煤和大港减压渣油的光催化氧化解聚
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重质碳资源的高效洁净利用是解决我国能源问题的重要途径,解析和了解其结构是实现其成功解聚和有效利用的重要前提。光催化氧化法对煤和大港减压渣油的解聚能从分子角度,选择性的、非破坏性的分析煤和重油的结构特征,从而为此类重质碳资源的高效洁净利用和成功转化提供重要依据。
     神府煤、葛亭煤、锡林浩特煤、霍林浩特煤等因成煤时间的差异而具有不同的分子结构,它们也是中国现存煤种的典型代表。采用固相混合开放体系、非均相水合悬浮开放体系和非均相混合密闭体系分别对煤炭进行了光催化氧化,并用丙酮或甲醇萃取分离和GC/MS等方法分析后得知:不同体系的光氧化反应均能使得煤炭得到氧化解聚,只是不同体系的氧化效果不甚相同,不同煤种的氧化程度也不尽相同。与原煤相比,氧化煤中稠环芳烃和支链烷烃中的甲基、亚甲基能够被光催化氧化产生的羟基自由基优先氧化;形成的羟基化合物会进一步氧化而不同程度的解聚,氧化的最终产物为二氧化碳和水,乙酸是反应过程中重要的水溶性中间产物;氧化煤中的酯类、酮类、环氧化合物等含氧化合物的比例明显增加;芳环化合物的比例大量减少;长链烷烃的碳链能在光催化氧化下不同程度的降碳解聚。光催化氧化也能显著改变煤炭的萃取率。
     大港减压残渣作为一种重质油,其丰富的有机物含量足以让人们对其开发充满期待,但是它的成功解析和有效转化与煤炭类似,一直是一个期待解决的瓶颈问题。为了充分说明光催化氧化对大港减渣的氧化效果,大港减渣的环己烷溶液在非均相体系中进行了13 h的光催化氧化。GC/MS和FTIR分析显示,光催化氧化能使大港减压残渣成功转化。转化后的环己烷溶液中发现了大量的含氧化合物(相对含量92.94%),其中包括36.05%的羧酸类化合物、14.56%的酯类化合物(特别是草酸酯类化合物)和19.12%的环氧化合物;原样中70%的正构烷烃含量氧化后降低至不足30%,直链烷烃的碳链也被不同程度的解聚。
     为了解光催化氧化煤炭和大港减压渣油的解聚机理,通过对苯、甲苯、二甲苯、苯酚、萘系列化合物以及石蜡等模型化合物进行光催化氧化发现:羟基氧化是光催化氧化的主要途径;光催化氧化下形成的电子-空穴对对催化剂表面的水或有机物的氧化,会导致羟基自由基的形成;羟基取代大分子中的活性氢(主要是α-H)会形成仲醇、伯醇或酚,醇分子内或分子间脱水生成不饱和化合物或环氧化合物;醇类化合物也会进一步氧化形成醛、酸、酯;羧基化合物的脱羧会得到降碳解聚产物;部分环状烃在羟基的氧化下会发生开环反应。
     提高光催化氧化对煤和大港减压渣油的解聚效果是实现此技术实际应用的根本。本文利用煤特殊的组成,制备了掺煤的二氧化钛光催化剂。XRD和BET等技术的表征和解聚煤和大港减压渣油的应用表明:自制的掺杂光催化具有较强的光催化活性,可用作解聚内容物较为复杂的大分子有机体。优选和表征也发现掺神府煤12wt%的二氧化钛活性最高。它是一种疏松双孔径结构的锐钛型纳米颗粒,具有很强的吸附性能,作为催化剂对大港重油和煤炭的光催化氧化达到了很好的解聚效果。扩大实验样品的用量时(即小试实验)也能获得同样的氧化效果。
Efficient and clean utilization of heavy carbon resources ( HCRs ) is the ultimate goal to solve energy source problems in China, but the understanding of theirs structure is still a principal question must be first considered. Photocatalytic oxidation ( PCO ) depolymerization of coals and Dagang Vacuumn Reside (DVR) can understand the structure properties of HCRs from molecular level, selective, non-destructive, and provide a basis of utilizing HCRs efficient and clean because many organic compounds in HCRs can be converted successfully into oxygen-containing compounds selectively.
     As important HCRs, Shenfu bituminous coal (SFBC), Geting coal (GTC), Xilinhaote coal (XLC) and Huolinguole coal (HLC) have different photocatalytic oxidation properties. To understand their structure in detail, three systems were used to degrade coals, including solid phase mixture open system (SPMOS), heterogeneous hydration suspension open system (HHSOS), heterogeneous hydration suspension closed system (HHSCS). Separated organic matters (OMs) with acetone or methanol and analyzed with GC/MS and FTIR were finished to understand the experimental effect. The results indicate that coals can be oxidized successfully in these systems, although the different coals exist different oxidation effect. Methyl groups and methylenes in fused ring aromatic hydrocarbons or branched-chain alkyanes can be oxidized preferentially by hydroxyl free radicals substituting and produce a large number of hydroxyl compounds. Then these hydroxyl compounds were oxidized continuously in illuminating with UV light to generate to carbon dioxide and water. The species and number of oxygen-containing compounds (including acids, esters, ketones, epoxides etc.) in the oxidation coals was increasing comparing with in the raw coals. At the same time the relative content of the aromatic compounds reduced in the process and carbon chain in long chain alkyl compounds were also degraded in the photooxidation process. The extract yield of coal is improved obviously in the oxidation process, too.
     DVR, as heavy oil in China, contains a large number of OMs and possesses the potential application prospect, however understanding its structure is a vital problem to realize its effective conversion and utilization as similar to coals. In order to realize DVR oxidation and deploymerization, the cyclohexane solution of DVR was illuminated with low pressure mercury lamp at the room temperature for 13 hours, and the effect was detected with GC/MS. The results show that DVR has been oxidized effectively, a large number of acids (36.05%), oxalic esters (14.56%), epoxides compounds (19.12%) are converted from alkanes or branched-chain alkanes. So the treatment can improve the effective utilization of DVR.
     To explain the mechanism of PCO deploymerization coals and DVR, analytic reagents including benzene, toluene, xylene, phenol, naphthalene series compounds and liquid paraffin, as model compounds, were oxidized respectively in the same condition with coals and DVR oxidation. The experimental results indicate that the oxidation of hydroxyl radicals is an important method in PCO. The formation of free radicals in the surface of photocatalyst continuously through illuminating with UV light and the production of electrons-holes pairs (e~-/h~+) via electron transition between conduction band and valence band are principal source of PCO. The formation of large number of free radicals cause the oxidative dehydrogention of OMs in coals and DVR. Active hydrogens substituted by the free radicals atoms in macromolecular compounds in coals or DVR, hydroxyl compounds including alcohols and phenols can be produced. Then the hydroxyl compounds reacted with each other or the other organic compounds to generate aldehydes, ketones and esters, or lead to the degradation of coals and DVR through removing water. In addition to the part of cyclic-hydrocarbons compounds had ring-opening reaction during the photo-catalytic oxidation process.
     To improve the PCO' effect, different homemade photocatalysts of doping coal were prepared by Sol-Gel method and characterized by XRD, TEM and BET techniques, and then optimized selection and applied on the coals and DVR deploymerization respectively. The result shows that the SFC (12wt%)-TiO_2 photocatalyst is especially suitable for complex organic compounds deploymerization because of being with the structure of loose and dual aperture. Just the structure causes the photocatalyst with the strong adsorptive property and high activities, when the SFC-TiO_2 as photocatalyst are used in the reaction, even if expand the amount of coals and DVR the similar result can also be obtained and the oxidation effect is more remarkable as using the homemade pure TiO_2.
引文
[1]魏贤勇,宗志敏,孙林兵,等.重质碳资源高效利用的科学基础[J].化工进展,2006,259 (10):1134-1142.
    [2] Chakrabartty S K, Kretschmer H O. Studies on the structure of coals: part 2. the valence state of carbon in coal[J]. Fuel, 1974, 53 (2): 132-135.
    [3] Hayatsu R, Scott R G, Moore L P, et al. Aromatic units in coal[J]. Nature, 1975, 257 (5525): 378-380.
    [4] Mayo F R. Application of sodium hypochlorite oxidations to the structure of coal[J]. Fuel, 1975, 54 (4): 273-275.
    [5] Mae K, Maki T, Okutsu H, et al. Examination of relationship between coal structure and pyrolysis yields using oxidized brown coals having different macromolecular networks[J]. Fuel, 2000, 79 (3-4): 417-425
    [6] Miura K, Mae K, Okutsu H, et al. New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals[J]. Energy Fuels, 1996, 10 (6): 1196-1201.
    [7] Miura K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol, 2000, 62 (2-3): 119-135.
    [8] Schobert H H, Song C. Chemicals and materials from coal in the 21st centary[J]. Fuel, 2002, 81 (1): 15-32.
    [9] Takagi H, Isoda T, Kusakabe K, et al. The 6th Japan-Chinese Symposium on Coal and C1 Chemistry Proceeding (C). Zao, Miyagi, Japan, 1998. 15-18.
    [10] Huang Y G, Zong Z M, Yao Z S, et al. Ruthenium ion-catalyzed oxidation of shenfu coal and its residues[J]. Energy fuels 2008, 22 (3): 1799-1806.
    [11]李增华,位爱竹,杨永良.煤炭自燃自由基反应的电子自旋共振实验研究[J].中国矿业大学学报, 2006, 35 (5 ): 576-580.
    [12]位爱竹,李增华,杨永良.破碎、氧化和光照对煤中自由基的影响分析[J].湖南科技大学学报(自然科学版), 2006, 21 (4): 19-23.
    [13] Given P H, Marzec A, Barton W A, et al. The concept of a mobile or molecular phase within the macromolecular network of coals: a debate[J]. Fuel, 1986, 65: 155-163.
    [14]葛岭梅,薛韩玲,徐精彩,邓军,等.对煤分子中活性基团氧化机理的分析[J].煤炭转化,2001, 24 (3):23-28.
    [15]葛岭梅,李建伟.神府煤低温氧化过程中官能团结构演变[J].西安科技学院学报, 2003, 23 (2): 187-191.
    [16] Kudynska J, Buckmaster H A. Low-temperature oxidation kineTotal ion chromatograms of highvolatile bituminous coal studied by dynamic in situ 9 GHz c.w.e.p.r.spectroscopy[J]. Fuel, 1996, 75: 872-878.
    [17] Yūrūm Y, Altuntas N. Air oxidation of beypazari lignite at 50 oC, 100 oC and 150 oC[J]. Fuel, 1998, 77: 1809-1814.
    [18] Lopez D, Sanada Y, Mondragon F. Effect of low-temperature oxidation of coal on hydrogentransfer capability[J]. Fuel, 1998, 77: 1623-1628.
    [19] Wang H, Dlugogorski B Z, Kennedy E M. Analysis of the mechanism of the low-temperature oxidation of coal[J]. Combustion and Flame, 2003, 134: 107-117.
    [20]罗道成,刘俊峰.不同反应条件对煤中自由基的影响[J].煤炭学报, 2008, 33 (7): 807-812.
    [21] Fujishima A, Honda K. Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull. Chem. Soc. Jpn., 1971, 44 (4): 1148.
    [22] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238 (5358): 37-38.
    [23] Gianluca L P, Polock Y. A novel photo-catalytic reactor: model development and experimental validation[J]. Chemical Engineering Science, 2001, 56 (8): 2733- 2744.
    [24]凌海波,张敬东,罗玉红.太阳光催化氧化废水处理技术研究现状及前景[J].工业水处理,2004,24 (6): 9-14.
    [25]林劲冬,梁丽云,蓝仁华,等. Fe-TiO2光催化涂层材料的制备及在可见光下清除甲醛的性能表征[J].精细化工, 2004,21 (2): 115-119.
    [26]高基伟,杨辉,申乾宏. TiO2在绿色建筑材料方面的研究进展[J].陶瓷学报, 2007,28 (3):237-241.
    [27]杨志远,周安宁,张泓,等.神府煤不同密度级组分光催化氧化的XPS研究[J].中国矿业大学学报,2010,39 (1): 98-104.
    [28]Steven N F, Allen J B. Photoassisted oxidations and photoelectrosynthesis at polycrystalline TiO2 electrodes[J]. J. Am. Chem. Soc, 1977, 99 (14): 4667-4675.
    [29] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology 1976,16: 697-701.
    [30] Blake D. M. Bibliography of work on the photocatalytic removal of hazardous compounds from water and air[J]. Natural Renewal Engrgy Labortory, 1994, 5: 2-6.
    [31]Tinucci L, Borgarello E, et al. Treatment of industrial wastewaters by photocatalytic oxidation on TiO2. Photocatalytic Purification and Treatment of Water and Elsevier Science Publishers, Amsterdam, 1993, 585.
    [32]位爱竹,李增华,潘尚昆,等.紫外光引发煤自由基反应的实验研究[p].中国科学院上海冶金研究所,博士论文2000年.
    [33]周安宁,王健,杨志远,等.神府煤固定床低温热氧化解聚研究[J].煤炭学报2007, 32 (2): 198-201.
    [34] Per H J, Carlsen T K, Victor S, et al. Barry Sharpless. A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds[J]. J. Org. Chem., 1981, 46 (19): 3936–3938.
    [35] Wang z, Que G, Liang W. Structural characterization of Gudao asphaltene by ruthenium ions catalyzed oxidation[J]. Pet. Sci. Techno., l1997, 15: 559-577.
    [36]范维玉,杨秋水.高锰酸钾氧化法对孤岛原油沥青质结构的研究[J].燃料化学学报, 1988, 16 (3): 47-54.
    [37]李静,刘国祥.单家寺混合稠油减渣的氧化[J],石油沥青报,1993, 3 :15-17.
    [38] Piscopo A, Robert D, Weber J V. Influence of pH and chloride anion on the photo-catalytic degradation of organic compounds [J]. Applied Catalysis B: Environmental, 2001, 35: 117-124.
    [39] Chen Y, Sun Z, Yang Y. Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water[J]. Photochem. Photobio. A, 2001, 142: 85-89.
    [40]雷乐成,汪大翬.水处理高级氧化技术[M].北京:化学工业出版社,2001:52-288.
    [41]曹茂盛.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社, 2001:6.
    [42]孙晓君,蔡伟民,井立强,等.二氧化钛半导体光催化技术研究进展[J],哈尔滨工业大学学报,2001,33 (4): 534-541.
    [43]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展[J].科学通报,2001,46 (4):265-273.
    [44]孙静,高濂,张青红.制备具有光催化活性的金红石相纳米氧化钛粉体[J].化学通报,2003,61 (1):74-77.
    [45]施利毅,李春忠,房鼎业,等. TiCl4-O2体系高温反应制备超细TiO2光催化材料的研究[J].无机材料学报,1999,14 (5): 717-725.
    [46] Bickley R, Gonzalea Carreno T, Lees J. A structural investigation of titanium dixide photocatalysts[J]. J Solid State Chem., 1991, 91: 178-190.
    [47]解恒参,朱亦仁.三氧化钨的光催化氧化性能研究[J].工业用水与废水, 2004,35 (4): 45-48.
    [48]李爱梅,朱亦仁,于昕,等. Fe2O3/UV/H2O2光催化法解聚造纸废水的研究[J].安全与环境学报,2007,7 (5): 39-43.
    [49]刘兴芝,李春梅,房大维,等. Re2O7的萃取法制备及光催化特性研究[J].无机化学学报,2006,22 (4): 612-616.
    [50] Michikazu H, Takeshi K, Mutsuko K, et al. Cu2O as a photocatalyst for overallwater spilling under visible-light irradiation[J]. Chem. Commun,1998, 3: 357-358.
    [51]刘自力,刘宏伟,李茹. Cu2O光催化还原含铬(VI)废水的研究[J].高校化学工程学报,2007,21 (1):88-92.
    [52] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2 correction between photo reactivity and chargecarrier recombination dynanics[J]. J. Phys. Chem., 1994, 98 (51): 13669-13679.
    [53] Zhang M, Jin Z S, Wang S B, et al. The photocatalytic enhancement effect of CO on Pd/TiO2 [J]. Acta Phys. Chim. Sin., 2003, 19 (2): 100-104.
    [54]杨睿婷,李文军,王明文,等.掺铅TiO2薄膜的制备及光催化性能[J].北京科技大学学报, 2005,4: 4-18.
    [55] Wu S X, Ma Z, Qin Y N, et al. XPS study of copper doping tio2 photocatalyst[J]. Acta. Phys. Chim. Sine., 2003, 19 (10): 967-969.
    [56]袁志好,张立德.掺锌的TiO2纳米粉结构相变及发光性质[J].高等学校化学学报, 1999,20 (7):1007-1011.
    [57]卢铁城,刘彦章,林理彬,等.过渡金属Cr掺杂对金红石光性影响的研究[J].无机材料学报, 2001,16 (2): 373-376.
    [58]岳林海,刘清,徐铸德,等.纳米掺铁二氧化钛的Sol-Gel法制备与表征(I)[J].无机化学学报,2000,11 (6): 933-937.
    [59]陈晓青,杨鹃玉,蒋新宇,等.掺铁TiO2纳米微粒的制备及光催化性能[J].应用化学, 2003,20 (1): 73-76.
    [60]张彭义,余刚,蒋展鹏.半导体光催化及其改性技术进展[J].环境科学进展, 1997,5 (3): 1-10.
    [61]张华星,张玉红,徐永熙,等.铽(III)掺杂TiO2纳米材料相转移和光催化性质的研究[J].化学学报,2003,61 (11): 1813-1818.
    [62] Gerischer H. Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles[J]. J. Phys. Chem., 1991, 95: 5261-5267.
    [63]廖振华,陈建军,姚可夫,等.纳米光催化剂负载化的研究进展[J].无机材料学报,2004,19 (1): 17-24.
    [64]辛柏福,于海涛,袁福龙,等. Ag-TiO2的结构对其光催化性能的影响. 2002年全国光催化学术会议论文集. 238-239
    [65]崔玉民,范少华.复合纳米微粒Rh3+/TiO2/SnO2的合成、表征及光催化解聚4-(2-吡啶偶氮)间苯二酚的研究[J].感光科学与化学, 2003,21 (3): 161-168.
    [66]井立强,孙晓君,辛柏福,等.掺杂镧和铈的TiO2纳米粒子的结构相变[J].材料科学与工艺, 2004,12 (2): 148-152.
    [67] Jin S, Shiraishi F. Photocatalytic activities enhanced for decompositions of organic compounds over metal–photo depositing titanium dioxide[J]. Chem. Engineer. J., 2004, 97 (223): 203-211.
    [68] Sung S H M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on the photocatalytic activity of nanopar Ticulate TiO2 under visible and uv-light irradiation[J]. J. Photochem. & Photobiol. A: Chem., 2004,163 (122) : 37-44.
    [69]毕怀庆,袁文辉,魏朝海.掺锆纳米TiO2制备表征及其多光催化剂活性的影响[J].材料科学与工程学报,2004,2 (22): 98-101.
    [70]冯良荣,吕绍洁,邱发礼.稀土元素掺杂对纳米TiO2光催化性能的影响[J].复旦学报(自然科学版), 2003,42 (3): 413-417.
    [71]傅宏刚,王建强,王哲,等. TiO2光催化剂表面修饰研究进展[J].黑龙江大学自然科学学报,2001,18 (3): 85-89.
    [72] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293 (5528): 269-271.
    [73] Madhusudanrk, baruwatib, jayalakshmim, et al. S2, N2 and C2 doped titanium dioxide nano-particles: synthesis, characterization and redox charge transfer study[J]. J. Solid State Chem., 2005, 178 (11): 3352-3358.
    [74] Ohno T, Tsubota T, Toyofuku M, et al. Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light[J]. Catalysis Letters, 2004, 98 (4): 255-258.
    [75]王振华,主沉浮,董厚欢,等. Pb-N共掺杂TiO2纳米晶的制备\表征及光催化性能的研究[J].山东大学学报(理学版), 2007, 42 (9): 25-30.
    [76] Amyl L, Guangquan L, John Y. Photocatalysis on TiO2 surface: principles, mechanisms and selected results[J]. Chem. Rev., 1995, 95: 735-758.
    [77]李佑稷,李效东,李君文,等.纳米TiO2复合材料的研究进展材料科学与工艺[J]. 2006,14 (3): 282-287
    [78]余家国,赵修建,韩建军,等. TiO2/SiO2复合薄膜的晶型和晶粒尺寸研究[J].硅酸盐学报2001,29 (3): 286-291.
    [79]肖逸帆,柳松.二氧化硅改性二氧化钛光催化活性研究进展[J].无机盐工业,2007,39 (9): 5-9.
    [80]张青红,高濂,孙静.氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用[J].无机材料学报, 2002, 17 (3): 415-421.
    [81]钟萍,林志芬,刘正文,等. TiO2光催化剂氧化法的提高效率方法及其环保应用[J].生态科学,2004,23 (1): 64-67.
    [82]龙明策,蔡俊,蔡伟民,等.设计新型可见光响应的半导体光催化剂[J].化学进展,2006,18 (9): 1066-1075.
    [83] Karacan F, Simsek E H, Togrul, T. Photocatalytic dissolution of two turkish lignites in tetralin: Effects of UV irradiation, TiO2 and ZnO as photocatalyst[J]. Energy Sources, 2005, 27 (16): 1523-1533.
    [84] Yeber M C, Rodriguez J, Freer J, et al. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO[J]. Chemosphere, 2000, 41:1193.
    [85]艾仕云,鲜跃仲,陈俊水,等.纳米CuO/TiO2的光催化解聚及其应用[J].华东师范大学学报(自然科学版),2003,1 (1): 62-67.
    [86]王斌,高飞,何斌,等. CdS/TiO2复合纳米粒子的光学性质[J].物理化学学报,2003,19 (1): 21-24.
    [87] Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. J. Photochem. & Photobiol. A:Chem., 2004, 163 (3): 569-580.
    [88] Fu W Y, Yang H B, Chang L X, et al. Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst Colloids and Surfaces A[J], Physicochemical and Engineering Aspects, 2006,289 ( 1-3): 47-52.
    [89]陈锋,朱依萍,马宏燎,等. TiO2-CdS2-MCM-41复合纳米材料的合成和表征[J].物理化学学报, 2004, 20 (11): 1292-1296.
    [90]苏碧桃,董娜,慕红梅,等. Fe3+-CdS/TiO2复合半导体的光催化性能化学试剂[J].化学试剂, 2007, 29 (9): 537-538; 546.
    [91]鲁良洁,李竟先.纳米二氧化钛表面改性与应用研究进展[J].无机盐工业,2007,39 (10): 1-4.
    [92]刘德启,汪守建,牛明改,等.负载亚甲基蓝光敏氧化法处理造纸废水研究[J].环境污染治理技术与设备, 2002, 3 (11): 60-63.
    [93] Stylid I M, Kondarides D I, Verykios X E. Visible-light induced photocatalytic degradation of acid orange inaqueous TiO2 suspensions[J]. Appl. Catal. B: Environm., 2004, 47 (3): 189- 201.
    [94]Cho Y M, Choi W Y. Visible light-induced degradation of carbon tetrachloride on dye- sensitized TiO2[J]. Environ. Sci. Technol, 2001, 35 (5): 966–970.
    [95] Bae E Y, Choi W Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light[J]. Environ Sci Technol, 2003, 37(1): 147–152.
    [96]张晟卯,李健,吴志申,等.羧基功能化离子液体表面修饰TiO2纳米微粒的制备及结构表征[J].高等学校化学学报,2006,27 (9): 1615-1618.
    [97]邹玲,乌学东,陈海刚,等.表面修饰二氧化钛粒子的结构表征及形成机理[J].物理化学学报,2001,17(4):305-309.
    [98]苏碧桃,常玥,张力,等.纳米TiO2/炭化树脂复合光催化剂的合成及其光催化性能研究[J].高等学校化学学报, 2003, 24 (5): 892-894.
    [99]姜东,徐耀,侯博,等.有机改性TiO2光催化剂的制备及可见光催化性能化学学报[J],化学学报,2007,65 (14): 1289-1293.
    [100]赵峰,魏宏斌,徐迪民.固定相广催化剂氧化技术的研究与进展[J].化工环保,2002,22 (6):328-332.
    [101]谷学谦,董秀芹,张敏华,等.固定化光催化技术研究进展[J].化学反应工程与工艺,2003,19 (4): 379-385.
    [102] Shang J, Li W, Zhu Y F. Structure and photo-catalytic characterisTotal ion chromatograms of TiO2 film photo-catalyst coated on stainless steel webnet[J]. Journal of Molecular Catalysis A: Chemical, 2003, 202 (1-2): 187-195.
    [103]饶兴堂,任富建.光催化二氧化钛薄膜的制备工艺研究进展[J].稀有金属快报, 2006,25 (10): 6-10.
    [104]尹棋亚,李道荣,赵鹏,等.磁场对制备Fe3+/TiO2光催化剂结构和性能的影响[J].材料科学与工程学报, 2007, 25 (5): 788-792.
    [105]杨志远,周安宁,杨伏生.不同变质程度煤粉的低温光催化氧化反应性[J].中国矿业大学学报,2007, 36 (6): 759-764.
    [106]解恒参,朱亦仁,李爱梅,等.二氧化钛粉体在纸厂废水处理中的应用[J].感光科学与光化学,2006, 24 (4): 213-217.
    [107] http://www.sddlr.gov.cn/document/2010-12/20101214155637550681.pdf
    [108] http://www.hlgls.gov.cn/?action=newshow|admin|201|cn|183,456|456
    [109]黄东升,陈朝凤,李玉花,等.铁、氮共掺杂二氧化钛粉末的制备及光催化活性[J].无机化学学报,2007, (23) 4: 738-743.
    [110] Faria A L, Leod T C O M, Assis M D. Carbamazepine oxidation catalyzed by iron and manganese porphyrins supported on aminofunctionalized matrices[J]. Catal. Today, 2008, (133–135): 863–869.
    [111] Greggio G, Sgarbossa P, Scarso A, et al. Platinum(II) diphosphine complexes as catalysts for the Baeyer–Villiger oxidation of ketones: Is it possible to increase the concentration of the active species?[J]. Inorg. Chim. Acta, 2008, 361 (11): 3230–3236.
    [112]Tolvanen P, M?ki-Arvela P, Sorokin A B, et al. KineTotal ion chromatograms of starch oxidation using hydrogen peroxide as an environmentally friendly oxidant and an iron complex as a catalyst[J]. Chem. Eng. J. 2009, 154 (1–3): 52–59.
    [113] Michelin R A,Sgarbossa P,Scarso A,Strukul G. The Baeyer–Villiger oxidation of ketones: A paradigm for the role of soft Lewis acidity in homogeneous catalysis[J]. Coordin. Chem. Rev. 2010, 254 (5-6): 646–660.
    [114] Yao Z S, Wei X Y, Lv J, et al. Oxidation of Shenfu Coal with RuO4 and NaOCl[J]. Energy Fuels 2010, 24 (3): 1801–180.
    [115] Liu Z X, Liu Z C, Zong Z M, et al. GC/MS Analysis of water-soluble products from the mild oxidation of longkou brown coal with H2O2[J]. Energy Fuels 2003, 17 (2): 424–426.
    [116] http://www.lmlq.com/loutianmeikuang/news/hulin.html.
    [117]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报, 2002, 31 (5): 362-367.
    [118]周国江,李全国,常亮.水热处理后的褐煤红外光谱分析[J].黑龙江科技学院学报,2007, 17 (5): 331-334.
    [119] Song C, Schobert H H. Opportunities for developing specialty chemicals and advanced materials from coals[J]. Fuel Processing Technology, 1993, 34 (2): 157-196.
    [120] Wang H, Dlugogorski B Z, Kennedy E M. Analysis of the mechanism of the low-temperature oxidation of coal[J]. Combustion and Flame, 2003, 134 (1-2): 107-117.
    [121] Cetinkaya S, Enel S, Yürüm Y. Oxidation of low-rank coals-part I. oxidation of polymeric model compounds[J]. Fuel, 1998, 77 (4): 239-245.
    [122]杨致远,周安宁.神府煤光催化氧化解聚过程的FTIR研究[J].煤炭学报,2005,30 (6): 759-764.
    [123] Hashimoto K, Kawai T, Sakata T. Photocatalytic reactions of hydrocarbons and fossil fuels with water. Hydrogen production and oxidation[J]. Journal of Physical Chemistry, 1984, 88 (18): 4083-4088.
    [124] Dluqi R, Gusten H. Preparation of nanocrystalline TiO2-coated coal fly ash and effect of iron oxides in coal fly ash on photocatalytic activity[J]. Atmospheric Environment, 1983, 17 (9): 1765-1771.
    [125]孙鸣,周安宁,张亚婷,等.煤的光-热耦合氧化研究[J].煤炭学报,2009, 34 (9): 244-1249.
    [126]孙鸣,周安宁,么秋香.煤的液相光催化氧化研究[J].煤炭学报,2010, 35 (9): 1553-1559.
    [127]姜玉凤,李侃社,周安宁,等.神府煤光催化氧化产生腐植酸的特性研究[J].煤炭转化,2004,27 (4): 83-86.
    [128]陈虹,宗志敏,张佳伟,等.温和条件下黑岱沟萃余煤的双氧水氧化产物分析[J].中国矿业大学学报,2008, 37 (3): 347-354.
    [129] Huffmann M R,Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95 (1): 69-96.
    [130] Legrimi O, Oliveros O, Braun A M. Photochemical processes for water treatment[J]. Chem. Rev., 1993, 93 (2): 671-698.
    [131] Inel Y, Balcioglu I A. Photocatalytic degradation of organic contaminated in semiconductor suspensions with added H2O2[J]. J. Environ. Sci. Health, Part A: Environ. Sci. Engineer. Toxic Hazardous Substance Control., 1996, 31 (1): 123-128.
    [132] Cui W Q, Feng L R, Xu C H, et al. Hydrogen production by photocatalytic decomposition nano-film of methanol gas on Pt/TiO2. Catal. Commum. 2004, 5 (9): 533-536.
    [133] Z?ch M, H?gglund C, Chakarov D, et al. Anoscience and nanotechnology for advanced energy systems[J]. Curr. Opin. Sol. State Mater. Sci. 2006, 10 (3-4):132-143.
    [134] Shi L J, Cai Y F J. Fabrication of C, N-codoped TiO2 nanotube photocatalysts with visible light response[J]. Acta Physico-Chimica Sinica, 2008, 24 (7): 1283- 1286.
    [135]杨志远,周龙贵,周安宁,等.硫掺杂TiO2的制备及其光催化解聚次甲基蓝研究[J].化工新型材料,2006,34 (5): 35-37.
    [136] Liu C M, Zong Z M, Jia J X, et al. An evidence for the strong association of N-Methyl -2-pyrrolidinone with some organic species in three Chinese bituminous coals[J]. Chinese Science Bulletin, 2008, 53 (8): 1157-1164.
    [137]何永久,葛岭梅,李建伟.神府粉煤灰物化性能分析及利用途径探讨[J].陕西煤炭技术,1995,4: 31-34.
    [138]薛茹君,吴玉程.微乳液制备负载型共掺杂TiO2光催化剂及性能研究[J].中国矿业大学学报,2009,38 (1): 140-144.
    [139] Tanaka K, Capule M F V, Hisanage T. Effect of crystallinity of TiO2 on its photocatalytic action[J]. Chem. Phys. lett., 1991, 187 (1-2): 73.
    [140]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,2: 59-148.
    [141]韩丽.重油的组成结构和高效转化的基础研究[D].徐州:中国矿业大学, 2008.
    [142]王艳秋,王枫,宗志敏,等.大港减压渣油超临界萃取物气质联用色谱分析[J].应用化工, 2006, 35 (11): 887-892.
    [143]邓南圣,吴峰,编著.环境光化学[M].北京:化学工业出版社, 2003. 5: 309-313.
    [144] Boyland E, Sims P. The action of some free radicals on naphthalene[J]. J. Chem. Soc.1953, 2966-2972.
    [145] Jacob N, Balakhrisnan J, Reddy M P. Characterization of the hydroxyl radical in some photochemical reactions[J]. J. Phys. Chem. 1977, 81:17-22.
    [146]漆强,郑江,贺蕴秋.纳米TiO2光催化效率表征方法探讨[J].玻璃和搪瓷,2004, 32 (1): 51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700