黄土高原芨芨草生理生态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原半干旱区多年来由于不合理的土地利用和滥垦滥牧等现象,致使土壤沙化,草地退化,水土流失等一系列生态环境问题严重威胁着人类的生存与发展,多年的研究已证明,生物措施是生态环境建设与治理的根本性措施,因此,针对目前的自然现状,选择抗逆性强、生长快、生产中急需的优良牧草进行了定位试验研究。
     本文研究了在黄土高原大面积生长的优良禾本科牧草—芨芨草的生理生态特性、水肥因子对它的影响以及同其它两种牧草(本氏针茅和厚穗冰草)间的比较,为芨芨草的开发利用提供科学依据。研究结果如下:
     1、芨芨草草地土壤含水量季节变化和垂直变化较为显著。在整个生育期土壤含水量可以划分为3个阶段:春初为水分缓慢蒸发期(3月份),春季为水分大量损耗期(4-7月),夏秋为水分恢复期(8-9月)。在整个土壤剖面上,可以划分为3层:即0-30cm为活跃层;30-120cm为次活跃层;120-200cm为稳定层。芨芨草草地土壤容重较本氏针茅草地和裸地小,各层的总孔隙度和毛管孔隙度明显高于本氏针茅草地和裸地,但非毛管孔隙度较本氏针茅草地和裸地低。
     2、芨芨草株高初期增加较慢,在生长的6月至8月进入快速生长期,之后几乎不变,甚至减小,生长速率曲线为多峰型。水分对株高的增加影响较大,施肥对芨芨草株高的增加有影响,差异不甚明显,但对分蘖有较强的促进作用。
     3、水分对芨芨草叶片的生长影响极为明显,水分越低,叶片长度越小,单叶叶面积越小,但水分过多,会抑制叶片的伸长。施肥对芨芨草叶片长度和叶面积存在显著影响,各施肥处理对叶片长度和叶面积均有不同幅度增加,但各施肥处理间差异不甚明显。
     4、芨芨草的生物量在整个生育期呈单峰曲线,植株组织含水量随生长时间的延长逐渐下降。芨芨草非同化器官生物量鲜重在7月达到最大值,同化器官生物量鲜重8月达到最大值。地上部分生物量主要集中在0-100cm,各时期产量结构趋势几乎相同。水分、施肥对芨芨草地上部生物量积累和生物量分配的影响差异显著。芨芨草适宜生长的降水量为400-500mm。
     5、叶片的水分状况与降水量和牧草物候期相关,随时间的延长,叶片含水量越来越小。在干旱胁迫下,叶片含水量减少,叶片水分亏缺严重。施肥对芨芨草叶片含水量影响不大,但造成水分饱和亏增加。
     6、芨芨草叶片光合速率日进程受环境影响,在不同时期差异较大,6月、7月呈双峰曲线,8月和9月,光合速率则呈单峰曲线;芨芨草蒸腾速率和气孔导度日进程在整个生育期内基本上呈单峰曲线。回归分析和相关分析表明,不同时期对芨芨草叶片光合速率、蒸腾速率和气孔导度起决定性作用的环境因子不同,而在整个生育期它们三者之间都存在着极显著的正相关关系。芨芨草光合蒸腾速率的季节变化存在极强
    
    的规律性,即分别在6月和8月达到峰值。水分和肥料对友友草光合生理生态特性的
    影响差异显著,光合速率随灌水量、施肥量的增加而增加。
     7、对照牧草厚穗冰草于8月份生物量达到高峰,本氏针茅则于5月份达到高峰期。
    单位面积最大生物产量的大小顺序为:厚穗冰草)友友草)本氏针茅。在产量最高时
    期,友友草同化器官占的比例较大(凡七习),而厚穗冰草同化器官所占比例较小(凡七
        岌草的光合能力和单叶水分利用效率比两种对照牧草高。
Due to irrational land utilization, absurd assarting and herding, a series of environmental problems, such as sandy soil, grassland degeneration, soil and water loss, appeared, which severely threatened to survival and development of human being. It was proved that biomic-measure was the radical measure of ecology environment construction and harnessing. Thus, a research on choosing a kind of grass, which was good, stronger stress resistance and faster growth velocity, was carried out.
    In the paper, the ecophysiological characteristics of Achnatherum splendens, the effects of water and fertilizer on it and a comparative research to other grass were studied, which provided scientific basis on utilization and exploitation of Achna therum splendens. The results were as follows:
    1. The seasonal and vertical variation of soil water content was significant. During the whole growing stages the variation of soil water content could be divided into three distinct stages: water-evaporated slowly in the initial spring (March), water-consumed largely in spring (April to July) and water-recovered in summer (August to September). The soil section could be divided into three parts: active water layer (0-30cm), sub-active water layer (30-120cm) and stable water layer (120-200cm). Compared to Stipa Bungeana grassland and fallow ground, the volume weight was smaller, total porosity and capillary porosity were higher, but non-capillary porosity was lower.
    2. Achnatherum splendens height increased slow in the initial stages, fast from June to August and slow again after that. The growth velocity curve of height was multi-humped. The effect of water on height increase was significant, fertilizer could boost in tillering but influenced not markedly on height.
    3. The effect of water on leaf was very marked. Leaf length and leaf area increase were restrained under water stress and excessive water supply could limit them, too. Fertilizer could increase leaf length and leaf area, but the difference of the effect among different fertilizer levels was not significant.
    4. The biomass was single-humped curve. Water ratio in plant decreased gradually from the beginning. The highest wet biomass of non-assimilation organ appeared in July, while that of assimilation organ arrived in August. The ratio of biomass in different layer was almost the same in different periods and the majority of biomass distributed in Ocm to
    
    
    100cm above ground. Water and fertilizer had a strong influence on biomass accumulating and biomass distribution. The water supply level that was fit for growth was 400- 500mm.
    5. Leaf water content was correlated with precipitation and phonological period and induced gradually with time passed. Under water stress, leaf water content decreased and leaf water deficit intensified. Fertilizer influenced trivially on leaf water content, while intensified markedly on the water saturation deficit.
    6. Due to the environmental influence, the daily variation of photosynthesis rate of Achnatherum splendens leaf in different months was different ,Which was expressed as a two-humped curve in June and July and a single-humped curve in August and September. And the daily change of transpiration rate and stomatal conductance were single-humped curve. Correlation analysis showed that in different months the decisive environmental factor that influenced photosynthesis rate, transpiration rate and stomatal conductance was different, but they had positively correlativity each other. The seasonal variation of photosynthesis rate and transpiration rate of Achnatherum splendens leaf was regular and reached the higher point in June and August. Water and fertilizer influenced the ecophysiological characteristics of Achnatherum splendens leaf markedly which raised with the increase of water and fertilizer.
    7. The highest biomass of Aneurolepidium dasystachys appeared in August, while that of Stipa Bungeana appeared in May. The sequence of the highest biomass per area was: Aneurolepidium dasystachys} Achnatherum splendens} Stipa Bung
引文
[1] 艾金伟.我国西部退化土壤生态重建的特点与土壤培肥.水土保持学报,2001,15(2):13-17
    [2] 张胜利,李靖.中国西北地区农业水土环境问题及对策.水土保持学报,2002,16(4):78-81
    [3] 王晓东,袁仁茂,王烨.西部开发中水土流失问题的生态角度透视.水土保持研究,2001,8(2):103-106
    [4] 余新晓,秦永胜.生态环境建设在西部大开发中的战略地位.国土经济,2000,2:1-4
    [5] 王庆锁,李玉中,王襄平.我国北方干旱区草业的发展方略.中国草地,2001,23(3):67-71
    [6] 陈三有.从广东草业生产模式看牧草在可持续发展中的战略地位.草业科学,2000,17(1):75-78
    [7] 柴发熹.退耕后的还林和还草.草业科学.2001,18(4):36-38
    [8] 山仑.怎样实现退耕还林还草.林业科学,2000,(5):2-4
    [9] 徐明岗,文石林,高菊生.红壤丘陵区不同种草模式的水土保持效果与生态环境效应.水土保持学报,2001,15(1):77-80
    [10] 侯喜录,曹清玉.陕北黄土丘陵沟壑区植被减沙效益研究.水土保持通报,1990,2:23-27
    [11] 广东省畜牧局编.发展热带亚热带优良牧草.广州:广东人发出版社,1990
    [12] 李佩成.黄土台原的治理和开发.西安:陕西人民出版社,1991
    [13] 李勇,朱显谟等.黄土高原植物根系提高土壤抗冲性的有效性.科学通报,1991,12:935-938
    [14] 刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究.水土保持学报,1996,2:21-26
    [15] 韩永伟,韩建国,张蕴薇.农牧交错带退耕还草对土壤物理性状的影响.草地学报,2002,10(2):100-107
    [16] 孙国荣,阎秀峰,李晶.星星草对碱化土壤物理性质的影响.草地学报,2002,10(2):118-123
    [17] 杨中艺.“黑麦草—水稻”草田轮作系统应用效益初探.草业科学,1997(6):35-38
    [18] 黄富祥,高琼.毛乌素沙地不同防风材料降低风速效应的比较.水土保持学报,2001,15(1):27-30
    [19] 高永革,樊江文主编.草地生态与生产.北京:中国农业科技出版社,1997
    [20] 程积民.黄土高原草地植被建设.西安:陕西人民出版社
    [21] 刘国彬.黄土高原草地植被恢复与土壤抗冲性形成过程,2:植被恢复不同阶段土壤抗冲性特征,水土保持研究,1997,4(5)21-26
    [22] 卢宗凡,梁一民,刘国彬.中国黄土高原生态农业.陕西科学技术出版社,1997
    [23] 张金屯.山西高原草地退化及其防治对策.水土保持学报,2001,15(2):49-52
    [24] 杜占池,杨宗贵.羊草光合作用日进程类型的研究.自然资源,1992,6:32~37
    
    
    [25] 王玉辉,周广胜.松嫩草地羊草叶片光合作用生理生态特征分析.应用生态学报,2001,12(1):75~79
    [26] 戚秋慧.扁蓿豆光合生态特性的研究.草地学报,1996,(2):111~115
    [27] 崔骁勇,陈佐忠,杜占池.半干旱草原主要植物光能和水分利用特征的研究.草业学报,2001,10(2):14~21
    [28] 周海燕.科尔沁沙地主要植物种的生理生态学特性.应用生态学报,2000,11(4):587~590
    [29] 董学军,杨宝珍,郭柯等.几种沙生植物水分生理生态特征的研究.植物生态学报,1994,18(1):86-94
    [30] 苏文华,张光飞.短葶飞蓬光合生理生态的初步研究.云南大学学报,2001,023(002):142-145
    [31] 杜占池 杨宗贵.十种草原植物光合速率与光照的关系.生态学报,1988,8(4):319-332
    [32] 徐炳成,山仑,黄占斌等.黄土丘陵区柳枝稷光合生理生态特性的初步研究.西北植物学报,2001,21(4):625—630
    [33] 戚秋慧,尹承军,盛修武.不同时期羊草群落光合速率与环境条件之间的关系模型.生态学报,1997,17(2):170-175
    [34] 杜占池,杨宗贵,崔骁勇.草原植物光合生理生态研究.中国草地,1999,(3):20~27
    [35] 周婵,郭晓云,王仁忠等.松嫩草地虎尾草光合与蒸腾作用的研究.草业学报,2001,10(1):42~47
    [36] 陈佐忠,汪诗平等编.中国典型草原生态系统.北京:科学出版社,2000
    [37] 王义彰,吴晓东,周守标等.马蹄金与匍茎翦股颖光合生理生态的比较研究.草业学报,1994,3(4):1-6
    [38] 翁仁宪.台湾芒草光合作用特性.中国草地,1994,(1):14-25
    [39] 牛海山,旭日,宋炳煜.羊草种群的水分利用动态.草地学报,2000,8(3):226-232
    [40] 杜占池,杨宗贵.冰草叶片光合速率与生态因子的关系.草地学报,2000,8(3):155-163
    [41] 杜占池,杨宗贵.扁蓿豆、冷蒿和木地肤枝条净光合速率与光照关系的动态特征.草地学报,1997,5(3):161-167
    [42] 许大全.光合作用“午睡”现象的生态、生理与生化.植物生理学通讯,1990,(6):5~10
    [43] 杜占池,杨宗贵.羊草不同叶龄叶片光-光合特性的初步研究.植物学报,1988,30(2):196-206
    [44] 郭廷辅编.水土保持经济植物实用开发技术.郑州:黄河水利出版社,1995
    [45] 郭立新,周勇,商奉杰等.黑龙江省野生草本纤维植物资源的开发利用.国土与自然资源研究,1997,(3):74-76
    [46] 卫东,王彦荣.芨芨草种子发芽检验方法的研究,草业科学,1998,(4):29-32
    [47] 程积民.黄土区植被恢复的重要技术.水土保持通讯.2000.25-30
    [48] 程积民,万惠娥.黄土丘陵半早区灌草配置与水分调控.中国林学会西北地区生态环境建设研讨会,2000
    [49] 程积民,万惠娥,杜峰.黄土高原半干旱区退化灌草植被的恢复与重建.林业科学,2001,
    
    037(004):50-57
    [50] 王库,天于富.芨芨草水土保持特性及其开发利用.土壤,2001,33(2):106-110
    [51] 王库.芨芨草水土保持功能的初步研究.水土保持研究,2001,8(2):157-159
    [52] 吴珍兰,卢生莲.论世界芨芨草属(禾本科)的地理分布.植物分类学报,1996,34(2):152-162
    [53] 周禾,章祖同.焚烧对芨芨草产量和品质的影响.草地学报,1997,5(1):62-66
    [54] 解新明.芨芨草-盐碱滩之宝.植物杂志,1995,(3):19-19
    [55] 尹承军,黄德华,陈佐忠.内蒙古典型草原4种植物凋落物分解速率与气候因子之间的定量关系.生态学报,1994,14(2):149-154
    [56] 朗百宁,车敦仁,韩志林等.芨芨草群落蒸腾强度及耗水量的研究.草原学报,1982:10-14
    [57] 车敦仁.禾草施氮.中国草原,1982,(4):1-10
    [58] 林洁荣,苏水金,黄仁湘等.施肥对亚热带红壤山地人工草地的影响.草业科学,1995,12(2):55-58
    [59] 曹景勤.低丘红壤氮磷配比施用对黑麦草产量和植株养分累积的影响.中国草地,1994(6):28-31
    [60] 李志华,聂朝相,陈宝书.氮磷钾肥单施与混施对燕麦生产性能的影响.草业科学,1994,11(4):24-26
    [61] 韩建国,李鸿祥,马春晖等.施肥对草木樨生产性能的影响.草业学报,2000,9(1):15-26
    [62] 周玉香,兰剑,邵生荣等.施肥对草地早熟禾种子生产性能的影响.草地学报,1999,7(1):81-83
    [63] 蒋文兰,潘元吉.磷肥和行距对两种草坪草种子产量和品质的影响.草业科学,1995,(6):30-32
    [64] 刘承吉等编.草原灌溉.北京:水利电力出版社,1995
    [65] 司马义.巴拉提.不灌溉条件下戈壁型伊犁蒿的抗旱特性及蒸腾耗水量的研究.中国草地.1998,(3):33-38
    [66] 常杰.杭州石荠宁的光合特性及其对土壤水分的响应.植物生态学报,1999,23(1):62-70
    [67] 崔骁勇,杜占池,王艳芬.内蒙古半干旱草原区沙地植物群落光合特征的动态研究.植物生态学报.2000,24(5):541-546
    [68] 高玉葆,刘峰,任安芝等.不同类型和强度的干旱胁迫对黑麦草实验种群物质生产与水分利用的影响.植物生态学报,1999,23(6):510-520
    [69] 余优森,林日暖等.人工草地土壤水分周年变化规律的研究.土壤学报,1992,29(2):175-181
    [70] 黄维南.植物根系的分泌生理及其在农业上的意义.植物生理学通讯,1987,(6):66-70
    [71] 张福锁.植物根引起的根际pH值改变的原因及效应.土壤通报,1993,24(1):43-45
    [72] 戎郁萍.放牧强度对牧草再生性能的影响.草地学报,2001,9(2):92-98
    [73] 姜恕等.羊草草原群落和大针茅草原群落生物量的初步比较研究.草原生态系统研究.
    
    北京:科学出版社,1985
    [74] 肖春旺,周广胜.不同浇水量对毛乌素沙地沙柳幼苗气体交换过程及其光化学效率的影响.植物生态学报,2001,25(4):444-450
    [75] 陈家宙,陈明亮,何圆球.土壤水分状况及环境条件对水稻蒸腾的影响.应用生态学报,2001,12(1):63-67
    [76] 山仑.陈培元主编.旱地农业生理生态基础.北京:科学出版社,1998
    [77] 杨宗贵,杜占池.不同灌溉条件下羊草、贝加尔针茅和无芒雀麦地上生物量和一些生理特性的比较观察.草原生态系统研究(第一集).1985:175-181
    [78] 吴勤.红豆草草地地上生物量动态规律的研究.草业科学.1995,12(1):29-32
    [79] Chaves MM. Effect of water deficits on carben assimilation. J Exp Bot. 1991, 42:1-16
    [80] Cowan IR et al. A possible role for abscisic acid in stomatal conductance and photosynthetic carbon metabolism in leaves. Aust J Plant Plysiol, 1982, 9:489-498
    [81] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol. 1982, 33:317-345
    [82] HIRASAWA T, HSIAO T C. Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Res., 1999, 61: 53-60
    [83] Hsiao, T.C. and Jing, J.H. Leaf and root expansive growth in response to water deficits. Plant Physioi, 1987:180-192
    [84] Kuppers M et al.. Caarbon fixation in eucalypts in field-analysis of diurnal variations in photosynthetic capacity. Oecolgia, 1986, 70:273-282
    [85] Khairi MMA and Hall AE. Temperature and humidity effect on net photosynthesis and transpiration of citrus. Physiology Plant, 1976, 36:29-34
    [86] Loveys BR. Diurnal changes in water relations and abscisic acid in field-grow Vitis venifers CultiversⅢ. The influence of xylem-derived abscisic acid on gas exchange. The New Phytol, 1984, 98:563-573
    [87] M.A. El-Sharkawy and J.D. Hesketh. Effects of temperature and water deficit on leaf photosynthetic rates of different species. Crop Science, 1964, (4): 514-518
    [88] R.C. Ackerson, D.R.Krieg, C.L. Haring and N.Chang. Effects of plant water-status on stomatal activity, photosynthesis, and nitrate reductase activity of field grown cotton. Crop Science, 1977,17(1): 81-84
    [89] Sharkey TD. Transpiration-induced changes in the photosynthetic capacity of leaves. Planta, 1984, 160:143-150
    [90] Salter P.R. et al. Alfalfa response to soil water deficits. Crop Science. 1983, 23:669-675
    [91] Tenhunen JD et al. Factors influencing carbon fixation and water use by Mediterrenean sclerophyll shrubs during summer drought. Oecolgia, 1990, 82:381-393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700