几种草坪草的组织培养与转基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草坪草在人类生活中的地位越来越重要,筛选与培育优良的草坪草新品种是草坪业的重要任务。本文对假俭草[Eremochloa ophiuroides(Munro.)Hack.],高羊茅(Festuca arundinacea Schreb.),狗牙根(Cynodon dactylon var.),多年生黑麦草(Lolium perenne L.)四类草坪草进行了组织培养与植株再生的研究,建立了假俭草与高羊茅的遗传转化体系并对其进行了转基因研究,获得了抗除草剂与抗真菌病的假俭草与高羊茅转化植株。
     草坪草组织培养体系的建立与完善将为传统与转基因育种奠定基础,本研究在这方面取得了以下结果:
     1)在外植体的选取方面,发现高羊茅离体成熟种胚比完整种子作外植体愈伤组织的诱导率与质量都优,假俭草以含低浓度2,4—D的培养基上萌发的芽尖作外植体最佳。
     2)高羊茅、假俭草、黑麦草诱导愈伤所需最佳2,4—D浓度不同,假俭草达到最高诱导率67.5%的2,4—D为3.5 mg/L,黑麦草达到最高诱导率85.6%的2,4—D为6.5mg/L。高羊茅的三个品种也具有不同的最佳2,4—D浓度,SAFari为2.5mg/L,Barleduc为4.0 mg/L,Firewar Ⅱ为4.5 mg/L。IAA对高羊茅三个品种的愈伤组织诱导率的影响趋势与2,4—D类似,但效应不及2,4—D显著。另外,0.5mg/L6—BA在一定程度降低了高羊茅愈伤组织的诱导率。
     3)ABA对狗牙根和高羊茅在诱导愈伤时的种胚萌芽有一定的抑制作用,同时也降低了愈伤组织诱导率,但4.0mg/LABA与0.5mg/L ABA分别对高羊茅、狗牙根愈伤组织的外观质量有显著的提高。高羊茅、假俭草和狗牙根不同外观状态的愈伤组织内源的GA_3、ZT、IAA、ABA、IBA含量与比例不同,种间存在差异,种内也存在差异。
     4)渗透调节剂甘露醇、蔗糖与PEG6000能提高培养基的渗透压,影响愈伤的出愈率与质量。1%甘露醇,1%PEG6000,3%蔗糖能改善愈伤的质量,提高胚胎发生的频率,大于5%的PEG6000则因其浓度过高,导致细胞缺水,降低了愈伤的诱导并致其褐化死亡。
     5)高羊茅、假俭草在不同的基本培养基上愈伤组织诱导率有差异,但都以N_6最高,分别达90%与30.7%,高羊茅以MS最低,假俭草则以AA最低,分别为65%和20%。另外,固化剂种类与浓度对高羊茅、假俭草愈伤组织诱导率与质量具有不同的影响。
     6)不同状态的愈伤组织体细胞形状不同,胚胎发生过程也有差异,高羊茅的胚性愈伤组织切片能观察到二细胞原胚、多细胞原胚、球形胚、梨形胚、胚芽等过程,细胞质浓核大,假俭草也类似,狗牙根的愈伤细胞则形状大,内有大液泡,观察不到胞核,为典型的非胚性细胞。
     7)不同外观状态的假俭草与高羊茅愈伤分化长芽与长根的情况不同。黄色致密结节状的分化率高,浅白疏松水渍状的分化率低。一定量的CoCl_2和AgNO_3能提高假俭草愈伤分化长芽率。
    
     草坪的建植与养护过程中存在许多问题,杂草防除与病害防治是最重要的两个方
     面。通过转基因手段培育抗除草剂与抗病的新品种是一种较理想的方法。本实验在转
     基因研究中,基因枪转pBar—Gus于高羊茅时,以轰击2枪,子弹距可裂圆片6cm,
     子弹距轰击受体6cm为最佳轰击参数。农杆菌LBA4404/pCG—11与高羊茅愈伤组织共
     培养转化,固体培养基表面垫上一层滤纸,愈伤组织周围滴加浸染菌液共培养一周,
     后经甘露醇及抗生素液洗涤,提高了农杆菌的转化率。建立了基因枪与农杆菌转化PCG
     —11与sBar—Gus的两类草坪草的优化转化系统,分别获得了转pBar—Gus的高羊茅。
     假俭草及转扯G一11的高羊茅、假俭草。随机抽取的转叨G一11的高羊茅植株的mU的
     PCR检测,阳性率为80兄随机抽取的转PCG—11的假俭草植株的Chi的PCR检测,阳
     性率为100%。随机抽取的转pBar—Gus的高羊茅、假俭草植株的Bar的PCR检测,阳
     性率都为100兄随机抽取的转PCG—11的高羊茅植株总DNA的GILI的点杂交分析,阳
     性率为90儿随机抽取的转威G一11的假俭草植株总DNA的oU的点杂交分析,阳性率
     为100仇 随机抽取的高羊茅、假俭草转化pBar—Gus获得的植株的总DNA杂交分析,
     阳性率都为100趴转pBar—Gus植株的除草剂涂抹实验和转pCG—11的禾谷镰刀菌
     (厂 8:rBmlnearun Schwabe)挑战接种实验,结果表明转化植株比对照都表现出了更强
     的抗性。
Turfgrasses are playing a more and more important role in our daily life. Tissue
    culture and plantlet regeneration of four turfgrasses, common
    centipedegrass[Eremochloa ophiuroides (Munro.)Hack.], tall fescue ( Festuca
    arundinaceaSchreb. ) , bermudagrass (Cynodondactylonvar. ) and perennial ryegrass
    (Lolium perenne L. ) were studied in the second part of thesis. The genetic
    transformation systems for common centipedegrass and tall fescue were established,
    and Barus gene and Chilu gene were transferred into common centipedegrass
    and tall fescue respectively by agrobacterium tumefaciesediated or biolistic
    bombardment, and many transgenic plants resistant to herbicide and fungi disease
    had been acquired.
    Establishment and optimization of tissue culture systems of turfgrasses would lay a solid foundation for traditional and transgenic breeding of turfgrasses. The major results studied in the part were abstracted as follows:
    1) According to selection of explants, excised mature seederived embryos as explants had higher induction and differentiation frequency of calli compared to seeds as explants in tall fescue, and in common centipedegrass, epicotyl from seeds buds germinated on induction medium containing low 2,4 ?D concentration was the best explant for callus induction and differentiation compared with other explants such as mature seeds.
    2) Tall fescue, common centipedegrass and ryegrass required different optimum 2,4 - D concentrations for callus induction, and the optimum 2,4 ?D concentration is 3. 5 mg/L and 6. 5 mg/L , respectively in common centipedegrass with the highest induction frequency 67.5% and in ryegrass with 85. 6%. Three cultivars of tall fescue also required different optimum 2,4 - D concentrations for callus induction, with 2.5 mg/L, 4.0 mg/L and 4.5 mg/L respectively in SAFari, Barleduc and Firewar II. There were similar effects on callus induction of SAFari, Barleduc and Firewar II between IAA and 2, 4, but more preminent with 2, 4. In addition, 0. 5 mg/L 6-BA decreased to an extent rate of callus induction in tall fescue,
    3) ABA could suppress to an extent germination of seeds and decrease callus induction frequency in tall fescue and bermudagrass, however, 4. 0 mg/L ABA for tall fescue and 0. 5 mg/L ABA for bermudagrass increased somatic embryogenisis frequency from appearance. Callus with different apparent characteristics had different indogenous GA3, ZT, IAA, ABA and IBA content and proportions.
    4) Mannitol, sucrose and PEG6000 could increase osmotic pressure of induction medium and affect induction frequency and quality of callus. 1% mannitol,3% sucrose and 1% PEG6000 could improve quality and increase somatic
    
    
    
    embryogenisis frequency, and 5% or higher PEG6000 caused cell drought , and decreased callus induction frequency , finally caused it to be brown and dead.
    5) There were different calli induction frequency on different basal mediums in tall fescue and common centipedegrass. There were the highest induction frequency (90%)on N6 medium and the lowest (65%) on MS in tall fescue, and highest(30.7%)and lowest(20%) in common centipedegrass. In addition, categories and concentrations of gelling agents had different effects on callus induction frequency and quality in tall fescue and common centipedegrass.
    6) Callus with different characteristic had different cell shapes and somatic embryogenisis. Bicellular proembryos, multicellular proembryos, globular embryo id, pear haped embryoid , heart haped embryoid and plumule could be observed by microscopy in embryogeni-c callus of tall fescue and common centipedegrass. Callus cells in bermudagrass showed characteristics of non -embryogenic cells with big shape and big vacuoles,but no nucleolus .
    7) There was different differentiation vigor in tall fescue and common centipedegrass with different characteristics, and high differentiation frequency with yellow hard granalous callus and low differentiation frequency with light white loose callus. The suitable concentrations of CoC
引文
1 黄大年.作物抗除草剂遗传工程研究进展[J].生物工程进展,1997,17(5):14
    2 苏少泉.稻田化学除草的若干问题[J].农药,2000,39(9):1~5
    3 于凤芝.草坪杂草化学防除研究初报[J].中国草地,1997(1):49~52
    4 狄立格,等.草坪草对除草剂的抗性筛选实验(初报)[J].草业科学,1998,15(6):68~70)
    5 Zhong H, et al. Simultaneous control of weeds, dollar spot, and brown patch deseases in transgenic creeping bentgrass[A]. In: Sticklen M B, Kenna M P(eds). Turfgrass biotechnology cell and molecular genetic approaches to turfgrass improvement[C]. MI: Ann Arbor Press, 1997, 203~210
    6 Lee L, et al. Herbicide—resistant transgenic creeping bentgrass[A]. In: Stichlen M B, Kenna M P(ed), Turfgrass biotechnology—Cell and molecular genetic approches to turfgrass improvement[C]. MI: Ann Arbor Press, 1997. 195~202
    7 Hartman C L, et al. Herbicide resistance turfgrass(Agrostis palustris Huds. )by biolistic transformation[J]. Bio/Technology, 1994, 12:919~923
    8 Liu C N, et al. Prevention of fungal diseases in transgenic bialaphos and glufosinate—resistant creeping bentgrass(Agrostis palustris L.)[J]. Weed Sci, 1998, 46: 139~146
    9 Green D E, et al. The use of transgenic plants to confer resistance to brown patch caused by Rhizoctonia solani in Agrostis palustris[A]. In: Clark J M, Kenna M P(eds), Fate and Management of Turfgrass Chemicals[C]. Washington, DC, Oxford University Press, 2000, 330~341
    10 Belanger F C, et al. Development of improved turfgrass with herbicide resistance and enhanced disease resistance through transformation[A]. Washington, DC, Oxford University Press, 2000. 325~329
    11 Mittler R, et al. Coordinated activation of programmed cell death and defense mechanisms in transgenic tobaco plants expressing a bacterial proton pump[J]. Plant Cell, 1995, 7: 29~42
    12 Chen Z, et al. Plant resistance to fungil infection induced by nontoxic pokeweed antiviral protein mutants[J]. Nature Biotechnology, 1997, 15:992~996
    13 Chen Z, et al. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid[J]. Science, 1993, 162:1883~1886
    14 李继红,等.烟草Ⅰ类几丁质酶和β—1,3葡聚糖酶cDNA在大肠杆菌中的表达.生物工程学报,1998,14(3):309~314
    15 李继红,等.烟草Ⅰ类几丁质酶和β—1,3葡聚糖酶cDNA植物双价载体的构建及转化番茄的研究.热带作物学报,1999,20(1):29~33
    16 James B Beard, et al. The role of turfgrass in Environmental Protection and their benefits to Human. J. Environ. Qual, 1994, 23:452~460
    17 李毓堂.推动未来中国农业持续高效发展的新战略———草地资源开发和发展知识密集草产业.中国草地,2000,3:1~3.
    18 胥晓刚,等,我国草坪草引种选育若干问题是的探讨.中国草地,1999,3:57~61
    
    
    19 李俊龙,等.多花黑麦草×苇状羊茅属间杂交及其后代抗旱耐热性的研究[J].中国草地,1995,2:12~15
    20 张新全,等.草坪用黑麦草与高羊茅属间杂种细胞学研究[J].中国草地,1998,3:47~49
    21 陈文品,等.苇状羊茅原生质的培养研究[J].中国草地,1991,3:75~77
    22 支月娥,等.高羊茅组织培养研究初报[J].上海农学院报,1998,16(1):46~48
    23 朱根发,等.草地早熟禾的组织培养携手条件分化能力研究.华中农业大学学报,1994,13(2):193~203.
    24 马忠华,等.早熟禾的组织培养和基因枪介导的基因转化体系的初步建立.复旦大学学报(自然科学版),1999,38(5):540~544.
    25 Kuo, YJ, et al. Plant regeneration from St. Augustinegrass immature embryo-derived callus. Crop-sci. Madison, Wis.: Crop Science of America, 1961, Nov/Dec 1993, 33(6): 1394~1396
    26 Lee Hyoshin, et al. Plant regeneration from embryogenic suspension culure of orchrdgrass(Dactylis glomerata L.). Journal of the Korean Socity of Grassland Science, 2000, 20(1): 7~12
    27 Chaudhury-A, et al. Somatic embryogenesis and plant regeneration of turf-type bermudagrass: effect of 6-benzyladenine in callus induction medium. Plant-cell, -tissue-organ-cult, 2000, 60(2): 113~120.
    28 Ha SB, et al. Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Plant Cell Rep, 1992, 11: 601~604
    29 Spangenberg G, et al. Protoplast culture and generation of transgenic plants in red fescue (Festuca rubra L.). Plant Science, 1994, 97: 83~94
    30 Spangenberg G, et al. Transgenic tall fescue and red rescue (F, rubra.). plants from microprojectile bombardment ofembryogenic suspension cells. J Plant Physiol, 1995, 145: 693~701
    31 陈佐忠.丹麦草坪研究生产概况与我国草坪发展的思考[J].中国草地,1978,2:72~76.
    32 Asano Y, et al. Herbicide-resistant transgenic creeping bentgrass plants obtained by electroporation using an altered buffer. Plant Cell Rep, 1998, 17: 963~967
    33 Xiao L, et al. Efficient selection and regeneration of creeping bentgrass transformants following particle bombarment. Plant Cell Rep, 1997, 16: 874~878
    34 Dalton SJ, et al. Transgenic plants of Loliurn multifiorum, Lolium perenne, Festuca arundinacea and Agrosis stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures. Plant Science, 1998, 132: 31~43
    35 Andrew J. E, et al. Stability of transgene expression during vegetative propagation of protoplast-derived tall fescue(Festuca arundinacea Schreb.) plants. Journal of Experimental Botany, 1998, 49(328): 1797 1804
    36 Fredy Altpeter, et al. Rapid production of transgenic turfgrass (Festuca rubra L.) plants. Journal of Plant Physiology, 2000, 157:441~448
    37 金万枚,等.植物遗传转化方法和转基因植株的鉴定,陕西农业科学,2001,1:24~25
    38 洪亚辉主编.植物外源DNA直接导入技术.长沙:湖南科学出版社,2000.1~3
    39 徐淑平,等.基因枪的使用方法介绍.植物生理学通讯,1998,34(1):41~43
    40 邱小辉,等.水稻转基因技术的现状及在育种上的应用.生物工程进展,1998,18(5):5~49
    41 陈屹,等.农杆菌介导的GLgc~(TM)基因在水稻中的遗传转化.西南农业学报,2000,13(1):1~7
    42 朱常香,等.农杆菌介导水稻幼胚转化获得转基因植株.山东农业大学学报(自然科学版)2000,
    
    31(1):1~7
    43 华志华,等.转基因植物中外源基因的遗传学行为.植物学报,1999,41(1):1~5
    44 S. Maike, N M et al. Annals of Botany, 1997, 78: 3~12
    45 李艳,等.转基因植物内源基因与外源基因共抑制问题研究进展.生物工程学报,1999,5(1):1~3
    46 Dale P J. Spread of engineered genes to wild relatives. Plant Physiol, 1992, 100:13~15
    47 Dale P J, et al. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and short cutting. Theor Appl Genet, 1992, 84: 585~591
    48 Kareiva P, et al. Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives. Mol Ecoh 1994, 3: 15~21
    49 魏伟,等.转基因作物与其野生亲缘种间的基因流.植物学报,1999,41(4):343~348
    50 Altpeter F, et al. Improved plant regeneration from cell suspensions of commercial cultivars, breeding and inbred lines of perennial ryegrass (Lolium perenne L.). J Plant Physiol, 2000, 156: 790~796
    51 朱智甲,等.高效液相色谱紫外检测法测定内源激素.光谱实验室,1999,3(16):
    52 张政,等.荞麦幼苗内小麦幼苗中的源激素的高效液相色谱法.色谱,1994,12(2):140
    53 刘怀攀,等.渗透胁迫和外源ABA对芦苇愈伤组织中的3种保护酶活性的影响.植物生理学通迅,2002,38(1):
    54 易自力博士论文.2000,11
    55 李洪清,等.几种影响木薯芽器官发生及植株再生的因素.植物生理学通迅,2000,36(4):297~299
    56 Simon EW, et al. Raja Harun RM. J Exp Bot 1972, 23:1076
    57 Powell AE, et al, Matthews S. J Exp Bot 1978, 29: 1215
    58 Woodstock LW, et al, Tao KL. Physiol Plant 1981, 51:133
    59 Duke SH, et al. Physiol Plant 1986, 68: 625
    60 钟金鑫,等.吸胀对水稻种子愈伤组织诱导及其性状的影响[J].植物生理学通讯,1989(2):20~24
    61 Bornam CH, et al. Effect of rigidity of gel medium on benzyladenine-induced adventitious bud formation and vitrification in vitro in Picea abies[J]. Physiol. Plant, 1984, 61: 505~512
    62 Brand MH. Agar and ammonium nitrate influence hyperhydricity, tissue nitrate and total nitrogen content of serviveberry (Amelanchier arborea) shoots in vitro[J]. Physiol. Plant, 1993, 61: 505~512
    63 E. Flores Berrios, et al. Influence of genotype and gelling agents on in vitro regeneration by organogenesis in sunflower[J]. Plant cell Tissue and Organ Cuture, 1999, 59: 65~69
    64 崔凯荣,等.植物体细胞胚发生的分子生物学(M)科学出版社,2000:1~17
    65 王亚馥,等.小麦组织培养中体细胞胚胎发生的细胞胚胎学及淀粉消长动态的研究.实验生物学报,1993,26(3):259~267
    66 崔凯荣,等.植物体细胞胚发生研究的一些现状.植物学通报,1993,10(3):14~20
    67 邢更生,等.植物体细胞胚发生的分子基础.遗传,1999,1(1):
    68 杜克久,等.741杨器官、体细胞胚胎发生的细胞组织学及生理学的研究.林业科学,1998,6
    69 郑均宝,等.油松体细胞无性系的建立.植物遗传学报,1996,23(4):307~314
    70 唐巍,等.火炬松胚性愈伤组织诱导和植株再生的研究.林业科学,1998,34(3):
    71 郑均宝,等.741杨和苹果试管苗玻璃化现象及其转化的研究.河北林学院学报,1995,11(1):6~
    
    12
    72 韩碧文,等.植物组织培养中器官建成的生理生化基础.植物学通报,1993,10(2):1~6
    73 Du Kejiu, et al. Establishment of embryogenic cell suspension cultures and development of somatic embryo on Camellia sinensis var. assamica Kitamura I. Establishment of cmbryogenic suspension cell line. Joumal of Beijing Forestry University. 1996, 5(1): 65~74
    74 詹祥灿.植物体细胞胚状体与器官发生的激素的调节.植物生理学报,1983,9(3):317~325
    75 G. M. Hart, et al. Trans-acting factors involved in tobacco β-1, 3 glucanase gene expression. Plant Physiol, (supple) 1991, 96: 96~98
    76 J. Mundy, et al. Nuclear proteins bind conserved elements in the absisci acid-responsive promoter of a rice rab gene. Proc, Natl. Acad. Sci. USA, 1990,97:1406~1410
    77 Colorado P, et al. Expression of three ABA-regulated clones and their relationship to maturation processes during the embryogenesis of chick-pea seeds. Physiologia Plantarum, 1995, 94: 1~6
    78 Dong J Z, et al. Induced gene expression following ABA uptake in embryogenic suspension cultures of picea glauca. Plant Physiol. Plant Physiol. Biochem, 1996, 34:579~587
    79 Visser K, et al. Rapid germination of a barley mutant is correlated with a rapid turnover of abscisic acid outside theembryo. Plant Physiol, 1996, 111: 1127~1133
    80 Bhaskaren S, et al. Regeneration in cereal tissue culture: a review[J]. Crop Sci, 1990, 30:1328~1336
    81 张栋,等.ABA、NAA诱导水稻胚性愈伤组织的研究[J].实验生物学报,1995,28(3):230~234
    82 米庆莉,等.籼稻及粳稻对基因枪转化反应的差异及提高转化频率的研究[J].农业生物技术学报,1998,6(2):263~268
    83 Quatrano R S, et al. ABA-controlled expression of embryospecific genes during wheat grain development[M]. In: Goldberg R(ed). Plant Molecular Biology. New York: Liss. 1983, 343~353
    84 Triplett BA, et al. Timing localization, and control of wheat germ agglutinin synthesis in developing wheat embryol[J]. DevelBiol, 1982, 91: 491~496
    85 Zhang L J, et al. Efficient transformation of tobacco by ultrasonication. Bio/Technology, 1991, 9: 996~997
    86 田文忠.提高籼稻愈伤组织再生频率的研究[J].遗传学报,1994,21(1):215~221
    87 Linacero R, et al. Somatic embryogenesis from immarure inforescences of rye[J]. Plant Sci. 1990, 72: 253~258
    88 陈以峰,等.水稻体细胞培养中胚性细胞出现与IAA的关系.植物学报,1998,40(5):474
    89 钱海丰,等.激素对高羊茅愈伤组织诱导及其分化的影响.中国草地,2002,24(1):46~50
    90 Griffin J D, et al. High-frequency plant regeneration from seed-derived callus cultures of Kentucky bluegrass (Poapratensis L.) [J]. Plant Cell Reports, 1995, 14:721~724
    91 Cho M j, et al. Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albenism[J]. Plant Sci, 1998, 138: 229~244
    92 Chandrhury A, et al. Somatic embryogenesis and plant regeneration of turf-type bermugarass: effect of 6-benzyladenine in callus induction medium[J]. Plant Cell tiss Org Cult, 2222, 60: 113~120
    93 Bai Y, et al. Factors influencing tissue culture responses of mature seeds and immature embryos in turf-type tall fescu[J]. Plant Breeding, 2001, 120:239~242
    94 Massauoshi T, et al. Simple dehydration treatment promotes plantlet regeneration of rice (Oryza sativa L.)callus[J]. Plant Cell Rep, 1992, (11): 550~553
    
    
    95 Jain R K,, et al. Stimulatory effect of water stess on plant regeneration in aromatic Indica rice varieties[J]. Plant Cell Rep, 1996, 15: 449~454
    96 赵成章,等.干燥处理对水稻愈伤组织绿苗再生和若干生理生化特性的影响.作物学报,1997,23(1):39~43
    97 Van Ark H F, et al. Improvement of the tissue culture response of seed-derived callus cultures of Poa pratensis L.: Effect of gelling agent and abscisic acid[J]. Pant Cell Tissue and Organ Culture. 1991, 27: 275~280
    98 王荔,等.不同激素浓度及培养基对烟草愈伤组织分化的影响.云南农业大学学报,1999,14(4):372~374
    99 徐淑平,等.基因枪的使用方法介绍[J].植物生理学通讯,1998,34(2):41~43
    100 黄大年,等.基因枪法在水稻工程育种中的应用[J].植物学通报,2001,18(3):283~287
    101 朱冰,等.利用基因枪法获得可遗传的抗除草剂转基因水稻植株[J].中国农业科学,1996,29(6):15~20
    102 马忠华,等.早熟禾的组织培养和基因枪介导的基因转化体系的初步建立[J].复旦大学学报(自然科学版),1999,38(5):540~544.
    103 黄健秋,等.根癌土壤杆菌倡导的水稻高效转化和转基因植株的高频再生[J].植物学报,2000,42(11):1172~1178
    104 黄健秋,卫志明,安海龙等.农杆菌转化获得转B.t.基因水稻及其生物学鉴定[J].植物生理学报,2000,26(6):519~524
    105 Cheng M, et al Advanced Biochemistry: Signal Transduction and Metabolic Engineering. 〔workshop〕. 1999
    106 Casas A M. Cereal transformation through particle bombardment. Plant Breed Rev, 1995, 13: 235~264
    107 Finnegan J, et al. Transgene inactivation: plants fight back! Bio/Technology, 1994, 12: 883~888
    108 Legius E,, et al. Nat Genet, 1993, 3(2): 122~126
    109 Finlay CA,, et al. Cell, 1989, 57. 1083~1093
    110 Zambryski P. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu Rev Genet. 1988, 22:1~30
    111 Hansen G, et al. Chilton M D. Agrolistic transformation of plant cells, integration of T-strands generated in planta. Proc Natl Acad Sci USA, 1996, 93: 14978~14983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700