Na_2SO_4盐胁迫下狗牙根抗盐性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狗牙根(Cynodon dactylon)是暖季型草坪草中得分最高、应用最广泛、研究最深入的草种。我国西北地区气候较寒冷而且盐碱地面积较大,因而狗牙根的利用受到极大的限制。新农一号狗牙根和喀什狗牙根是新疆农业大学草业工程系研究人员经过十几年的引种驯化、筛选培育而成的优良草坪草新品种,也是发现的暖季型草坪草中最抗寒的品种之一。同时新农一号狗牙根在盐碱较重地段(以硫酸盐为主的盐渍化土壤,全盐含量3.86mS/cm)播种种植后长势良好。
    本文以新农一号狗牙根、喀什狗牙根、托克逊狗牙根、普通狗牙根和矮生天堂草为材料,采用农作物和牧草种质资源鉴定上广泛运用的生理生化指标,对Na2SO4盐胁迫下狗牙根的耐盐性及其生理变化过程进行研究,结果如下:
    1 种子发芽试验表明,盐胁迫下Na2SO4极显著抑制了狗牙根种子发芽率,盐溶液浓度与发芽率呈极显著负相关性。变温条件极显著提高了狗牙根盐胁迫下的发芽率,种子耐盐性大小为普通狗牙根>托克逊狗牙根>喀什狗牙根>新农一号狗牙根。
    2 细胞膜伤害率可作为衡量狗牙根耐盐能力强弱的有效生理指标之一。Na2SO4盐胁迫下,矮生天堂草细胞膜伤害率升高幅度大,膜透性增加快,电解质外渗率高,抗盐性较弱;新农一号狗牙根、 喀什狗牙根和托克逊狗牙根则相反,抗盐性较强。
    3 Na2SO4盐胁迫下,供试狗牙根体内丙二醛(MDA)含量上升,膜脂过氧化产物增多。MDA含量与膜脂过氧化程度有一定的正相关性,MDA含量越高,膜脂过氧化程度越重,抗盐性越弱。
    4 Na2SO4盐胁迫下,供试狗牙根体内脯氨酸(Pro)含量增加,且与细胞膜伤害率呈显著正相关性。Pro累积量越大,抗盐性越弱,反之则越强。因而矮生天堂草抗盐性弱于新农一号狗牙根、喀什狗牙根和托克逊狗牙根。
    5硝酸还原酶活性(NRA)与细胞膜伤害率呈显著负相关性。Na2SO4盐胁迫下,供试狗牙根体内NRA下降,新农一号狗牙根下降速率大于其它三种狗牙根,体内积累有毒氮化物少,因而受害最轻,抗盐性最强。
    6 Na2SO4盐胁迫下,叶绿素(Chl)含量降低,但Chla/b升高,表明狗牙根在以Na2SO4为主的较重盐碱地上可通过提高Chla/b比值促进光合作用,降低盐分对其生长的抑制。Chl含量的大小可作为狗牙根抗盐性判断的参考指标。
    7 K+/Na+比与狗牙根抗盐性有一定的相关性。盐胁迫下,K+/Na+比呈下降趋势,抗盐性较强的新农一号狗牙根和喀什狗牙根以及托克逊狗牙根下降速率慢,抗盐性较弱的矮生天堂草下降速率快。
    
    
    8 Na2SO4盐胁迫下,新农一号狗牙根、喀什狗牙根和托克逊狗牙根具有较强的从土壤中选择吸收K+的能力,因而抗盐性较强,矮生天堂草则相对较弱。
    9 盐碱生境下,新农一号狗牙根和喀什狗牙根较强的选择吸收K+的能力,从而维持体内较高水平的K+含量是其能在较重盐碱地上良好生长的原因之一。
    10 综合各项测试指标,认为细胞膜伤害率、丙二醛、脯氨酸、硝酸还原酶活性、钾钠吸收选择性系数可作为狗牙根抗盐性强弱的重要指标,叶绿素为参考指标。细胞膜伤害率越低,丙二醛含量越少,脯氨酸累积量越低,硝酸还原酶活性下降速率越快,钾钠吸收选择性系数越大,则狗牙根抗盐性就越强。
Bermudagrass was a turfgrass which was used widely, studied deeply among warm-season turfgrasses. But due to the colder climate and saline soil spreading widely in northwest China, the utilization of Bermudagrass was greatly limited. New varieties "Xinnong No.1 Bermudagrass" and "Kashi Bermudagrass", which were cultivated by the researchers of Xinjiang Agricultural University through ten years' study, were one of the highest cold-resistant warm-season turfgrasses, furthermore they could grow well in heavy saltnized soil which mainly contains of Na2SO4 (total salinity:3.86mS/cm).
    Study on the salt-resistant capacity and physiological changes process of Xinnong No.1 Bermudagrass, Kashi Bermudagrass, Tuokexun Bermudagrass(Bermudagrass line), Tifdwarf and common Bermudagrass under salt stress of Na2SO4 was made through the physiological and biochemical indexes ,which were generally used in crop and herbage appraisal. The results were:
    1 Seed germination experiment shown, under salt stress of Na2SO4, seed germination rate of Bermudagrass was reduced significantly, and the concentration of salt solution was negative correlation with seed germination rate. Seed germination rate could be increased significantly by the condition of changed temperature, and the order of salt-resistance was Common Bermudagrass>Tuokexun Bermudagrass>Kashi Bermudagrass>Xinnong No.1 Bermudagrass.
    2 Membrane injury rate was one of physiological indexes that could effectively measure salt-resistant ability of Bermudagrass. Under salt stress of Na2SO4, the extent of membrane injury rate was greater in Tifdwarf than in others, so it had lower salt-resistance.
    3 The MDA content in Bermudagrass was increased with the salt stress, and it had certain positive correlation with over-oxidation degree of cytoplasm membrane. The more MDA content was, the more critical degree of cytoplasm membrane was oxidized, the worse salt-resistant ability of Bermudagrass was.
    4 Under salt stress of Na2SO4, Pro content of Bermudagrass was increased ,and was positive correlation with membrane injury rate. The more accumulation of Pro content was, the lower salt-resistance of Bermudagrass was. So the salt-resistant capacity of Tifdwarf was lowest among the Bermudagrass.
    5 NRA was negative correlation significantly with membrane injury rate. NRA in all Bermudagrass emerged the descending trend, and high-speed falling of NRA in Xinnong No.1 Bermudagrass was helpful to prevent accumulation of toxic nitrogenous compounds, so it possessed higher salt-resistance.
    6 Chl content was reduced with the increasing salt concentration, but Chla/b was increased, as show Bermudagrass could decrease the restraint of growth by raising Chla/b. Chla/b can be used as a referential index to measure salt-resistance of Bermudagrass.
    7 K+/Na+ had some correlation with salt-resistance of Bermudagrass. K+/Na+ indicated the declining tendency due to the decreasing of salt concentration, and Xinnong No.1
    
    Bermudagrass、Kashi Bermudagrass、Tuokexun Bermudagrass had low-speed falling, so they had higher salt-resistance.
    8 Under salt stress of Na2SO4, Xinnong No.1 Bermudagrass、Kashi Bermudagrass、Tuokexun Bermudagrass possessed higher capacity of absorption selectivity of K+ and Na+ from the soil, so they had rather salt-resistance.
    9 The capacity of absorption selectivity of K+ and Na+ from the soil was one of reasons they could grow well in heavy saline-alkali habitat.
    10 By summarizing all indexes, membrane injury rate, MDA, Pro, NRA and SK+、Na+absorption could be utilized as important indexes to measure the salt-resistance of Bermudagrass.
引文
1. 艾瓦努尔. 新疆水资源开发与生态环境保护建设初探. 干旱环境监测.,2001,(3):11-15
    2. 陈德明,俞仁培. 盐胁迫下不同小麦品种的耐盐性及其离子特征. 土壤学报,1998,35(1):88-94
    3. 陈国雄,李定淑,张志谦,杜虎林. 盐胁迫对多年生黑麦草和草地早熟禾种子萌发影响的对比研究. 草业科学,1996,13(3):41-44
    4. 陈玉香,周道玮. 转基因牧草研究进展. 中国草地,2002,24(3):59-63
    5. 董晓霞,赵树慧,孔令安,郭洪梅等. 苇状羊茅盐胁迫下生理效应的研究. 草业科学,1998,15(5):10-13
    6. 龚明等. NaCl胁迫对大麦硝酸盐吸收和有关的酶活的影响. 植物生理学通讯,1990,(2):13-16
    7. 郝志刚,胡自治,朱兴运. 碱茅耐盐性的研究. 草业学报,1994,3(3):27-36
    8. 康俊水,张淑英,黄胜强等. 滨海盐碱地观赏草坪引种及建植技术研究. 山东林业科技,1997,(6):9-13
    9. 康俊水,张淑英,李牧等. 草坪草引种栽培总结. 山东林业科技,1996,(5):25
    10. 李长润,刘友良. 盐胁迫下小麦幼苗离子吸收运输的选择性与叶片耐盐量. 南京农业大学学报,1993,16(1):16-20
    11. 李发明. 毛稃紫羊茅草坪草在河西盐碱地种植研究. 草业科学,1995,12(2):71-72
    12. 李加宏,俞仁培. 作物对盐分的吸收及其盐害的预测预报. 土壤学报,1998,35(3):352-358
    13. 粱慧敏,夏阳,杜峰,张普金. 盐胁迫对两种草坪草抗性生理生化指标影响的研究. 中国草地,2001,23(5):27-30
    14. 刘春华. 禾本科牧草5个耐盐生理指标的研究. 草业学报,1993,2(1):45-53
    15. 刘虎俊,郭有桢,王继和,胡明贵等. 二十八个冷季型草坪草品种的耐盐性比较. 草业学报,2001,10(3):52-59
    16. 刘华,舒孝喜,赵银,王锁明. 盐胁迫对碱茅生长及碳水化合物含量的影响. 草业科学,1997,14(1):18-20
    17. 刘玲珑,吴彦奇. 狗牙根种质资源及抗寒性研究进展. 中国草地,2000,(6):45-50
    18. 刘伟宏,刘飞虎. 植物根部细胞钾离子转运机制及其分子基础. 江西农业大学学报,1999,21(4):451-455
    19. 刘友良. 植物耐盐性研究进展. 植物生理学通讯,1987,(4):1-7
    20. 刘祖祺,张石诚. 植物抗性生理学 中国农业出版社
    21. 马凤鸣,高继国. 硝酸还原酶活力作为甜菜碱N素营养诊断及预测产糖量指标的研究. 中国农业科学,1996,29(5):16-22
    22. 牛菊兰. 北方冷季型草坪耐盐能力的测定. 草地学报,1997,5(3):190-194
    23. 牛菊兰. 早熟禾品种特性与耐盐性关系的研究. 草业科学,1998,15(1):38-41
    24. 祁翠兰,李志勇,刘秉信. 红豆草耐盐突变体的研究. 中国草地,1998,(3):44-46
    
    
    25. 邱全胜. 植物质膜钾离子转运体研究进展. 植物学通报,2000,17(1):34-38
    26. 沈禹颖,王锁民,陈亚明. 盐胁迫对牧草种子萌发及其恢复的影响. 草业学报,1999,8(3):25-28
    27. 沈禹颖,阎顺国,余玲. 盐分浓度对碱茅种子萌发的影响. 草业科学,1991,8(3):68-71
    28. 沈振国,沈其荣. 不同氮水平下盐胁迫对大麦幼苗中某些氮化物积累的影响. 植物生理学通讯,1992,28(3):189-191
    29. 孙琮玖 低温胁迫下新农一号狗牙根和喀什狗牙根抗寒性比较研究 新疆农业大学研究生论文 2002年
    30. 孙小芳,刘友良. NaCl胁迫下棉花体内Na+、K+分布与耐盐性. 2000,20(6):1027-1033
    31. 王爱国. 丙二醛作为膜质过氧化指标的探讨. 植物生理学通讯,1986,(2):55-57
    32. 王宝山,赵可夫. 小麦叶片中Na、K提取方法的比较. 植物生理学通讯,1995,31(1):50-52
    33. 王宝山. 生物自由基与植物膜伤害. 植物生理学通讯,1989,(2):12-16
    34. 王洪春. 植物抗性生理. 植物生理学通讯,1981,(6):72-73
    35. 王韶唐等. 植物生理学实验指导. 西北农大出版社,1986
    36. 王锁民,朱兴运,王增荣. 渗透调节在碱茅幼苗适应盐逆境中的作用初探. 草业学报,1993,2(3):40-46
    37. 王锁民,朱兴运等. 盐胁迫对拔节期碱茅游离氨基酸成分及脯氨酸含量的影响. 草业学报,1994,3(3):22-26
    38. 王艳. 结缕草研究进展. 中国草地,2003,25(2):45-53
    39. 王赞,吴彦奇,毛凯. 狗牙根研究进展. 草业科学,2001,18(5):37-41
    40. 翁森红等 牧草耐盐性鉴定的方法. 中国草地,1995,(2):37-41
    41. 肖雯,贾恢先,蒲陆梅. 几种盐生植物抗盐生理指标的研究. 西北植物学报,2000,20(5):818-825
    42. 新疆重点地区荒地资源合理利用. 新疆荒地资源综合考察队编著. 新疆人民出版社,1985年7月第一版
    43. 阎顺国,沈禹颖,任继周等. 盐分对碱茅种子发芽影响的机制. 草地学报,1994,2(2):13-19
    44. 阎顺国. 碱茅叶表面超微结构的观察. 草业学报,1997,6(3):55-59
    45. 杨洪兵,陈敏,王宝山. 小麦幼苗拒Na+部位的拒Na+机理. 植物生理与分子生物学报,2002,28(3):181-186
    46. 余玲,王彦荣,孙建华. 野大麦种子萌发条件及抗逆性研究. 草业学报,1999,8(1):28-31
    47. 翟凤林,曹鸣庆等编译. 植物的耐盐性及其改良. 农业出版社,1989
    48. 张秀云. 草坪草耐盐性研究进展. 草原与草坪,2000,(2):8-11
    49. 张亚兰,李彦舫,扬柏明,张成武等. 短芒大麦耐盐变异体的筛选与鉴定. 草业科学,1998,15(1):30-32
    50. 张志良. 植物生理学实验指导(第二版). 北京:高等教育出版社,1990
    
    
    51. 赵可夫,李军. 盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响. 植物学报,1999,41(12):1287-1292
    52. 赵可夫. 植物抗盐生理. 北京:中国科学技术出版社,1993.
    53. 周峰,李平华,王宝山. K+稳态与植物耐盐性的关系. 植物生理学通讯,2003,39(1):67-70
    54. 朱建雯. Na2SO4和NaCl对鞑靼滨藜氮代谢作用的影响研究. 研究生论文,1995
    55. 朱兴运,王锁民,阎顺国. NaC对碱茅游离氨基酸成分及脯氨酸含量的影响. 草业学报,1993,2(4):40-43
    56. Blumwald E,Aharon CS,Apse MP. Sodium transport in plant cells. Biochim biophys Acta,2000,1465:140-151
    57. C M Taliaferro. Diversity and vulnerability in Bermuda turfgrass species. Crop Sci,1995,(35):327-332
    58. Cheeseman Ⅰ M. Mechanism of salinity tolerance in plants. Plant Physiol,1988,(87):547-550
    59. Dean D E,Devitt D A. Turfgrass quality,,growth, and water usd influenced by salinity and water of soil depth,salinity and allelopatty. Botanica Acta,1996,109(6)
    60. Ding L,Zhu JK,Reduced Na+ uptake in the NaCl-hypersensitive sosl mutnet of Arabidopsis thaliana. Plant Physiol,1997,(113):795-799
    61. Flowers TJ,Yao AR. Ion transport across the plasma membrane and tonoplast. In:Flowers TJ,Yao AR(eds)Solute Transport in Plant. Glasgow::Black Academic & Professional,1992,63
    62. Glenn E P, Brown J.J. Effects of soil salt levels on the growth and water use efficiency of atriplex canescens varieties in drying soil. American Journal of botany,1998,85(1):10-16
    63. Harivandi M Ali, Butler Jack D, Wu Lin. Turfgrass Agronomy Monograph.1992,(32):207-229
    64. J B Beard. Turf management for golf courses.1982
    65. J B Beard. Turfgrass:science and culture.1973
    66. K S Kim, J B Beard. Comparative Turfgrass Evapotranspiration Rates and Associated Plant Morphological Characteristics.Crop Science,1988,123(5):821-825
    67. Kim K S,Yoo Y K,Lee G J. Comparative salt tolerance study in Korean laungrasses. J oyrnal of the Korean Society for Horticultural Science,1991,32(1):117-123
    68. Leopold A.c.,Willing R. P. 1984 InSalinit Tolerance in Plants(eds. Staples R. C.,Toennieyssen G. A. )pp:150~170
    69. Levitt J. Responses of plants to environmental stress. Vol. Ⅱ2nd ed. New York: Acadamic press ,1980
    70. Mc Carty L B,Dudeck A E. Salinity effects on bentgrass germination. Hort Science,1993,28(1):15-17
    Meyer W,Zheng G,Lu S,Chen T A,Funk R,Transformation of Kentucky bluegrass(Poa. Pratensis
    
    71. L.)with betaine aldehyde dehydrogenase gene for salt and drought tolerance [A] Annual Meetings Abstracts-American Society of Agronomy;Crop Science Society of America,Soil Science Society of American[C],Minneapolis Minnesota Nocember 5-9,2000:167
    72. Munns R A. Whole plant responses to salinity. Aust,,J. Plant Physiol. 1986,(13):143-160
    73. Peacock C H, Dudeck A E,Wildmon J C Growth and mineral content of St. Augudtinegrass cutivars in response to salinity. Journal of the American Soxiety for Horticultural Science,1993,118(4):464-469
    74. Peacock C H, Dudeck A E,Wildmon J C Growth and mineral content of St. Augudtinegrass cutivars in response to salinity. Journal of the American Soxiety for Horticultural Science,1993,118(4):464-469
    75. Smith M A L,Meyer J E, Knight S L. Gauging turfgrass salinity responses in whole plant micro-culture and solution culture. Crop Science,1993,33(3):566-572
    76. Su Weiai, Mi Rongqin,Wand Wenying and Wang Hongchun. The influence of cold hardiness of Plant Stress Sensitivity. Acta Phytophysiological Sinica,1990,16(3):284-292
    77. Wu S J,Ding L,Zhu J K,SOS1,a genetic locus essential for salt-tolerance and potassium acquisition. Plant Cell,1996(8):617
    78. Zhu JK,Liu JP,Xiong LM. Genetic analysis of salt tolerance in Arabidopsis:evidence for a critical role of potassium mutrition. Plant Cell.1998,(10):1181-1191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700