天津开发区规模绿化节水灌溉指标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采取原位动态观测和室内分析相结合的方法研究天津开发区本特草坪、高羊茅草坪和泡桐行道树的节水灌溉指标,如灌溉饱和点与补偿点、灌水定额与周期等。研究结果表明:
     由土面蒸发和植物蒸腾引起的土壤水分动态,包括季节性变化和剖面层次性变化。季节性变化按土壤耗水速率划分:本特草坪有弱、强、中和微4个耗水期;高羊茅草坪为弱、强与微3个耗水期;泡桐绿地为中、强与微3个耗水期。剖面层次据各土层含水量的变异系数划出水分活跃层、次活跃层和相对稳定层。不同绿地不同耗水期各层次深度不同。就绿地类型而言,活跃与次活跃层总深度:本特草坪≤高羊茅草坪<泡桐绿地;就季节变化而言,弱耗水期活跃与次活跃层浅,强耗水期深,微耗水期较深。这是确定计划湿润深度的重要依据。
     灌溉饱和点是灌溉时使土体各层充分湿润了的多点中子水分仪测定的容积含水量平均值。本特草坪0~100cm土层灌溉饱和点在35.1%~38.4%,上低下高;高羊茅草坪0~80cm土层在35.2%~37.9%,100cm土层为30.2%;泡桐绿地0~80cm土层在32.8%~34.0%,100cm土层仅24.6%。灌溉饱和点是决定灌水定额的因素之一。
     灌溉补偿点和计划湿润层深度据植物根系分布、叶片气孔导度与土壤含水量的相关性及土壤水分层次性等确定。在草坪弱、泡桐中耗水期时,土壤高含水量时即须浅层灌溉补水,以满足其萌发需要;中、强耗水期,可低土壤含水量时深层灌溉补水;微耗水期,为安全越冬,又需中深层灌溉补水。
     最大灌水定额由灌溉饱和点、补偿点和计划湿润深度确定。最大灌水定额=∑(各土层饱和点—诊断层达补偿点时各土层实际含水量)×计划湿润层深度。各绿地表现为强、中耗水期高,弱、微耗水期低。对照比试验处理明显要大。
     灌水周期和灌水次数由灌溉饱和点与补偿点及土壤水分消耗速率决定,表现为强耗水期灌水周期短,灌水次数多,其后依次按中、弱、微耗水期灌水周期增长,灌水次数减少。对照灌水次数比试验处理多得多。
     灌溉定额由灌水定额及灌水次数决定。试验中本特草坪565mm,高羊茅草坪239mm,泡桐绿地1100mm,即可满足其正常生长需要,且节水明显。
     试验结束时土壤全盐没超过3g/kg,草坪呈下降,而泡桐绿地呈上升趋势,值得进一步研究。电导率与全盐相关显著或极显著,可用盐分传感器监测土壤盐分动态。
     灌溉指标的定量确定,将为天津开发区实现智能化灌溉提供理论依据。
In situ field dynamic monitoring results of soil moisture of three types of greenbelt in Tianjin economic development area, including bentgrass, tall fescue and paulownia, showed that the seasonal and vertical dynamics of soil water is the basis of water-saving irrigation.
    According to velocity of soil water consumption, the seasonal dynamics of soil water can be divided into different stages. Bentgrass greenbelt soil can be divided into slow consumption stage, quickest consumption stage, quicker consumption stage and slower consumption stage. Tall fescue greenbelt soil can be divided into slow consumption stage, quickest consumption stage and slower consumption stage. Paulownia greenbelt soil can be divided into quicker consumption stage, quickest consumption stage and slower consumption stage.
    In term of soil water coefficient of variation, the soil water profile in 0-100cm can be divided into 3 layers, i.e., hypoactive layer, hypoactive layer and correspondingly stable layer. These soil water layers varied along with soil water consumption seasons alternating. Different greenbelt types were distinguished from one another in different soil water consumption seasons.
    Soil water irrigation maximum was decided by soil physical properties. For bentgrass greenbelt soil, its soil water irrigation maximum was 35.1%-38.4% at 0-100cm depth. For tall fescue greenbelt soil, its soil water irrigation maximum was 35.2%-37.9% at 0-80cm depth, 30.2% at 100cm depth. For paulownia greenbelt soil, its soil water irrigation maximum was 32.8%-34.0%, 3at 0-100cm depth, 24.6% at 100cm depth.
    Soil water irrigation minimum and scheming wetted soil layer depth were decided by soil physical properties and plant physiological property. According to the correlativity between stomatal conductance and soil moisture, root system distribution and soil water profile, these greenbelt should irrigate when soil moisture is high, and their scheming wetted soil layer depth is shallow in slow consumption stage; irrigate when soil moisture is low, and their scheming wetted soil layer depth is deep in quickest consumption stage; irrigate when soil moisture is higher, and their scheming wetted soil layer depth is deeper hi slower consumption stage.
    Irrigation water requirement per time=(soil water irrigation maximum- soil water irrigation minimum) ?scheming wetted soil layer depth.
    Irrigation cycle and irrigation times were decided by soil water irrigation maximum, minimum and consumption velocity.
    Irrigation quota can be calculated by irrigation water requirement per time and irrigation times.
    Soil salt didn't excess 3g kg-1 when experiments were finished, but paulownia greenbelt soil salt increased.
    Index system was made sure and will provide gist for intelligentlizing water-saving irrigation.
引文
[1] 李远华,节水灌溉理论与技术.武汉:武汉水利电力大学出版社,1998
    [2] 杨天.节水灌溉技术手册(一).北京:中国大地出版社,2002
    [3] 刘承吉.草原灌溉.北京:水利电力出版社,1995
    [4] 郭元裕.农田水利学(第三版).北京:中国水利水电出版社,1997
    
    
    [5] 孙景生,刘祖贵,肖俊夫,等.冬小麦节水灌溉的适宜土壤水分上、下限指标研究.中国农村水利水电(农田水利与小水电),1998,(9):10-12
    [6] 李锡录,聂俊华,单艳红.土壤水研究及在作物需水灌溉中的应用.山东农业大学学报,1997,28(2):178-186
    [7] 马忠明.绿洲灌区麦田节水高产适宜土壤水分指标研究.灌溉排水,1999,18(1):26-29
    [8] 毛小强,张新荣,王文全,等.人工林灌溉研究进展.河北林果研究,1997,12(3):268-272
    [9] 张利.旱地冬小麦耗水规律研究.河北农业大学学报,1994,17(增刊):136-139
    [10] Nunez-Elisea R., Schaffer B., Zekri M., et al.. In situ soil-water characteristic curves for tropical fruit orchards in trenched calcareous soil. HortTechnologe, 2001, 11 (1): 65-69
    [11] 郑仁塘,刘云发,张中留,等.干旱岗丘地区大田作物滴灌适宜灌水时期的确定.灌溉排水,1994,123(2):1-6
    [12] 王宏.作物水分亏缺诊断的研究Ⅱ冠层温度和农田蒸散.见:谢贤群,于沪宁主编.作物与水分关系研究.北京:中国科学技术出版社,1992.271-286
    [13] Huslig S.M., Smith M. W., Brusewitz G.H.. Irrigation schedules and annual ryegrass as a ground cover to conserve water and control peach tree growth. HortScience, 1993, 28 (9): 908-913.
    [14] 尤文瑞.发展节水农业与防治土壤盐渍化的关系.土壤,1992,24(4):181-185
    [15] 罗长寿,左强,李保国,等.盐分胁迫条件下苜蓿根系吸水特性的模拟与分析.土壤通报,2001,32(盐渍土资源利用与区域持续发展专辑):81-84
    [16] 刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的试验研究.土壤通报,2001,32(盐渍土资源利用与区域持续发展专辑):85-87
    [17] 孙宇瑞.土壤含水率和盐分对土壤电导率的影响.中国农业大学学报,2000,5(4):39-41
    [18] 肖振华,王学锋,尤文瑞.冬小麦节水灌溉及其对土壤水盐动态的影响.土壤,1995,27(1):28-34
    [19] 孟翀,武朝宝,任罡.汾河灌区盐碱地灌溉制度试验研究.山西水利科技,1999,(4):90-92
    [20] G·J·霍夫曼.滴灌的土壤盐渍度管理.见:北京农业机械化学院《喷滴灌译丛》编译组.喷灌滴灌译丛.北京:农业出版社,1980.154-164
    [21] 商文华,蔡劲松,谭文清.草坪种植的节水灌溉.中国农村水利水电,2001,7:16-18
    [22] 里查德·L·杜皮尔.草皮灌溉实践和水分损耗.见:北京农业机械化学院《喷滴灌译丛》编译组.喷灌滴灌译丛.北京:农业出版社,1980.123-129
    [23] Fry J. D., Butler J.D.. Annual bluegrass and creeping bentgrass evapotranspiration rates. HortScience (USA), 1989,24(2): 269-271
    [24] Devitt D.A., Morris R.L., Neuman D.S.. Evapotranspiration and growth response of three woody ornamental species placed under varying irrigation regimes. J-Am-Soc-Hortic-Sci., 1994, 119 (3): 452-457
    
    
    [25] 张万钧.盐渍土绿化.北京:中国环境科学出版社,1999
    [26] 张万钧.盐碱滩上的绿色梦.天津:天津科学技术出版社,1999
    [27] 张万钧.滨海浅潜水地区综合治理规模绿化技术的研究.见:李国林主编.中国盐碱地绿化造林与可持续发展研讨会论文集.天津:天津科学技术出版社,2001
    [28] 张志国.草坪建植与管理.济南:山东科学技术出版社,1998
    [29] 刘自学,陈光耀,编著.草坪草品种指南.北京:中国农业出版社,2002
    [30] 蒋建平主编.泡桐栽培学.中国林业出版社,1990
    [31] 陈耀华.中国城乡行道树.北京:气象出版社,1995
    [32] 田景瑜,刘桂兰,毕巧玲,等.泡桐生长与土壤水分关系研究.河南林业科技,2001,21(4):33-34
    [33] 鲁如坤主编.土壤农业化学分析法.北京:中国农业科技出版社,1999
    [34] 中国科学院南京土壤研究所编.土壤理化分析.上海:上海科学技术出版社,1978
    [35] 余优森,邓振镛,仇化民,等.人工草地土壤水分变化规律的研究,.见:王素香,金巨和,余优森.甘肃中部种草养畜农牧结合研究.北京:气象出版社,1991.41-51
    [36] 李洪建,王孟本,柴宝峰.黄土高原土壤水分变化的时空特征分析.应用生态学报,2003,14(4):515-519
    [37] 崔灵周,李占斌,丁文峰.四川中部丘陵地区不同种植模式下旱地土壤水分变化规律.干旱地区农业研究 2001,19(1):87-92
    [38] 王孟本,李洪建.柠条林蒸腾状况与土壤水分动态研究.水土保持通报,1990,11(4):313-317
    [39] 江苏农学院主编.植物生理学.北京:农业出版社,1996
    [40] 连玉武,苏祖荣.赤枝栲的蒸腾特性与生态因子相关性.厦门大学学报(自然科学版),1997,36(5):782-786
    [41] 鲍思伟.蚕豆(Vicia faba L.)叶片蒸腾速率的因子分析.四川师范大学学报(自然科学版),2001,24(3):296-298
    [42] 刘萱,杨树栋,叶片导度对环境水分状况响应的模拟.见:见:谢贤群,于沪宁主编.作物与水分关系研究.北京:中国科学技术出版社,1992.368-377
    [43] 陈玉民,肖俊夫,孙景生.关于农田用水动态管理的基本程序与方法研究.见:石元春,刘昌明,龚元石主编.节水农业应用基础研究进展.北京:中国农业出版社,1995
    [44] 杨诗秀,雷志栋.田间土壤水分的监测和预报.见:许越先,刘昌明,J·沙和伟主编.农业用水有效性研究.北京:科学出版社,1992.150-156
    [45] 王祺,刘世增.干旱荒漠区草坪节水灌溉技术及其评价.中国草地,2000,(4):38-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700