling T. Nod factor signaling genes and their function in the early stages ofRhizobium infection. Curr Opin Plant Biol,2005,8(4):346-352.
    Gherbi H, Markmann K, Svistoonoff S, et al. SymRK defines a common genetic basis for plant rootendosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proceedings of theNational Academy of Sciences,2008,105(12):4928-4932.
    Giollant M, Guillot J, Damez M, et al. Characterization of a lectin from Lactarius deterrimus (Research onthe possible involvement of the fungal lectin in recognition between mushroom and spruce during theearly stages of mycorrhizae formation). Plant physiology,1993,101(2):513-522.
    Gomez-Roldan V, Fermaset S, Brewer PB, et al. Strigolactone inhibition of shoot branching. Nature,2008,455(7210):189-194.
    Graham J.H., Linderman R.G. Ethylene production by ectomycorrhizal fungi, Fusariuin oxysporum f. sp.pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots.Canadian Journal of Microbiology,1980,26(11):1340-1347.
    Gross E, Casagrande LIT, Caetano FH. Ultrastructural study of ectomycorrhizas on Pinus caribaea Morelet.var. hondurensis Barr.&Golf. seedlings. Acta Botanica Brasilica,2004,18(1):1-7.
    Grove MD, Spencer GF, Rohwedder WK, et al. Brassinolide, a plant growth-promoting steroid isolated fromBrassica napus pollen. Nature,1979,281:216-217.
    Harley JL, Smith SE. Mycorrhizal symbiosis. Academic Press,1983.
    Harper JF, Harmon A. Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol CellBiol,2005,6:555-566.
    Harrison MJ, Dixon RA. Isoflavonoid accumulation and expression of defense gene transcripts during theestablishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula.Molecular Plant Microbe Interactions,1993,6(3):643-643.
    Harrison MJ. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol,2005,59:19-42.
    Harris MJ, Wais R, Long SR. Rhizobium-induced calcium spiking in Lotus japonicus. Mol Plant MicrobeInteract,2003,16(4):335-341.
    Hebe G, Hager A, Salzer P. Initial signalling processes induced by elicitors of ectomycorrhiza-formingfungi in spruce cells can also be triggered by G-protein-activating mastoparan and protein phosphatase-inhibiting cantharidin. Planta,1999,207(3):418-425.
    Heller G, Adomas A. Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizalfungus Laccaria bicolor. BMC Plant Biology,2008,8(1):19.
    Heller G, Lundén K, Finlay RD, et al. Expression analysis of Clavata1-like and Nodulin21-like genes fromPinus sylvestris during ectomycorrhiza formation. Mycorrhiza,2012,22(4):271-277.
    Herrmann S, Oelmuller R, Buscot F. Manipulation of the onset of ectomycorrhiza formation byindole-3-acetic acid, activated charcoal or relative humidity in the association between oakmicrocuttings and Piloderma croceum: influence on plant development and photosynthesis. J PlantPhysiol,2004,161(5):509-517.
    Hilbert J, Martin F. Regulation of gene expression in ectomycorrhizas. I. Protein changes and the presence ofectomycorrhiza specific polypeptides in the Pisolithus-Eucalyptus symbiosis. New phytologist,1988:339-346.
    Hilbert JL, Costa G, Martin F. Ectomycorrhizin synthesis and polypeptide changes during the early stage ofeucalypt mycorrhiza development. Plant physiology,1991,97(3):977.
    Hiremath S, Lehtoma K, Podila GK. Identification of a small heat-shock protein associated with aras-mediated signaling pathway in ectomycorrhizal symbiosis. United States Department of Agriculture,2009:1-8.
    Horan D, Chilvers G. Chemotropism-the key to ectomycorrhizal formation? New phytologist,1990,116(2):297-301.
    Jacobs P, Peterson R, Massicotte H. Altered fungal morphogenesis during early stages of ectomycorrhizaformation in Eucalyptus pilularis. Scanning Microsc,1989,3:249-256.
    Jambois A, Dauphin A, Kawano T, et al. Competitive antagonism between IAA and indole alkaloidhypaphorine must contribute to regulate ontogenesis. Physiologia Plantarum,2005,123(2):120-129.
    Johansson T, Le Quéré A, Ahren D, et al. Transcriptional responses of Paxillus involutus and Betula penduladuring formation of ectomycorrhizal root tissue. Molecular Plant-Microbe Interactions,2004,17(2):202-215.
    Karabaghli Degron C, Sotta B, Bonnet M, et al. The auxin transport inhibitor2,3,5-triiodobenzoic acid(TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-rootcortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. Newphytologist,1998,140(4):723-733.
    Kaska D, Myllyl R, Cooper J. Auxin transport inhibitors act through ethylene to regulate dichotomousbranching of lateral root meristems in pine. New phytologist,1999,142(1):49-57.
    Kemppainen M, Duplessis S, Martin F, et al. RNA silencing in the model mycorrhizal fungus Laccariabicolor: gene knock-down of nitrate reductase results in inhibition of symbiosis with Populus.Environmental microbiology,2009,11(7):1878-1896.
    Kershaw MJ, Talbot NJ. Hydrophobins and repellents: proteins with fundamental roles in fungalmorphogenesis. Fungal Genetics and Biology,1998,23(1):18-33.
    Kim SJ, Bernreuther D, Thumm M, et al. LB-AUT7, a novel symbiosis-regulated gene from anectomycorrhizal fungus, Laccaria bicolor, is functionally related to vesicular transport andautophagocytosis. Journal of bacteriology,1999,181(6):1963-1967.
    Kipfer T, Wohlgemuth T, van der Heijden MGA, et al. Growth Response of Drought-Stressed Pinussylvestris Seedlings to Single-and Multi-Species Inoculation with Ectomycorrhizal Fungi. PloS one,2012,7(4):235-275.
    Kistner C, Parniske M. Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci,2002,7(11):511-518.
    Krüger A, Frettinger P, Herrmann S, et al. Identification of premycorrhiza-related plant genes in theassociation between Quercus robur and Piloderma croceum. New phytologist,2004,163(1):149-157.
    Krings M, Taylor TN, Hass H, et al. Fungal endophytes in a400-million-yr-old land plant: infectionpathways, spatial distribution, and host responses. New phytologist,2007,174(3):648-657.
    Kruger A, Peskan-Berghofer T, Frettinger P, et al. Identification of premycorrhiza-related plant genes in theassociation between Quercus robur and Piloderma croceum. New Phytol,2004,163(1):149-157.
    Lagrange H, Jay-Allgmand C, Lapeyrie F. Rutin, the phenolglycoside from eucalyptus root exudates,stimulates Pisolithus hyphal growth at picomolar concentrations. New phytologist,2001,149(2):349-355.
    Larose G, Chênevert R, Moutoglis P, et al. Flavonoid levels in roots of Medicago sativa are modulated bythe developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus.Journal of Plant Physiology,2002,159(12):1329-1339.
    Laurent P, Voiblet C, Tagu D, et al. A novel class of ectomycorrhiza-regulated cell wall polypeptides inPisolithus tinctorius. Molecular Plant-Microbe Interactions,1999,12(10):862-871.
    Le Quéré A, Wright DP, S derstr m B, et al. Global patterns of gene regulation associated with thedevelopment of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch)Fr. Molecular Plant-Microbe Interactions,2005,18(7):659-673.
    LePage B, Currah R, Stockey R, et al. Fossil ectomycorrhizae from the Middle Eocene. American Journal ofBotany,1997,84(3):410-410.
    Jalali BL, Bhargava S, Kamble A. Signal transduction and transcriptional regulation of plant defenceresponses. Journal of Phytopathology,2006,154(2):65-74.
    Jun Liang, Zhiqiang Sun, Zhiwei Qu, et al. Long-term effect of an ectomycorrhizal inoculum and othertreatments on survival and growth of Populus hopeiensis Hu et Chow. Forest Ecology and Management,2010,259:2223-2232.
    Likar M, Regvar M. Early defence reactions in Norway spruce seedlings inoculated with the mycorrhizalfungus Pisolithus tinctorius (Persoon) Coker&Couch and the pathogen Heterobasidion annosum (Fr.)Bref. Trees Structure and Function,2008,22(6):861-868.
    Linder MB, Szilvay GR, Nakari Set l T, et al. Hydrophobins: the protein-amphiphiles of filamentous fungi.FEMS microbiology reviews,2005,29(5):877-896.
    Luo Z-B, D. Janz. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights frommetabolite and transcriptional profiling into reprogramming for stress anticipation. Plant physiology,2009,151(4):1902-1917.
    Maillet F, Poinsot V, Andre O, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscularmycorrhiza. Nature,2011,469(7328):58-63.
    Mankel A, Krause K, Kothe E. Identification of a hydrophobin gene that is developmentally regulated in theectomycorrhizal fungus Tricholoma terreum. Applied and Environmental Microbiology,2002,68(3):1408-1413.
    Martin F. Fair trade in the underworld: the ectomycorrhizal symbiosis. Biology of the Fungal Cell,2007:291-308.
    Martin F, Aerts A, Ahrén D, et al. The genome of Laccaria bicolor provides insights into mycorrhizalsymbiosis. Nature,2008,452(7183):88-92.
    Martin F, Duplessis S, Ditengou F, et al. Developmental cross talking in the ectomycorrhizal symbiosis:signals and communication genes. New phytologist,2001,151(1):145-154.
    Martin F, Kohler A, Duplessis S. Living in harmony in the wood underground: ectomycorrhizal genomics.Current opinion in plant biology,2007,10(2):204-210.
    Martin F, Laurent P, Carvalho D de, et al. Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithustinctorius: identification, function, and expression in symbiosis. Fungal Genetics and Biology,1999,27(2):161-174.
    Martin F, Nehls U. Harnessing ectomycorrhizal genomics for ecological insights. Current opinion in plantbiology,2009,12(4):508-515.
    Martin F, Tagu D. Ectomycorrhiza development: a molecular perspective. Mycorrhiza. Structure, function,molecular biology and biotechnology,1995:29-58.
    Martin F, Tagu D. Developmental biology of a plant-fungus symbiosis: the ectomycorrhiza. Mycorrhiza:Structure, Function, Molecular Biology, and Biotechnology,2000:51-73.
    Martin-Pinto P, Pajares J, Diez J. In vitro effects of four ectomycorrhizal fungi, Boletus edulis, Rhizopogonroseolus, Laccaria laccata and Lactarius deliciosus on Fusarium damping off in Pinus nigra seedlings.2006,32(3):323-334.
    Medina MJH, Gagnon H, Piche Y, et al. Root colonization by arbuscular mycorrhizal fungi is affected bythe salicilic acid content of the plant. Plant Sci,2003,164(6):993-998.
    Menotta M, Amicucci A, Sisti D, et al. Differential gene expression during pre-symbiotic interactionbetween Tuber borchii Vittad. and Tilia americana L. Current Genetics,2004,46(3):158-165.
    Mensen R, Hager A, Salzer P. Elicitor-induced changes of wall-bound and secreted peroxidase activities insuspension-cultured spruce (Picea abies) cells are attenuated by auxins. Physiologia Plantarum,1998102(4):539-546.
    Morel M, Jacob C. Identification of genes differentially expressed in extraradical mycelium andectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis. Appliedand Environmental Microbiology,2005,71(1):382-391.
    Navazio L, Moscatiello R, Genre A, et al. A diffusible signal from arbuscular mycorrhizal fungi elicits atransient cytosolic calcium elevation in host plant cells. Plant physiology,2007,144(2):673-681.
    Nehls U, Béguiristain T, Ditengou F, et al. The expression of a symbiosis-regulated gene in eucalypt roots isregulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycetePisolithus tinctorius. Planta,1998,207(2):296-302.
    Nemchinov LG, Shabala L, Shabala S. Calcium efflux as a component of the hypersensitive response ofNicotiana benthamiana to Pseudomonas syringae. Plant and cell physiology,2008,49(1):40-46.
    Niemi K, Julkunen-Titto R, Haggman H, et al. Suillus variegatus causes significant changes in the content ofindividual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. JExp Bot,2007,58(3):391-401.
    Nylund JE. Symplastic continuity during Hartig net formation in Norway spruce ectomycorrhizae. Newphytologist,1980:373-378.
    Oláh B, Brière C, Bécard G, et al. Nod factors and a diffusible factor from arbuscular mycorrhizal fungistimulate lateral root formation in Medicago truncatula via the DMI1/DMI2signalling pathway. ThePlant Journal,2005,44(2):195-207.
    Oldroyd GED, HarrisonMJ, UdvardiM. Peace talks and trade deals: keys to long-term harmony inlegume-microbe symbioses. Plant Physiol,2005,137(4):1205-1210.
    Ostonen I, L hmus K. Proportion of fungal mantle, cortex and stele of ectomycorrhizas in Picea abies (L.)Karst. in different soils and site conditions. Plant and soil,2003,257(2):435-442.
    Parniske M. Molecular genetics of the arbuscular mycorrhizal symbiosis. Current opinion in plant biology,2004,7(4):414-421.
    Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology,2008,6(10):763-775.
    Paszkowski U. A journey through signaling in arbuscular mycorrhizal symbioses2006. New phytologist,2006,172(1):35-46.
    Peter M, Courty P.E. Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccariabicolor and Pisolithus microcarpus. New phytologist,2003,159(1):117-129.
    Peterson RL, Bonfante P. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas.Plant and soil,1994,159(1):79-88.
    Peterson RL, Chakravarty P.3Techniques in synthesizing ectomycorrhiza. Academic Press Limited,1991,23:75-106.
    Pingret JL, Journet EP, Barker DG. Rhizobium Nod factor signaling: Evidence for a G protein-mediatedtransduction mechanism. The Plant Cell Online,1998,10(5):659-672.
    Podila G, Zheng J. Fungal gene expression in early symbiotic interactions between Laccaria bicolor and redpine. Plant and soil,2002,244(1):117-128.
    Polidori E, Agostini D. Identification of differentially expressed cDNA clones in Tilia platyphyllos-Tuberborchii ectomycorrhizae using a differential screening approach. Molecular Genetics and Genomics,2002,266(5):858-864.
    Ramos AC, Lima PT, Dias PN, et al. A pH signaling mechanism involved in the spatial distribution ofcalcium and anion fluxes in ectomycorrhizal roots. New phytologist,2009,181(2):448-462.
    Reddy S, Hitchin S. The auxin-inducible GH3homologue Pp-GH3.16is downregulated in Pinus pinasterroot systems on ectomycorrhizal symbiosis establishment. New phytologist,2006,170(2):391-400.
    Regvar M, Gogala N, ZnidarSiO N. Jasmonic acid affects mycorrhization of spruce seedlings with Laccarialaccata. Trees-Structure and Function,1997,11(8):511-514.
    Rincón A, Gérard J, Dexheimer J. Effect of an auxin transport inhibitor on aggregation and attachmentprocesses during ectomycorrhiza formation between Laccaria bicolor S238N and Picea abies.Canadian Journal of Botany,2001,79(10):1152-1160.
    Rincón A, Priha O, Sotta B, et al. Comparative effects of auxin transport inhibitors on rhizogenesis andmycorrhizal establishment of spruce seedlings inoculated with Laccaria bicolor. Tree physiology,2003,23(11):785-791.
    Rupp L, DeVries II H, Mudge K. Effect of aminocyclopropane carboxylic acid and aminoethoxyvinylglycineon ethylene production by ectomycorrhizal fungi. Canadian Journal of Botany,1989,67(2):483-485.
    Salzer P, Hebe G, Hager A. Cleavage of chitinous elicitors from the ectomycorrhizal fungus Hebelomacrustuliniforme by host chitinases prevents induction of K+and Cl release, extracellular alkalinizationand H2O2synthesis of Picea abies cells. Planta,1997,203(4):470-479.
    Salzer P, Hebe G, Hager A. Rapid reactions of spruce cells to elicitors released from the ectomycorrhizalfungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular spruce cellenzymes. Planta,1996,198(1):118-126.
    Salzer P, Hubner B, Sirrenberg A. Differential effect of purified spruce chitinases and β-1,3-glucanases onthe activity of elicitors from ectomycorrhizal fungi. Plant physiology,1997,114(3):957-968.
    Sauter M, Hager A. The mycorrhizal fungus Amanita muscaria induces chitinase activity in roots and insuspension-cultured cells of its host Picea abies. Planta,1989,179(1):61-66.
    Schwacke R, Hager A. Fungal elicitors induce a transient release of active oxygen species from culturedspruce cells that is dependent on Ca2+and protein-kinase activity. Planta,1992,187(1):136-141.
    Sebastiana M, Figueiredo A. Identification of plant genes involved on the initial contact betweenectomycorrhizal symbionts (Castanea sativa-European chestnut and Pisolithus tinctorius). EuropeanJournal of Soil Biology,2009,45(3):275-282.
    Shaw SL, Long SR. Nod factor elicit two separable calcium responses in Medicago truncatula root hair cells.Plant Physiol,2003,131(3):976-984.
    Slankis V. Effect of α-Naphthaleneacetic Acid on Dichotomous Branching of Isolated Roots of Pinussilvestris (A Preliminary Report). Physiologia Plantarum,1950,3(1):40-44.
    Smith SE, Read DJ. Mycorrhizal symbiosis. Academic Pr,2008.
    Song Y, Ma K, Ci D, et al. Biochemical, physiological and gene expression analysis reveals sex-specificdifferences in Populus tomentosa floral development. Physiologia Plantarum,2014,150(1):18-31.
    Splivallo R, Fischer U, G bel C, et al. Truffles regulate plant root morphogenesis via the production of auxinand ethylene. Plant physiology,2009,150(4):2018-2029.
    Sprent JI, James EK. Legume evolution: where do nodules and mycorrhizas fit in? Plant physiology,2007,144(2):575-581.
    Stracke S, Kistner C, Yoshida S, et al. A plant receptor-like kinase required for both bacterial and fungalsymbiosis. Nature,2002,417(6892):959-962.
    Sun J, MEIJ WANG, MQ DING, et al. H2O2and cytosolic Ca2+signals triggered by the PM H+-coupledtransport system mediate K+/Na+homeostasis in NaCl-stressed Populus euphratica cells. Plant, cell&environment,2010,33(6):943-958.
    Sun J, X Zhang, S Deng, et al. Extracellular ATP signaling is mediated by H2O2and cytosolic Ca2+in the saltresponse of populus euphratica cells. PloS one,2012,7(12):153-136.
    Sarjala T, Taulavuori K. Fluctuation in free and conjugated polyamines in Scots pine seedlings after changesin temperature and daylength. Acta Physiologiae Plantarum,2004,26(3):271-279.
    Sundaram S, Brand JH, Hymes MJ, et al. Isolation and analysis of a symbiosis-regulated and Ras-interactingvesicular assembly protein gene from the ectomycorrhizal fungus Laccaria bicolor. New phytologist,2004,161(2):529-538.
    Sundaram S, Kim S, Suzuki H, et al. Isolation and characterization of a symbiosis-regulated ras from theectomycorrhizal fungus Laccaria bicolor. Molecular Plant-Microbe Interactions,2001,14(5):618-628.
    Tagu D, Bellis R De, Balestrini R, et al. Immunolocalization of hydrophobin HYDPt-1from theectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots.New phytologist,2001,149(1):127-135.
    Tagu D, Nasse B, Martin F. Cloning and characterization of hydrophobins-encoding cDNAs from theectomycorrhizal Basidiomycete Pisolithus tinctorius. Gene,1996,168(1):93-97.
    Taylor AF. Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. In:Diversity and Integration in Mycorrhizas, Springer,2002:19-28.
    Timonen S, Finlay RD, S derstr m B, et al. Identification of cytoskeletal components in pineectomycorrhizas. New phytologist,1993:83-92.
    Timonen S, Peterson RL. Cytoskeleton in mycorrhizal symbiosis. Plant and soil,2002,244(1):199-210.
    Timonen S, S derstr m B, Raudaskoski M. Dynamics of cytoskeletal proteins in developing pineectomycorrhiza. Mycorrhiza,1996,6(5):423-429.
    Trappe JM. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annual Review ofPhytopathology,1977,15(1):203-222.
    Tsai S M, Phillips D A. Flavonoids released naturally from Alfalfa promote development of symbioticGlomus spores in vitro. Appl Environ Microbiol,1991,57(5):1485-1488.
    Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray). Science,2006,313(5793):1596-1604.
    Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones.Nature,2008,455(7210):195-200.
    Voiblet C, Duplessis S, Encelot N, et al. Identification of symbiosis-regulated genes in Eucalyptusglobulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. ThePlant Journal,2001,25(2):181-191.
    Vralstad T, Schumacher T, Taylor AFS. Mycorrhizal synthesis between fungal strains of the Hymenoscyphusericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol,2002,153(1):143-152.
    W sten HAB. Hydrophobins: multipurpose proteins. Annual Reviews in Microbiology,2001,55(1):625-646.
    Walker SA, Viprey V, Downie JA. Dissection of nodulation signaling using pea mutants defective forcalcium spiking induced by Nod factors and chitin oligomers. Proc Natl Acad Sci USA,2000,97(24):13413-13418.
    Weiss M, Mikolajewski S, Peipp H, et al. Tissue-specific and development-dependent accumulation ofphenylpropanoids in larch mycorrhizas. Plant physiology,1997,114(1):15-27.
    Weiss M, Schmidt J, Neumann D, et al. Phenylpropanoids in mycorrhizas of the Pinaceae. Planta,1999,208(4):491-502.
    Wong K K Y, Fortin J A. A Petri dish technique for the aseptic synthesis of ectomycorrhizae. CanadianJournal of Botany,1989,67(6):1713-1716.
    Yang Y, Shah J, Klessig DF. Signal perception and transduction in plant defense responses. Genes&development,1997,11(13):1621-1639.
    豆存艳,王晓娟,陈牧,等. AM真菌与植物的互作及其对植物种间竞争的影响.云南农业大学学报,2011,26(3):412-417.
    冯固,徐冰,秦岭,等.外生菌根真菌对板栗生长及养分吸收的影响.园艺学报,2003,30(3):311-313.
    付绍春,谭琦,陈明杰,等.美味牛肝菌与马尾松幼苗无菌条件下的外生菌根合成.食用菌学报,2009,16(1):31-36.
    高海波,沈应柏,黄秦军.机械刺激触发沙冬青细胞产生依赖Ca2+的H+内流.林业科学,2013,48(11):36-41.
    梁军,屈智巍,李忠宁,等.外生菌根菌和植物生长物质复合制剂对杨树扦插苗生长及抗逆性的效应.林业科学研究,2005,18(6):717-721.
    梁军,屈智巍,张颖,等.根际微生态保健剂对杨树生长及抗病性的效应.南京林业大学学报:自然科学版,2005,29(5):45-49.
    梁军,王媛,焦一杰,等.根际微生态调节对杨树根系活力及土壤有效P转化的效应.林业科学,2009,45(1):102-106.
    梁军,张颖,贾秀贞,等.外生菌根菌对杨树生长及抗逆性指标的效应.南京林业大学学报:自然科学版,2004,27(4):39-43.
    刘炜,冯虎元.丛枝菌根共生关系的信号机制研究进展.西北植物学报,2007,26(10):2173-2178.
    马健.杨树(Populus spp.)与茶藨子葡萄座腔菌(Botryosphaeria dothidea)互作中SA和H2O2的信号转导特征.中国林业科学研究院,2012.
    马健,刘振宇,吕全,等.不同抗性杨树接种溃疡病菌后过氧化氢及其氧化酶的表达差异.东北林业大学学报,2013,40(12):118-122.
    马磊,吴小芹.九种外生菌根菌与杨树苗木的菌根化研究.南京林业大学学报:自然科学版,2008,31(6):29-33.
    宋福强,贾永.丛枝菌根(AM)真菌-豆科植物-根瘤菌共生识别信号研究概况.菌物学报,2008,27(5):788-796.
    宋微,吴小芹.不同外生菌根真菌对895杨抗溃疡性的影响.安徽农业科学,2011,39(4):2000-2001.
    宋微,吴小芹,叶建仁.6种外生菌根真菌对895杨矿质营养吸收的影响.南京林业大学学报(自然科学版),2011,35(2):35-38.
    唐明娟,郭顺星.菌根增强植物抗病性机理的研究进展.微生物学通报,2000,27(6):446-449.
    王媛,关玲,李顺平,等.根际微域环境的调节对毛白杨根系活力及抗病相关酶的影响.中国森林病虫,2007,26(6):1-4.
    王媛,王竹,万群.根际保健剂对杨树菌根形成和生长量的影响.中国农学通报,2009,25(21):127-129.
    徐勤松,施国新,周红卫,等. Cd、Zn复合污染对水车前叶绿素含量和活性氧清除系统的影响.生态学
    杂志,2003,22(1):5-8.
    袁志林,陈连庆.菌根共生体形成过程中的信号识别与转导机制.微生物学通报,2007,34(1):161-164.
    张杰伟,管阳,李瑞芬,等.杨树PtoCIPK2基因的克隆和表达分析.广东农业科学,2013,40(20):
    132-136.
    赵凤云,王元秀.植物体内重要的信号分子-H2O2.西北植物学报,2006,26(2):427-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700