陕北典型小流域立地—群落—土壤侵蚀量的对应模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土丘陵沟壑区土壤侵蚀严重,一直是我国水土流失治理的重点,而植被是控制侵蚀过程的关键。黄土丘陵沟壑区的植被恢复必然受其特殊环境的影响。在这样的环境下,不同立地条件下植被恢复的现状如何,植被恢复到一定程度土壤侵蚀的现状如何,都没有明确的答案。为此,本研究以黄土丘陵沟壑区纸坊沟和大南沟两个典型小流域不同立地环境下的自然恢复植被为研究对象,通过野外调查明确立地-自然恢复植被类型-演替阶段的对应关系,在此基础上,调查分析群落特征、演替程度、稳定性与健康状况,估算不同演替阶段植被类型下的土壤侵蚀量,并对自然植被、土壤侵蚀情况的发展趋势进行初步预测,得出以下主要结论:
     1)根据中国植被分类系统,纸坊沟和大南沟两个典型小流域中均包括草原植被型、灌丛植被型和森林植被型3种植被型。草原植被型群系均为自然恢复植被,陕北黄土丘陵沟壑区退耕地植被恢复演替过程中的主要植被类型在两个流域中均有出现且占有一定的比例;演替前期的猪毛蒿、阿尔泰狗娃花、二裂委陵菜、草木樨状黄芪、长芒草等群系主要分布于沟缘线以上的梁峁坡,后期的白羊草群系、茭蒿群系和铁杆蒿群系则主要分布于沟缘线以下的沟坡上,其中白羊草均分布于南向坡面上。灌丛植被型和森林植被型主要为人工植被,其中纸坊沟小流域中的自然恢复灌丛狼牙刺主要分布于南向沟坡上,栒子分布于1100~(-1)200 m海拔较低的沟坡下部。
     2)M. Godron稳定性测度表明大南沟小流域和纸坊沟小流域所有的自然恢复植被均处于不稳定状态,这与这些群落尚处于演替过程中有关。进一步通过样地重复调查,对处于不同演替阶段植物群落5-7年的演替情况进行对比,分析处于不同演替阶段植被类型的稳定性发现,演替早期的猪毛蒿群落为演替速度最快但稳定性最差的群落类型;长芒草、达乌里胡枝子群落演替速度较猪毛蒿群落慢,稳定性较猪毛蒿群落略好;演替后期的白羊草、铁杆蒿、茭蒿的群落类型基本没有发生变化,物种组成变化不大,表现出较好的稳定性;灌丛在群落类型和物种组成上的变化更小,表现出相当的稳定性。可见,演替早期群落发展快,稳定性差,而后期演替速率变小,群落相对稳定。物种多样性的变化及同一样地两次调查间的Bray Curits指数也表现出相似的趋势。
     3)采用CVOR指数模型对处于不同演替阶段植被类型的健康状况进行评价,发现自然恢复植被在以栒子群落作为参照系统的评价体系中多处于不健康或警戒状态,在以丁香-铁杆蒿群落为参照系统的评价体系下多处于警戒状态或亚健康状态;在两种参照系统下,灌丛的健康状况均较草原植被型好,而且在不同的群系间表现出越是演替后期的群丛,其健康状况越好,说明研究区的植被恢复过程是系统健康良性发展的过程。
     4)根据实测资料得到草原型植物群系的平均土壤可蚀性K值为0.043 t·ha·h(ha~(-1)·MJ~(-1)·mm~(-1)),灌丛的平均土壤可蚀性K值为0.038 t·ha·h(ha~(-1)·MJ~(-1)·mm~(-1))。采用RULSE中关于C值的估算方法得到农田的C值为0.242,草原植被型C值的平均值为0.197,猪毛蒿群系、草木樨状黄芪群系和硬质早熟禾群系的C值约为0.22,演替中后期群落的C值均小于0.2,其中长芒草、达乌里胡枝子群系的C值为0.196,白羊草群系的C值为0.168,茭蒿群系和铁杆蒿群系的C值分别为0.175和0.179,灌丛中狼牙刺群系C值的估计值为0.048,栒子群系C值的估计值为0.086。
     5)运用中国土壤流失方程(CLSE)估算得到的不同植被类型下的土壤侵蚀量的估计值均比实际观测值大,总体上侵蚀量的估计值约为实测值的2~(-1)0倍。主要是因为CLSE中关于坡度因子的算法是基于5.14~(-2)8.8°的坡度归纳的,而纸坊沟和大南沟中坡度大于28.8°的面积分别占流域总面积的46.3%和51.9%,而且坡度是影响侵蚀强度的关键因素,从而导致CLSE在黄土丘陵沟壑区小流域土壤侵蚀估算中尚有一定的局限性。
     6)中国坡面水蚀预报模型(PMWEH)的估算结果较CLSE的估计值更接近实测值,侵蚀量的估计值约为实测值平均值的1-4.5倍。考虑结皮因素,对K值进行修正后,PMWEH估算的侵蚀量约为实测值平均值的1-4倍,与实测值最大值基本相当。与CLSE相比,PMWEH更适用于对黄土丘陵沟壑区小流域土壤侵蚀量进行估算。
     7)采用修正后的土壤可蚀性因子K值,运用PMWEH估算研究小流域地形条件下不同植被类型下的土壤侵蚀量,其中猪毛蒿群系的平均侵蚀模数为5863 t·(km~(-2)·a~(-1)),草木樨状黄芪群系的平均侵蚀模数为7383 t(·km~(-2)·a~(-1)),硬质早熟禾群系的平均侵蚀模数为4483 t(·km~(-2)·a~(-1)),长芒草、达乌里胡枝子群系的平均侵蚀模数为5352 t(·km~(-2)·a~(-1)),白羊草群系的平均侵蚀模数为5094 t·(km~(-2)·a~(-1)),茭蒿群系的平均侵蚀模数为5559 t(·km~(-2)·a~(-1)),铁杆蒿群系的平均侵蚀模数为5245 t·(km~(-2)·a~(-1));人工灌丛多属于轻度或中度侵蚀,自然恢复灌丛狼牙刺的平均侵蚀模数为1242 t(·km~(-2)·a~(-1)),栒子群系的平均侵蚀腏·701 t(·km~(-2)·a~(-1))。自然恢复植被在减蚀能力方面表现为灌丛>演替后期群落>演替前期群落。
     8)根据样地调查资料确定不同植被的演替概率矩阵,预测对未来不同时段自然恢复的发展趋势,在无其他因素(如人类活动)影响的情况下,到50年以后(即2060年),纸坊沟小流域和大南沟小流域中的自然恢复植被90%将演替至灌丛阶段,届时纸坊沟和大南沟小流域的平均土壤侵蚀模数将降至1094 t·(km~(-2)·a~(-1))和1157 t·(km~(-2)·a~(-1))。
In the hilly-gullied Loess Plateau, soil loss control was taken much attention because it’s serious soil erosion; and vegetation is the most efficient method to control soil erosion. However, vegetation restoration must be effected by the bad environment conditions. And the main propose of our study was to check the status of natural restoration vegetation in different sites, and the extent of soil erosion under different vegetation types. To do this, two typical watersheds, Zhifanggou and Danangou, were selected as study sites. We examined the correspondence between sites– natural vegetation– succession stage, analyzed the degree of succession of different natural vegetation, assessed the stability and health of natural vegetation, estimated the soil loss of different vegetation types, and then predicted vegetation and soil loss in the future.
     And the main results are shown as follows:
     1) According to the Chinese vegetation classification system,there are grasslands, bush and forest in both Zhifanggou and Danangou watersheds. All the grasslands are natural, and the typical communities during the second succession of hilly-gullied Loss Plateau were easily found in the two watersheds. The formations of the early stage of succession, such as formation (For.) Artemisia scoparia, For. Heteropappus altaicus, For. Potentilla bifurca, For. Astragalus melitoloides, For. Stipa bungeana and so on, mainly distributed on the upper slope, and the formations of the late of succession, such as For. Bothriochloa ischcemum, For. Artemisia giraldil and For. Artemisia gmelinii, mainly distributed on the gully slope, and all For. B. ischcemum distributed on the south slopes. The shrub and forest in the two watershed are mainly artificial vegetation, but there are some natural Sophora viciifolia on the south gully slope in Zhifanggou, and some natural Cotoneaster multiflorus on the bottom of gully slope about 1100~(-1)200 m in Zhifanggou watershed.
     2) M. Godron test indicated that all the natural vegetation in Zhifanggou and Danangou watersheds are in an unstable state, and all they are progressing communities may account for it. Further investigation was done to check out the changes during the first and the second investigation, and to compare the stability of communities in different succession stage, and we found that the early stage For. A. scoparia developed most rapidly, but worst in stable; the middle stage For. S. bungeana, Lespedeza davurica developed slower and better in stable than For. A. scoparia; the later stage For. B. ischcemum, For. A. giraldil, For. A. gmelinii and shrubs developed more slowly, and species composition of these formations changed little, which suggests that they are more stable. In conclusion, the earlier formations developed faster, but less stable; the later formations developed slower, but more stable. And the species diversity and the Bray Curits index also showed a similar trend.
     3) CVOR index model was used to evaluate the health status of vegetation in the different succession stages, and found that almost natural vegetation were unhealthy or in the alert state when For. C. multiflorus was used as the reference system, and most of the natural vegetation types were in the alert state or sub-healthy state when For. Syringa pekinensis-A. gmelinii was used as the reference system. However, shrubs were healthier than grasslands under each reference system, and the formations of the later stage were healthier than formations of the early stage.
     4) Based on measured data, the soil erodibility values (K) were calculated and the results shown that the average K value of grasslands was 0.043 t·ha·h(ha~(-1)·MJ~(-1)·mm~(-1)), and the average K value of shrub was 0.038 t·ha·h(ha~(-1)·MJ~(-1)·mm~(-1)). According to algorithm of RULSE, the cover and management factor (C) was calculated, and the results show that the C value of croplands was 0.242, the average C value of grasslands was 0.197, the C value of For. A. scoparia, For. Artemisia gmelinii and For. Poa sphondylodes was approximately 0.22, the C value of later stage formations were less than 0.2, the C value of For. S. bungeana, L. davurica, For. B. ischcemum, For. A. giraldil and For. A. gmelinii were 0.196, 0.168, 0.175 and 0.179, respectively. And the C value of the For. S. viciifolia was 0.048, the C value of For. C. multiflorus was 0.086.
     5) The soil erosion of different vegetation types estimated by Chinese Soil Loss Equation (CLSE) were much higher than observed, the estimated values were about 2~(-1)0 times of the observation values. The main reason why the estimate value was much higher was that the algorithm for S factor in CLSE was drown from slope of 5.14~(-2)8.8°, but 46.3% slope in Zhifanggou and 51.9% slope in Danangou had a gradient greater than 28.8°. In addition, the slope is a key factor of erosion intensity. As a result, CLSE was limited to estimate soil loss of watershed in the hilly-gullied Loess Plateau at some extent.
     6) The soil erosion of different vegetation types estimated by Prediction Model of Water Erosion on Hillslopes (PMWEH) were more close to the measured value, the estimated values were about 1-4.5 times of the observation values. If the soil bio-crust was considered, the soil loss of different vegetation types estimated by PMWEH were about 1-4 times of the average observation values, and were about equal to the maximum observation values. Compared with CLSE, PMWEH was more suitable to estimate soil loss of watershed in hilly-gullied Loess Plateau.
     7) After K values revised, the soil losses of different vegetation types in the study sites were estimated. And the results shown, the average erosion modulus of For. A. scoparia, For. A. gmelinii, For. P. sphondylodes and For. S. bungeana, L. davurica were 5863 t·(km~(-2)·a~(-1)), 7383 t·(km~(-2)·a~(-1)), 4483 t·(km~(-2)·a~(-1)) and 5352 t·(km~(-2)·a~(-1)), respectively, and the average erosion modulus of For. B. ischcemum, For. A. giraldil and For. A. gmelinii were 5094 t·(km~(-2)·a~(-1)), 5559 t·(km~(-2)·a~(-1)) and 5245 t·(km~(-2)·a~(-1)). The soil loss erosion intensity of artificial shrubs were moderate erosion, and the average erosion modulus of For. S. viciifolia was 1242 t·(km~(-2)·a~(-1)), average erosion modulus of For. C. multiflorus was 701 t·(km~(-2)·a~(-1)). Compared with the late-successional communities and early-successional communities, shrubs were more capable of reducing soil loss.
     8) According to survey data, the probalility matix of different vegetation types during secondary succession was determined, and the vegetation types in the future were predicted. In 2060, 90% natural vegetation in the watershed would be shrubs, and the soil loss of Zhifanggou watershend and Danangou watershend would down to 1094 t·(km~(-2)·a~(-1))and 1157 t·(km~(-2)·a~(-1)), respectively.
引文
[1]景可,郑粉莉.黄土高原植被建设的经验教训与前景分析[J].水土保持研究,2004,11(4):25-27.
    [2] Tian J. L..Restoring the eco-environment in conformity natural law—some considerations on the vegetation restoration on the Loess Plateau [J].Bulletin of Chinese Academy of Sciences,2002,17(4):286-288.
    [3] Zhou H. J., Rompaey A. V., Wang J.A.Detecting the impact of the "Grain for Green" program on the mean annual vegetation cover in the Shaanxi province, China using SPOT-VGT NDVI data [J].Land Use Policy,2009,26(3):954-960.
    [4]许炯心.降水—植被耦合关系及其对黄土高原侵蚀的影响[J].地理学报,2006,61(1):57-65.
    [5]徐宪立,马克明,傅伯杰,等.植被与水土流失关系研究进展[J].生态学报,2006,26(9):3137-3143.
    [6]魏翔,李占斌.土壤侵蚀对生态系统的影响[J].水土保持研究,2006,13(1):244-246,247.
    [7]陈浩,梁广林,周金星,等.黄河中游植被恢复对流域侵蚀产沙的影响与治理前景[J].中国科学D辑地球科学,2005,35(5):452-463.
    [8]陈浩,蔡强国.坡面植被恢复对沟道侵蚀产沙的影响[J].中国科学D辑地球科学,2006,36(1):69-80.
    [9]蔡庆,唐克丽.植被对土壤侵蚀影响的动态分析[J].水土保持学报,1992,6(2):47-51,79.
    [10]余作岳,彭少麟.热带亚热带退化生态系统的植被恢复生态学研究[M].广州:广东科技出版社,1996.
    [11] Daily G. C.. Restoring value to the worlds degraded lands [J].Science,1995,269(5222):350-354.
    [12]彭少麟.恢复生态学与退化生态系统的恢复[J].中国科学院院刊,2000,15(3):188-192.
    [13] Jackson L. L., Lopoukhine N., Hillyard D.. Ecological restoration - a definition and comments - commentary [J].Restoration Ecology,1995,3(2):71-75.
    [14]任海,彭少麟,陆宏芳.退化生态系统恢复与恢复生态学[J].生态学报,2004,24(5):1756-1764.
    [15]王伯荪.植物群落学[M].北京:高等教育出版社,1987.
    [16]刘建国.当代生态学博弈[M].北京:中国科学技术出版社,1992.
    [17] Clements F. E..Plant succession: An analysis of the development of vegetation [M].Washington, D C:Carnegie Institute,1916.
    [18] Clements F. E.. Plant Succession and Indicators [M]. New York:Wilson,1928.
    [19]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001.
    [20] Gleason H. A..The structure and development of the plant association [J]. Bulletin of the Torrey Botanical Club,1917,44 463-481.
    [21] Gleason H. A..The individualistic concept of the plant association [J]. Bulletin of the Torrey Botanical Club,1926,53 7-26.
    [22] McCormicK J.. Succession. In: VIA, editor. Student publication, Graduate School of Fine Arts. Philaclelpllia: University of Pennsylvania, 1968.
    [23] Egler F. E..Vegetation science concepts I. Initial floristic composition, a factor in old-field vegetation development [J].Plant Ecology,1954,4(6):412-417.
    [24] Horn H. S. Some causes of variety in patterns of secondary succession. In: West D.C., Shugart H. H., Botkin D.B.. Forest Succession: Concepts and applications. Berlin: Springer-Verlag, 1981.
    [25] Connell J. H., Slatyer R. O.. Mechanisms of succession in natural communities and their role in community stability and orgaitization [J].The American Naturalist,1977,111:1119-1144.
    [26] Crime J. P.. Evidence for the existence of three primary stages in plants and its relevance to ecological and evolutionary theory [J].The American Naturalist,1977,111:1169-1194.
    [27] Bormann F. H., Likens G. E..Pattern and process in a forested ecosystem [M]. New York:Springer-Verlag,1979.
    [28] MacMahon J. A.. Ecosystems over time: Succession and other types of change. In: Warin R. Forests: Fresh perspectives from ecosystem analyses. Corvallis: Oregon State University Press, 1980.
    [29] MacMahon J. A. Successional processes: Comparison among biomes with special reference to probable roles of and influences on animals. In: West D. C., Shugart H. H., Botkin D. B., editors. Forest succession: Concepts and application. New York: Springer-Verlag, 1981.
    [30] Horn H. S., Cody M. L., Diamond J. M. . Markovian properties of forest succession [M].Cambridge, MA:Harvard University Press,1975.
    [31]余树全.浙江淳安天然次生林演替的定量研究[J].林业科学,2003,39(1):17-22.
    [32]王印传,傅桦.雾灵山自然保护区研究——Ⅳ雾灵山森林群落的同期发生演替[J].首都师范大学学报:自然科学版,2001,22(3):83-87.
    [33]李兴东,宋永昌.浙江东部常绿阔叶林次生演替的随机过程模型[J].植物生态学与地植物学学报,1993,17(4):345-351.
    [34]丛沛桐,赵则海.东灵山辽东栎群落演替的连续时间马尔可夫过程研究[J].木本植物研究,2000,20(4):438-443.
    [35]陈同英.森林群落同期发生演替的预测模型及其应用[J].福建林学院学报,2002,22(1):29-33.
    [36] Van H.. On the dynamics of vegetation: Markova chains as models of succession[J].Vegetation,1979,40(3-14):
    [37] Tanner J. E., Hughes T. P., Connell J. H..The role of history in community dynamics: A modelling approach [J]. Ecology,1996,77(1):108-117.
    [38] Callaway R. M., Davis F. W.. Vegetation dynamics, fire, and the physical-environment in coastal central california [J].Ecology,1993,74(5):1567-1578.
    [39]王伯荪,马曼杰.鼎湖山自然保护区森林群落的演变[J].热带亚热带森林生态系统研究,1982,1 142-156.
    [40]王伯荪,彭少麟.鼎湖山森林群落分析V:群落演替的线性系统[J].中山大学学报:自然科学版,1985,(4):75-80.
    [41]阳含熙,潘愉德,伍业钢.长白山阔叶红松林马氏链模型[J].生态学报,1988,8(3):211-219.
    [42] Blatt S. E., Crowder A., Harmsen R..Secondary succession in two south-eastern Ontario old-fields [J]. Plant Ecology,2005,177(1):25-41.
    [43] Jafari M., Chahouki M. A. Zare, Tavili A.,et al.Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran) [J].Journal of Arid Environments,2004,56(4):627-641.
    [44] Klein D. A., McLendon T., Paschke M. W.,et al..Nitrogen availability and fungal-bacterial responses in successional semiarid steppe soils [J].Arid Soil Research and Rehabilitation,1996,10(4):321-332.
    [45] La Mantia T., Ruhl J., Pasta S.,et al..Structural analysis of woody species in Mediterranean old fields [J].Plant Biosystems,2008,142(3):462-471.
    [46] Mahaming A. R., Mills A. A. S., Adl S. M..Soil community changes during secondary succession to naturalized grasslands [J].Applied Soil Ecology,2009,41(2):137-147.
    [47] Myster R. W..Mechanisms of plant response to gradients and after disturbances [J].botanical review,2001,67(4):441-452.
    [48] Otto R., Krusi B. O., Burga C. A.,et al..Old-field succession along a precipitation gradient in the semi-arid coastal region of Tenerife [J].Journal of Arid Environments,2006,65(1):156-178.
    [49] Samuel M. J., Hart R. H.. 61 years of secondary succession on rangelands of the wyoming high-plains [J].Journal of Range Management,1994,47(3):184-191.
    [50]柳江,洪伟,吴承祯,等.退化红壤区植被恢复过程中灌木层主要种群的生态位特征[J].植物资源与环境学报,2002,11(2):11-16.
    [51]任洪玉,温仲明,杨勤科.黄土沟壑区植被恢复及其物种多样性的变化——以吴旗县植被恢复为例[J].干旱区农业研究,2003,21(2):154-158.
    [52]盛才余,刘伦辉,刘文耀.云南南涧干热退化山地人工植被恢复初期生物量及土壤环境动态[J].植物生态学报,2000,24(5):575-580.
    [53]温远光.大明山不同环境梯度植被的物种多样性研究[J].广西农业大学学报,1998,17(2):131-137.
    [54]邹厚远,程积民.黄土高原草原植被的自然恢复演替及调节[J].水土保持研究,1998,5(1):126-138.
    [55]刘国彬,杨勤科,陈云明,等.水土保持生态修复的若干科学问题[J].水土保持学报,2005,19(6):126-130.
    [56]程积民,万惠娥,杜峰.黄土高原半干旱区退化灌草植被的恢复与重建[J].林业科学,2001,37(4):50-57.
    [57]焦菊英,张振国,贾燕锋,等.陕北丘陵沟壑区撂荒地自然恢复植被的组成结构与数量分类[J].生态学报,2008,28(7):2981-2997.
    [58] Woodward F. I., Mckoo I. F..Vegetation and climate [J]. Environment International,1991,17: 535-546.
    [59] Kikuchi T..Differentiation in vegetation related to micro-scale landforms with special reference to the lower side slop [J].Ecological Review,1991,22(2):61-70.
    [60] Nagamatsu D., Miura O..Soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a hilly area in Japan [J].Plant Ecology,1997,(133):191-120.
    [61] Sakai A., Ohsawa M..Topographical pattern of the forest vegetation on a river basin in a warm-temperate hilly region central Japan [J].Ecological Research,1994,(9):269-280.
    [62] Hara M., Hirata K., Fujihara M.,et al.Vegetation structure in relation to micro-landform in anevergreen broad-leaved forest on Amami Ohshima Island South-West Japan [J]. Ecological Research,1996,(11):325-337.
    [63] MacArthur R. H..Fluctuations of animal populations and a measure of commuinty stability [J].Ecology,1955,(36):533-536.
    [64]周集中,马世骏.生态系统稳定性.现代生态学透视[M].北京:科学出版社,1990.
    [65] Sennhauser E. B..The concept of stability in connection with the gallery forests of the Chaco region [J].Vegetation,1991,(94):l-13.
    [66] Grimm V., Schmidt E., Wissel C.On the application of stability concepts in ecology[J].Ecological Modelling,1992,(63):143-161.
    [67] Begon M. et al. Ecology: Individuals, Populat ions and Communities [M].Boston:Blackwell Scientific Publications,1990.
    [68] McNaughton S. J..Diversity and stability of ecological community: a comment on the role of empiricism in ecology [J].The American Naturalist,1997,(111):515- 525.
    [69] Tilman D., Downing J. A.. Biodiversity and stability in grasslands [J]. Nature,1994,367(6461):363-365.
    [70] Godrom M.Some aspects of heterogeneith in grasslands of Cantal [J].Statistical Ecology,1972,(3):397-415.
    [71]彭少麟.森林群落稳定性与动态测度[J].广西植物,1987,7(1):67-72.
    [72]郑元润.森林群落稳定性研究方法初探[J].林业科学,2000,36(5):28-32.
    [73]张云飞,乌云娜.草原植物群落物种多样性与结构稳定性之间的相关性分析[J].内蒙古大学学报:自然科学版,1997,28(3):419-423.
    [74]白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J].植物生态学报,2000,24(6):641-647.
    [75] Rapport D. J., B?hm G., Buckingham D. et al. Ecosystem health: the concept, the ISEH, and the important tasks ahead [J].Ecosyestem Health,1999,(5):82-90.
    [76] Vitousek P. M., Mooney H. A., Lubchenco J.,et al.Human domination of earth's ecosystems [J].Science,1997,(277):464-499.
    [77] Gaudet C. L., Wong M. P., Brady A.,et al..The transition from environment quality to ecosystem health [J].Ecosyestem Health,1997,(3):3-10.
    [78] Rapport D. J..Gaining respectability: development of quantitative methods in ecosystem health [J].Ecosyestem Health,1999,(5):1-2.
    [79]肖风劲,欧阳华.生态系统健康及其评价指标和方法[J].自然资源学报,2002,17(2):203-209.
    [80]马克明,孔红梅,关文彬,等.生态系统健康评价:方法与方向[J].生态学报,2001,21(12):2106-2116.
    [81]孔红梅,赵景柱,姬兰柱,等.生态系统健康评价方法初探[J].应用生态学报,2002,13(4):486-490.
    [82]白祥,金海龙,任建丽,等.基于PSR模型的新疆艾比湖温地生态系统健康评价指标体系研究[J].湿地科学与管理,2009,5(3):16-20.
    [83]谢花林,李波,王传胜,等.西部地区农业生态系统健康评价[J].生态学报,2005,25(11):3028-3036.
    [84]杨建强,崔文林,张洪亮,等.莱州湾西部海域海洋生态系统健康评价的结构功能指标法[J].海洋通报,2003,22(5):58-63.
    [85]袁明鹏,严河.城市生态系统健康评价的层次分析法应用研究[J].科学学与科学技术管理,2003,24(8):84-86.
    [86]常兆丰,韩福贵,仲生年,等.生态系统健康评价方法在退化梭梭群落分析中的应用[J].生态学杂志,2008,27(8):1444-1449.
    [87]宋兰兰,陆桂华,刘凌,等.区域生态系统健康评价指标体系构架——以广东省生态系统健康评价为例[J].水科学进展,2006,17(1):116-121.
    [88]王秀明,李洪远,孟伟庆.基于模糊综合评价模型的天津滨海新区湿地生态系统健康评价[J].湿地科学与管理,2010,(3):19-23.
    [89] Lal R.,黄河水利委员会宣传出版中心译.土壤侵蚀研究方法[M].北京:科学出版社,1991.
    [90] Renard K G, Foster G R, Weeies G A, et al..Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). U.S. Department of Agriculture. Agriculture Handbook No. 703. 1997.
    [91] Zingg A. W..Degree and length of land slope as it affects soil loss in runoff [J].Agric. Eng.,1940,( 21):59-64.
    [92] Smith D. D.. Interpretation of soil conservation data for field use [J].Agric. Eng.,1941,(22):173-175.
    [93] Musgrave G. W..The quantitative evaluation of factors in water erosion A first approximation [J].Journal of Soil and Water Conservation,1947,(2):133-138.
    [94] Wischmeier W. H.. Punched cards record runoff and soil-loss data [J].Agric. Eng.,1955,(36):664-666.
    [95] Wischmeier W. H., Smith D. D.. Predicting rainfall erosion losses-a guide to conservation planning. U.S. Department of Agriculture, Agriculture Handbook. No.537. 1978.
    [96]刘善建.天水水土流失测验的初步分析[J].科学通报,1953,(12):59-65,54.
    [97]江忠善,宋文经.黄河中游黄土丘陵沟壑区小流域产沙量计算.河流泥沙国际学术讨论会.北京:光华出版社, 1980.
    [98]牟金泽,孟庆枚.降雨侵蚀土壤流失方程的初步研究[J].中国水土保持,1983,(6):25-27.
    [99]江忠善,贾志伟.降雨特征与水土流失关系的研究[J].西北水土保持研究所集刊,1990,(12):9-15.
    [100]江忠善,李秀英.黄土高原土壤流失预报方程中降雨侵蚀力和地形因子的研究[J].中国科学院西北水土保持研究所集刊,1988,(7):40-45.
    [101]江忠善,郑粉莉,武敏.中国坡面水蚀预报模型研究[J].泥沙研究,2005,(4):1-6.
    [102] Liu B Y, Zhang K L,Xie Y.. An empirical soil loss equation. 12th ISCO Conference vol. 21-25. Beijing: Tsinghua press, 2002.
    [103]李壁成.小流域水土流失与综合治理遥感监测[M].北京:科学出版社,1995.
    [104] Fu B. J., Zhang Q. J., Chen L. D.,et al..Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China [J].Catena,2006,65(1):41-48.
    [105]张光辉,刘国彬.黄土丘陵区小流域土壤表面特性变化规律研究[J].地理科学,2001,21(2):118-122.
    [106]温仲明,杨勤科,焦峰,等.基于农户参与的退耕还林(草)动态研究——以安塞县大南沟流域为例[J].干旱地区农业研究,2002,20(2):90-94.
    [107]董鸣.陆地生物群落调查观测与分析[M].北京:中国标准出版社,1996.
    [108]马克平.生物群落多样性的测度方法:Ⅰα多样性的测度方法(上) [J].生物多样性,1994,2(3):162-168.
    [109]马克平,刘玉明.生物群落多样性的测度方法:Ⅰα多样性的测度方法(下) [J].生物多样性,1994,2(4):231-239.
    [110]高贤明,马克平,黄建辉,等.北京东灵山地区植物群落多样性的研究Ⅺ.山地草甸β多样性[J].生态学报,1998,18(1):24-32.
    [111]鹿化煜,苗晓东,孙有斌.前处理步骤与方法对风成红粘土粒度测量的影响[J].海洋地质与第四集地质,2002,22(3):129-135.
    [112] Paniagua A., Kammerbauer J., Avedillo M.,et al..Relationship of soil characteristics to vegetation successions on a sequence of degraded and rehabilitated soils in Honduras [J].Agriculture, Ecosystems & Environment,1999,72(3):215-225.
    [113]水利部水土保持司.SL190-2007.土壤侵蚀分类分级标准[S].北京:中国水利水电出版社,2008.
    [114]陈楠,王钦敏,汤国安,等.6种坡度提取算法的应用范围分析——以在黄土丘陵沟壑区的研究为例[J].测绘信息与工程,2006,31(4):20-22.
    [115]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [116]何振芳,赵牡丹,韩羽.不同地貌类型坡度提取算法的比较[J].水土保持通报,2008,28(6):126-129.
    [117]陈楠,林宗坚,王钦敏.黄土高原提取坡向的最适宜算法[J].测绘科学,2009,3(4):61-63.
    [118]吴征镒.中国植被[M].北京:科学出版社,1980.
    [119]雷明德.陕西植被[M].北京:科学出版社,1999.
    [120] Jiao J. Y., Tzanopoulos J., Xofis P.,et al..Can the study of natural vegetation succession assist in the control of soil erosion on abandoned croplands on the Loess Plateau, China? [J].Restoration Ecology,2007,15(3):391-399.
    [121] Wang G. H..Plant traits and soil chemical variables during a secondary vegetation succession in abandoned fields on the Loess Plateau [J]. Acta botanica Sinica,2002,44(8):990-998.
    [122] Du F., Shao H. B., Shan L.,et al..Secondary succession and its effects on soil moisture and nutrition in abandoned old-fields of hilly region of Loess Plateau, China [J].Colloids and Surfaces B-Biointerfaces,2007,58(2):278-285.
    [123] Chen L. D., Messing I., Zhang S. R.,et al..Land use evaluation and scenario analysis towards sustainable planning on the Loess Plateau in China—case study in a small catchment [J].Catena,2003,(54):303-316.
    [124] An S. S., Huang Y. M., Zheng F. L..Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau, Northwest China [J]. Applied Soil Ecology,2009,41(3):286-292.
    [125] An S. S., Huang Y. M., Zheng F. L.,et al..Aggregate characteristics during natural revegetation on the Loess Plateau [J].Pedosphere,2008,18(6):809-816.
    [126]戴全厚,薛箑,刘国彬,等.侵蚀环境小流域生态恢复过程中自然与社会生态的协同效应[J].中国农业科学,2008,41(4):1108-1118.
    [127] Jia G. M., Cao J., Wang C. Y.,et al..Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China [J].Forest Ecology and Management,2005,217(1):117-125.
    [128] Li Y. Y., Shao M. A., Zheng J. Y.,et al..Spatial-temporal changes of soil organic carbon during vegetation recovery at Ziwuling, China [J].Pedosphere,2005,15(5):601-610.
    [129]肖云丽,温仲明,李锐,等.黄土高原丘陵沟壑区草地植物群落健康动态评价[J].生态学杂志,2009,28(6):1087-1092.
    [130]张金屯.数量生态学[M].北京:科学出版社,2004.
    [131]温仲明,焦峰,李静.黄土丘陵区纸坊沟流域植被自然演替阶段的识别与量化分析[J].水土保持研究,2009,16(5):40-44.
    [132]王国宏,张大全.生物多样性与生态系统的功能:进展与争论[J].生物多样性,2002,10(1): 49.
    [133]李育中.植物群落稳定性的一种测定方法[J].中国草地,1991,(2):78-80,封三.
    [134]张继义,赵哈林.植被(植物群落)稳定性研究评述[J].生态学杂志,2003,22(4):42-48.
    [135] Tilman D., Downing J. A..Biodiversity and stability in grasslands [J]. Nature,1994,367(6461):363-365.
    [136] Tilman D. Biodiversity: Population versus ecosystem stability [J].Ecology,1996,77(2):350-363.
    [137] Tilman D., Reich P. B., Knops J. M. H. .Biodiversity and ecosystem stability in a decade-long grassland experiment [J].Nature,2006,441(1):629-632.
    [138]彭少麟,方炜,任海,等.鼎湖山厚壳桂群落演替过程的组成和结构动态[J].植物生态学报,1998,22(3):245-249.
    [139] Myster R. W., Pickett S. T. A..A Comparison of Rate of Succession Over 18 Yr in 10 Contrasting Old Fields [J].Ecology,1994,75(2):387-392.
    [140] Rapport D. J., Castanza R., McMichael A. J..Assessing ecosystem health [J].Trends in Ecology and Ecolution,1998,13 397~402.
    [141]任继周,南志标,郝敦元.草业系统中的界面论[J].草业学报,2000,9(1):1-8.
    [142]侯扶江,于应文,傅华,等.阿拉善草地健康评价的CVOR指数[J].草业学报,2004,13(4):117-126.
    [143] Hobbs R. J., Norton D. A. .Towards a conceptual framework for restoration ecology [J]. Restoration Ecology,1996,(4):93-110.
    [144]李博.内蒙古鄂尔多斯高原自然资源与环境研究[M].北京:科学出版社,1990.
    [145]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    [146]王恒俊,张淑光.黄土高原地区土壤资源及其合理利用[M].北京:中国科技出版社,1991.
    [147]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [148]朱显谟.黄土高原土壤与农业[M].北京:中国农业出版社,1989.
    [149]张岩,张清春,刘宝元.降水变化对陕北黄土高原植被覆盖度和高度的影响[J].地球科学进展,2002,17(2):268-271.
    [150]王立新,刘钟龄,刘华民,等.内蒙古典型草原生态系统健康评价[J].生态学报,2008,28(2):544-550.
    [151]郝敦元,高霞,刘钟龄,等.内蒙古草原生态系统健康评价的植物群落组织力测定[J].生态学报,2004,24(8):1671-1677.
    [152]肖风劲,欧阳华,傅伯杰,等.森林生态系统健康评价指标及其在中国的应用[J].地理学报,2003,58(6):803-809.
    [153] Pellant M., Shaver P., Pyke D.,et al..Interpreting indicators of rangeland health [M].Colorado:Division of Science Integration Branch of Publishing Services,2005.
    [154] Lopez-Bermudez F., Romero-Diaz A., Martinez-Fernandez J.,et al. Vegetation and soil erosion under a semi-arid Mediterranean climate: a case study from Murcia (Spain) [J].Geomorphology,1998,24 (1):51-58.
    [155] Wang Z. Y., Wang G. Q., Huang G. H.Modeling of state of vegetation and soil erosion over large areas [J].International Journal of Sediment Research,2008,23(3):181-196.
    [156] Woo Ming-ko, Fang G. X., diCenzo P. D. The role of vegetation in the retardation of rill erosion[J]. Catena,1997,29(2):145-159.
    [157] Yu X. X., Zhang X. X., Li J. L.,et al..Effects of vegetation cover and precipitation on the process of sediment produced by erosion in a small watershed of loess region [J].Acta Ecologica Sinica,2006,26(1):1-8.
    [158]唐克丽.中国水土保持[M].北京:科学出版社,2004.
    [159]章文波,谢云.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002,22(6):705-711.
    [160]王万忠,焦菊英,郝小品,等.中国降雨侵蚀力R值的计算与分布(1) [J].水土保持学报,1995,9(4):5-18.
    [161]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1- 20.
    [162]殷水清,谢云.黄土高原降雨侵蚀力时空分布[J].水土保持通报,2005,25(4):29-33.
    [163] Olson T. C., Wischmeier W. H..Soil erodibility evaluations for soils on the runoff and erosion stations [J].Soil Science Society of American Proceedings,1963,27(5):590-592.
    [164]张科利,刘宝元,蔡永明.土壤侵蚀预报研究中的标准小区问题论证[J].地理研究,2000,19(3):297-302.
    [165]郑粉莉,江忠善,高学田.水蚀过程与预报模型[M].北京:科学出版社,2008.
    [166] Wischmeier W.H., Johnson C.B.,Cross B.V. A soil erodibility nomograph for farmland and construction sites[J].Journal of Soil and Water Conservation,1971,(26):189-l193.
    [167] United States Department of Agriculture. EPIC-Erosion/Productivity Impact Calculator 1. Model Documentation. Technical Bulletin Number 1768. Washington D. C.: USDA-ARS, 1990.
    [168] Shirazi M. A.,Boersma L.A unifying quantitative analysis of soil texture[J].Soil science society of America journal,1984,(48):142-147.
    [169]张科利,蔡永明,刘宝元,等.黄土高原地区土壤可蚀性及其应用研究[J].生态学报,2001,21(10):1687-1695.
    [170]周正朝,上官周平.子午岭次生林植被演替过程的土壤抗冲性[J].生态学报,2006,26(10):3270-3275.
    [171]张振国,范变娥,白文娟,等.黄土丘陵沟壑区退耕地植物群落土壤抗蚀性研究[J].中国水土保持科学,2007,5(1):7-13.
    [172]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报,2007,44(1):7-13.
    [173]杨金玲,张甘霖,李德成,等.激光法与湿筛-吸管法测定土壤颗粒组成的转换及质地确定[J].土壤学报,2009,46(5):772-780.
    [174]王彬,郑粉莉,安娟,等.激光衍射法与吸管法对东北黑土区土壤粒径分布测定的差异性研究[J].水土保持通报,2009,29(2):134-139,143.
    [175]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997.
    [176]全国土壤普查办公室.中国土种志[M].北京:中国农业出版社,1995.
    [177]程鹏,高抒,李徐生.激光粒度仪测试结果及其与沉降法、筛分法的比较[J].沉积学报,2001,19(3):449-455.
    [178]牛占,和瑞勇,李静,等.激光粒度分析仪应用于黄河泥沙顺粒分析的实验研究[J].泥沙研究,2002,(5):6-14.
    [179]陈秀法,冯秀丽,刘冬雁.激光位度分析与传统分析方法相关对比[J].青岛海洋大学学报,2002,32(4):608-614.
    [180]李斌兵,郑粉莉,龙栋材,等.基于GI S纸坊沟小流域土壤侵蚀强度空间分布[J].地理科学,2009,29(1):105-110.
    [181]杨勤科. LS tool.杨凌.
    [182] Wischmeier W. H, Smith D. D.. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation. U.S. Department of Agriculture, Agriculture Handbook. No. 282. 1965.
    [183]贾燕锋.黄土丘陵沟壑区植被特征对坡沟侵蚀环境的响应[D].杨凌:水土保持与生态环境研究中心,2008.
    [184]伍永秋,张清春,张岩,等.黄土高原小流域植被特征及其季节变化[J].水土保持学报,2002,16(1):104-107.
    [185] Dissmeyer G. E., Foster G. R..Estimating the cover-management factor (C) in the universal soil loss equation for forest conditions [J].Journal of Soil and Water Conservation,1981,36 235-240.
    [186] Zhang Y., Liu B. Y., Z. Q. C.,et al..Effect of Different Vegetation Types on Soil Erosion by Water [J].Acta Botanica Sinica ,2003,45(10):1204-1209.
    [187]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9.
    [188]侯喜禄,白岗栓,曹清玉.黄土丘陵区森林保持水土效益及其机理的研究[J].水土保持研究,1996,3(2):98-103.
    [179]侯喜禄,邹厚远.安塞县水土保持实验区植被及减沙效益调查报告[J].泥沙研究,1987,(4):98-102.
    [190]侯喜禄,杜成祥.不同植被类型小区径流泥沙观测试验[J].泥沙研究,1985,(4):89-93.
    [191]侯喜禄,曹清玉.黄土丘陵区幼林和草地水保及经济效益研究[J].水土保持通报,1990,10(4):53-60,37.
    [192] Liu B. Y., Nearing M. A., Risse L. M..Slope Gradient Effects Soil Loss for Steep Slopes [J]. American Society of Agriculture Engineers,1994,37(6):1835-1840.
    [193] Kinnell P. I. A., Chartres C. J, Watson C. L.. The effects of fire on the soil in a degraded semiarid woodland .II. Susceptibility of the soil to erosion by shallow rain impacted flow [J].Soil Research,1990,28(5):779-794.
    [194]肖波,赵允格,邵明安.黄土高原侵蚀区生物结皮的人工培育及其水土保持效应[J].草地学报,2008,16(1):28-33.
    [195]赵允格,许明祥,王全九,等.黄土丘陵区退耕地生物结皮理化性状初报[J].应用生态学报,2006,17(8):1429-1434.
    [196]赵允格,许明祥,王全九,等.黄土丘陵区退耕地生物结皮对土壤理化性状的影响[J].自然资源学报,2006,21 (3):441-448.
    [197]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700