atnhx1和hvbadh1基因的克隆及对三种植物的转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是限制植物生长的主要原因之一。为了对抗盐渍化威胁,植物体在漫长的进化过程中形成了两条对抗盐胁迫的通用途径。一条是在遭受盐胁迫后重建细胞内遭到破坏的离子稳态,另一条是在胞质内积累组织相容性渗调剂解除高盐对植物体造成的渗透胁迫伤害。前者涉及细胞对Na~+、K~+和Cl~-的选择性吸收以及随后发生的将可能导致细胞毒害的过多离子(如Na~+、Cl~-等)区隔化到液泡中的过程。Na~+区隔化是一个植物主动将胞质中Na~+聚集到液泡中进行渗透调节的耗能过程,这个过程的实现离不开液泡膜Na~+/H~+逆向转运蛋白的作用。就第二条途径而言,目前常见的组织相容性溶剂包括甜菜碱(如甘氨酸甜菜碱)及其类似物、糖和多羟基醇(例如甘露醇、山梨醇和海藻糖等)以及氨基酸(如脯氨酸等)。尽管人们现在发现不同植物在遭遇到盐胁迫时积累的渗透调节物质不尽相同,但是在众多组织相容性渗透调节物质中,甘氨酸甜菜碱被普遍认为是植物应对包括盐胁迫在内的渗透胁迫时最重要的渗透调节者。高等植物中,甜菜碱合成过程是由胆碱经过连续两步不可逆氧化而实现的。首先,胆碱在胆碱单加氧酶(choline monooxigenase,CMO)的催化下被氧化合成甜菜碱醛;甜菜碱醛继而在甜菜碱醛脱氢酶(betaine aldehyde dehydrogenase,BADH)的作用下,被氧化成甘氨酸甜菜碱。
     本文根据已报道的拟南芥液泡膜Na~+/H~+逆向转运蛋白AtNHX1编码基因序列(NCBI收录号:AF510074)设计了一对PCR引物,通过RT-PCR,直接从经过100 mmol/L NaCl.处理24h的拟南芥幼苗中克隆到编码液泡膜Na~+/H~+逆向转运蛋白,长度为1,617 bp的amhx1-cDNA片段,该cDNA片段含有编码一条含有538个氨基酸的多肽链的完整ORF。同源性比对结果显示,实验得到的atnhx1-cDNA序列与原报道的atnhx1基因具有99.7%的同源性。为了构建能够在植物中表达atnhx1-cDNA的植物表达载体,我们将CaMV35S启动子,TMV RNA 5’UTR中的Ω片段,atnhx1-cDNA和NOS polyA终止子串连在一起构成一个完整的表达盒,并使该表达盒整合到位于双元植物表达载体pNT质粒上T-DNA区的多克隆位点上,结果成功构建了含有atnhx1-cDNA的重组双元植物表达载体。用液氮冻融法将pNT-atnhx1质粒导入农杆菌LBA4404感受态细胞中,构建能够直接用于转化实验的农杆菌LBA4404(pNT-atnhx1)植物转化系统。
     研究中对卡那霉素筛选浓度、外植体共培养时间、农杆菌菌液浓度、农杆菌侵染时间和乙酰丁香酮作用浓度等5个影响农杆菌对受体植物转化效率的因素进行了优化,进而建立了稳定高效的草木樨状黄芪和菊苣农杆菌LBA4404(pNT-atnhx1)高效遗传转化体系。应用这两个系统分别对.草木樨状黄芪和菊苣进行遗传转化,获得了3个草木樨状黄芪、2个菊苣转基因株系和大量的转基因愈伤组织。对所获得的卡那霉素抗性株系进行PCR、southern杂交和RT-PCR等分子生物学检测结果表明:筛选标记基因nptⅡ及目的基因atnhx1-cDNA已成功地整合到转基因株系的基因组中,并且可以在RNA水平上进行转录。
     对草木樨状黄芪和菊苣转基因株系愈伤组织进行盐胁迫耐受试验,游离脯氨酸含量、K~+和Na~+含量测定的检测的结果表明:在相同胁迫条件下,转基因愈伤组织的相对生长率均明显高于未转化的野生型愈伤组织,两种植物的转基因株系愈伤组织内K~+/Na~+比值也始终显著高于野生型,而转基因株系愈伤组织的游离脯氨酸含量也始终高于野生型。可见,atnhx1基因的导入显著提高了草木樨状黄芪和菊苣细胞水平上的耐盐性。
     草木樨状黄芪和菊苣转基因株系叶片K~+和Na~+含量测定和相对电导率测定结果显示,在相同胁迫条件下,两种植物的转基因株系叶片内K~+/Na~+比值始终显著高于野生型,而相对电导率则低于野生型植株叶片。可见,atnhx1基因的导入提高了草木樨状黄芪和菊苣植株水平上的生理耐盐性。
     根据大麦,小麦,玉米、菠菜、高梁,拟南芥等6种不同植物已报道甜菜碱醛脱氢酶氨基酸序列进化保守区域的特点,设计一对兼并引物,运用RT-PCR技术从青稞中克隆得到728bp cDNA片段。根据该cDNA片段的序列测定结果,设计用于3’,5’RACE实验的引物。通过3’RACE获得538 bp cDNA片段,其中包含目的基因包括3’UTR在内的3’末端全部序列信息。根据RACE的结果,应用RT-PCR方法从青稞中成功获得长度为1,512bp编码BADH的全长编码ORF,通过氨基酸同源性比对发现该ORF的推定表达产物与大麦BADH同工酶BBD_2的同源性为98.4%,而与小麦、玉米和水稻等禾本科作物的BADH同源性分别为97%,84.7%和85.1%。这表明本研究克隆到的序列是青稞BADH的编码cDNA,我们将其命名为hvbadh1,并投递到GeneBank,获得注册号EF492983。hvbadh1在原核表达系统TB1-pMAL c-2-X中的表达研究显示,hvbadh1可以正常表达出分子量为54.2KD的蛋白质。
     将克隆得到的hvbadh1的编码ORF,插入到添加了植物表达CaMV 35S启动子和Nos polyA终止子调控元件的植物表达载体pCAMBIA1301质粒相应的克隆位点中,构建了重组的双元植物表达载体pCAM-ba质粒,通过冻融法将其转入到根癌农杆菌LBA4404中,成功地构建了hvbadh1基因的农杆菌植物转化系统LBA4404(pCAM-ba),用于后期对烟草的遗传转化。
     采用农杆菌LBA4404(pCAM-ba)介导的叶圆盘法,将hvbadh1基因的编码ORF转移到受体烟草-秦烟95中。对所获得的潮霉素抗性烟草株系进行PCR和RT-PCR等分子生物学检测结果表明:在得到的2个烟草转化株系中,hptⅡ基因及hvbadh1基因已成功地整合到基因组中,并且可以在RNA水平上进行转录。
Salinity is a major constraint to plant productivity. In order to adapt to the salt stress, there are two common mechanisms found in plants, one of which is to rebuild the cellular ion homeostasis, the other is to accumulate the compatible solutes. Rebuilding the cellular ion homeostasis involves the intracellular regulation of absorbing Na~+, K~+ and Cl~- as well as subsequent vacuolar compartmentalization to prevent the accumulation of toxic ions in the cytosol. Vacuolar sequestration of Na~+is an important and cost-effective strategy for osmotic adjustment that also reduces the Na~+ concentration in the cytosol. Na~+ sequestration into vacuolar depends on the expression and activity of Na~+/H~+ antiportors. On the other hand, the compatible solutes, including betaines and related compounds, polyols and sugairs (such as mannitol, sorbitol, and trehalose), and amino acids (such as praline), are accumulated differently among plant species. Among them, betaines appear to be a critical determinant of stress tolerances.
     In this study, the open reading frame(ORF) of atnhx1-cDNA, encoding the A. thaliana vacuolar Na~+/H~+ antiportor, was cloned by using one-step RT-PCR from the Arabidopsis thaliana seedlings after 24h treatment with 100 mmol/L NaCl. Two primers for PCR were designed following the atnhx1 sequence from NCBI (accession number: AF 510074). The atnhx1-cDNA we obtained is 1,617 bp, which just was an open reading frame encoding a predicted polypeptide of 538 amino acids, and was high homologue (99.7%) to the original atnhx1 sequence. In order to construct an expression vector which can express atnhx1-cDNA in plant, an expression cassette, including a CaMV35S promoter, aΩfragment of TMV RNA 5'UTR, atnhx1-cDNA and a NOS polyA sequence, was introduced into the T-DNA region of the binary vector pNT. The plant selectable marker gene of this recombined vector is nptII delivering kanamycin resistance to the transgenic plants. This recombined binary vector named as pNT-atnhx1 was transferred into Agrobacterium tumefaciens LBA4404 by freeze-thaw method, which could be used for plant transformation directly.
     In the experiment, a highly-efficient and stable protocol for Agrobacterium mediated transformation was established and was adapted for the genetic transformation of two plant species, Astragalus melilotoides Pall and Cichoriuminty bus L. Five factors affecting the efficiency of Agrobacterium mediated transformation were optimized, such as the threshold concentration of kanamycin for selection, the pre-culture time of the explants, the suitable infection time of the Agrobacterium, the working concentration of the Agrobacterium and the best working concentration of acetosyringone (AS). Using this protocol, atnhx1-cDNA was transfermed into A. melilotoides Pall and C.bus L successfully. 3 T_0 generation transgenic strains of A melilotoides Pall and 2 transgenic strains of C.bus L and some of kanamycin-resistant calli were obtained. The PCR, Southern blotting and RT-PCR identification of the T_0 transgenic plants show that the atnhx1-cDNA has already integrated into the genome of the transgenic plants and the target gene can express at the level of RNA transcription.
     Both the transgenic calli and the wild-type calli of A. melilotoides Pall and C.bus L were respectively cultured on the media containing different concentration of NaCl in order to test their resistance to NaCl. The results demonstrated that relative growth rates of the transgenic calli were higher than that of the wild-type calli.
     After being cultured respectively on the media containing different concentration of NaCl, the accumulations of free proline ,K~+ and Na~+ in the cells of both the transgenic calli and the wild-type calli of A. melilotoides Pall and C.bus L were investigated. The results showed that both the concentration of free proline and K~+/Na~+ in the transgenic calli were higher than that in wild-type calli under the same stress condition. Therefore, the intergration of atnhxl gene enhanced the resistance to the salt stress of the transgenic calli.
     In order to investigate whether the atnhxl gene transformation can enhance the salt tolerance of the T_0 transgenic plants, the K~+ and Na~+ concentration and relative conductivity of the transgenic plant leaves of A. melilotoides Pall and C.bus L were estimated when they were cultured under the stress triggered by various concentration of NaCl from 0 to 250mmol/L. The results indicated that the K~+/Na~+ rate of the transgenic plants was higher than that of wild-type plant under the same stress condition, but the situation of relative conductivity was on the opposite. Therefore, the transfer of atnhx1 gene can also enhance the salt tolerance of the target plant.
     According to the multiply alignment of amino acid sequences of several plants Betaine Aldehyde Dehydrogenase(BADH) from NCBI, a pair of degenerate primers were designed against the conserved regions that was used for RT-PCR to amplify a 728bp cDNA segment from Hordeum vulgare L.var.nudum Hook.f. Based on the sequence of this cDNA segment, primers were designed for 3' RACE, 5'RACE and RT-PCR. Then a 538bp cDNA segment (the sequence of 3' end of badh) was acquired by 3' RACE. Finally by RT-PCR, a 1, 657bp cDNA fragment was cloned from Hordeum vulgare L.var.nudum Hook.f. This cDNA fragment contained a 1,512bp ORF coding the putative Betaine Aldehyde Dehydrogenase(BADH) and comprising 503 amino acid residues. Compared by blast, this putative Betaine Aldehyde Dehydrogenase was high homologue to other plants' BADH, and the highest homology to bbd2, a badh gene from barely, was 98.4%. The result indicates the gene cloned from Hordeum vulgare L.var.nudum Hook.f is a BADH gene named hvbadh1, and its Genbank accession number is EF492983. Expressing hvbadhl in the E.coli protein fusion and purification system, a new fusion protein about 96.3KD, composed by hvBADH1 (about 54.2KD) and MBP (about 42KD), was found by SDS-PAGE.
     In order to construct an expression vector which can express hvbadhl in plants, an expression cassette, including a CaMV35S promoter, hvbadhl and a NOS polyA sequence, was introduced into the T-DNA region of the binary vector pCAMBIA1301. The plant selectable marker gene of the vector is hptII delivering hygromycin B resistance to the transgenic plants. This recombined binary vector named as pCAM-ba was transfermed into Agrobacterium tumefaciens LBA4404 by freeze-thaw method, which could be used for plant transformation directly.
     2 regenerated T_0 transgenic plants of Nicotiana tabacum Qinyan95 with hygromycin B resistance were obtained via Agrobacterium tumefaciens-mediated transformation and characterized by PCR, and RT-PCR. The PCR and RT-PCR analysis of the T_0 generation transgenic plants show that the hvbadh1 gene has already integrated into the genome of the transgenic plants and the target gene can express at the level of RNA transcription.
引文
[1] Flowers.T.J.& A.R.Yeo. Breeding for salinity resistance in crop plants. Aust.J.PIant Physiol, 1995,22:875-884.
    [2] Mass, E.V. and Hoffman, G.J. Crop salt to resistant Evaluation of existing data in manasing saline water for irrigation.(Ed.) H. E. Dregne. 1977: 187-198
    [3] Bhumbla, B.R., singh, VT, Effect of salt on seed germination Indian, J.Agron.1986,13: 181-185
    [4] Smith, R. H., Bhaskaran,S. and Schartz, K..Variation in drought tolerance characteristics from tissue culture derired sorghum. In: Proc. 5th Intl. Cong. Plant Tissue and Cell Culture. 1982: 489-490
    [5] Dix, P. J., Street, H. E..Selection of plant cell lines with enhanced chilling resistance. Ann.Bot.(London). 1976: 40:903-910
    [6] 周荣仁.利用组织培养选择烟草耐盐愈伤组织变异体并分化成再生植株,实验生物学报,1986:19(31):279-287
    [7] Croughan, T. P, Stavarek S.JnRains P W, Selection of NaCl tolerant line of cultured Alfalfa Cells. Crop scicene 1978: 18:959-963
    [8] 王鸣刚,贾敬芬.小麦耐盐系筛选及稳定性研究,兰州大学学报(自然科学版)1999,35(1):149-153
    [9] Ben-Hagyim G, Kochba J. Aspect of salt tolerance in a NaCl-selected stable cell line of Citrus, Plant Physiol 1982, 72:685-690
    [10] 张亚兰,李彦舫,杨柏明等.短芒大麦耐盐变异体的筛选与鉴定,草业学报,1998,15(1):30-32
    [11] 郭卫东,第3组LEAcDNA,HDCSI的克隆及Lfy CDNA转化猕猴桃的研究.西北农业大学博士学位论文,1998:61-63
    [12] 肖岗,张耕耘,刘凤华等.山菠菜甜菜碱脱氢酶基因研究.科学通报,1995,40:741—745
    [13] 苏金,陈丕铃,吴瑞.甘露醇—1—磷酸脱氢酶转基因表达对转基因水稻幼苗抗盐性的影响,中国农业科学1999,2(6):101-106
    [14] Goddi-jnOSM, Verwoerk TC, Voogd E. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol. 1997, 113:181-186
    [15] Apse MP, Aharon G S, Snedden W S, etal. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiporter in Arabidops.Science 1999, 285:1256-1258.
    [16] 赵可夫.试论改良和利用盐碱地上的生物学措施,曲师院学报(植物抗盐生理专刊),1984:102-107
    [17] Viswanathan Chinnusamy, André Jagendorf,Jian-Kang Zhu.Understanding and Improving Salt Tolerance in Plants, Crop Science; Mar/Apr 2005; 45 2; Research Library
    [18] 赵可夫,李法曾,樊守金,冯立田.中国的盐生植物,植物学通报,1999,16(3):201~207
    [19] Levitt J. Response of plants to environmental stress. Vol Ⅱ.2nd ed[M].New York:Academic Press, 1980.102-106.
    [20] 曾洪学,王俊.盐害生理与植物抗盐性,生物学通报,2005年,40(9),1—3
    [21] Munns R. Physiological processes limiting plant growth in saline soil:Some dogmas and hypothesis[J]. Plant Cell Enviroment, 1993, 16:15.
    [22] 赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.48-62.
    [23] Zhu J-K. Regulation of ion homeostasis under salt stress.Curr.Opin.Plant Biol. 2003, 6:441-445.
    [24] Sanders, D., C. Brownlee, d J.F.Harper. Connunication with caleium.Plant Cell, 1999.11:691-706.
    [25] Jia, W.Y, Wang.S, Zhang J. Zhang. Salt-induced ABA accumulation is more sensitively triggered in roots than in shoots.J.Exp.Bot,2002,53:2201-2206
    [26] Zeevasrt J A D, Creelman R A. Metabolism and physiology of absicsic acid. Annu Rev Plant Physiol, 1988, 39:439~473
    [27] Singh N. K, Handa A. K., Haseguwa P. M. Protein associated with adaptation of cultured tobacco cells to NaCl. Plant Physiol, 1985, 79:126~137
    [28] Hanson A. D, May A. M. Betaine synthesis in chenopods: Localization in chlorplasts. Pro. Natl. Acad. Sci. USA, 1985, 82(1):3678
    [29] Kavikishor P.B. Salt stress in cultured rice cells:effects of proline and abscisic acid. Plant Cell Envi., 1989, 12:629
    [30] 赵可夫,范海,Harris P.J.C.盐胁迫下外源ABA对玉米幼苗耐盐性的影响.植物学报,1995,37(4):295~300
    [31] Shinozaki K, Yamaguchishinozaki K. Gene expression and signal transduction in water stress response.Plant Physiol, 1997, 115 (1): 327-334.
    [32] Shinozaki K, Yamaguchi shinozaki K. Molecular responses to drought stress. Sato K, Murata N, upta A, eds. Stress Responses of Plotosynthetic Organisms. Amesterdam: Elsevier, 1998,141-163.
    [33] Hernandez.J.A., M.A.Ferrer, A.Jimenez, A.R.Barcelo, F.Sevilla. Abtioxidant systems and O2-/H2O2 production in the apoplast of pea leaves.Its relation with salt-induced necrotic lesions in minor veins.Plant Physiol. 2001,127:817-831.
    [34] 冯利波,蒋卫杰,亢秀萍,余宏军.植物耐盐性机理及基因控制技术研究进展.农业工程学报,2005,21(增刊):5-9
    [35] Elstner E. F. Oxygen activation and oxygen toxioity. Annu Rev. Plant Physiol,1982, 33:73~96
    [36] Asada K. The water cyclein chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 601-639.
    [37] Lingqiangm, Guan. Cis elements and trans factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotis stress:H2O2 is the likely intermediary signaling molecule for the response.The Plant Journal, 2000, 22(2): 87-95.
    [38] Kreps, J.A., Y.Wu, H.S.Chang,Zhu, X.Wang, J.F.Haeper. Transcriptome Changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol,2002, 130:2129-2141
    [39] 刘雨坤,李聪,韩建国.盐胁迫下的分子信号转导.华南农业大学学报,2004,25(增刊2):77—82
    [40] Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000, 124:941~948
    [41] Shi H, Xiong L, Stevenson B et al. The Arabidopsis salt overly sensitive mutants uncover a critical role for Vitamin B6 in plant salt tolerance. Plant Cell, 2002, 14:575~588
    [42] Shi H, Zhu JK. SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol, 2002, 129:585~593
    [43] Shi H, Kin YS, Guo Y et al. The Arabidopsis SOS5 locus encodesa putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell, 2003, 15:19~32
    [44] Wu SJ, Ding L, Zhu JK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8:617~627
    [45]任仲海,马秀灵,赵彦修等.Na~+/H~+逆向转运蛋白和植物耐盐性.生物工程学报,2002,18(1):16~19
    [46]Shi H, Ishitani M, Kim C.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Proc Natl Acad Sci USA, 2000, 97(12):6896~6901
    [47]周晓馥,王兴智.植物耐盐相关基因:SOS基因家族研究进展.遗传,2002,24(2):190~192
    [48]Guo Y, Halfter U, Ishitani M et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 13:1383~1399
    [49]Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3. Proc Natl Acad Sci USA, 2000, 97(7):3735~3740
    [50]Qiu QS, Guo Y, Dietrich MA et al. Regulation of SOS1, a plasma membrane Na~+/H~+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002, 99:8436~8441
    [51]Gong D, Guo Y, Jagendorf AT et al. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol, 2002, 130:256~264
    [52]Zhu JK. Salt and drought stress signal transduction in plants.Annu Rev Plant Biol, 2002, 53: 247~273
    [53]Rus A, Yokoi S, Sharkhuu A et al. AtHKT1 is a salt tolerancedeterminants that controls Na~-entry into plant roots. Proc NatlAcad Sci USA, 2001, 98(24):14150~14155
    [54]Knight H, Trewavas A J, Knight M R.Calcium signaling in Arabdopsis thaliana response to drought and salinity.Plant J, 1997, 12:1067-1078
    [55]Wu Y, Kazma J, Marechal E,etal.Abscisic acid signaling though cyclic ADP-ribose in plant[J].Science, 1997, 278:2126-2130.
    [56]Sheen J.Ca~(2+)-dependent protein kinases and stress signal transduction in plants.Science, 1996, 274:1900-1902.
    [57]Saijo Y S, Hata J, Kyozuka K.Overexpression of single Ca~(2+) dependent protein kinase confers both cold and salt/drought tolerance on rice plant.Plant J.23.319-327.
    [58]Sanchez J P, Chua N H, Arabdopsis PLC1 is required for secendary responses to abscisic acid signals.Plant Cell, 2001, 13:1143-1154.
    [59]Xiong L, Schumaker K S, Zhu J K.Cell signaling during cold, drought, and salt stress.Plant Cell, 2002, 14:165-183.
    [60]Munnik T, Ligterink W, Meskiene I. Distinct osmosensing protein kinase pathways are involved in signaling moderate and severe hyperosmotic stress.Plant J, 1999, 20:381-388.
    [61]Mikolajczyk M, Olubunmi S A, Muszynszynska G.Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cell.Plant cell, 2000. 12:165-178.
    [62]Heilmann I, Perera I Y, Gross W.Changes in phosphoinositide metabolism with days in culture effect signal transduction pathways in Galdieria suphuraria.Plant Physiol, 1999, 119:1331-1339
    [63]Ruel L, BourouisM, Heitzler P, Pantesco V, Simpson P. Drosophila Shaggy Kinase and Rat Glycogen Synthase Kinase-3 have Conserved Activites and Act Downstream of Notch. Nature, 1993, 362:557-560.
    [64]Hai L P, Kyeong T P, Jeong H L, Shin G K, Jing B J, Sung H K, Inhwan H. An Arabidopsis GSK3/shaggy-like Gene that Complements Yeast Salt Stress-sensitive Mutants in Induced by NaCl and Abscisic Acid. Plant Physiol, 1999, 119:1527-1534.
    [65]Lee J H, Montagu M V, Verbruggen N. A Highly Conserved Kinase is an Essential Component for Sress Tolerance in Yeast and Plant Cells. Proc. Natl. Acad. Sci. USA, 1999, 96:5873-5877.
    [66]Volkmar, K.M., Hu, Y, Steppuhn, H. Physiological responses of plants to salinity: a revieyanzi.Plant Physiol, 1999, 119:1527-1534.
    [67]Hasegawa P M., Bressan R A., Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity.Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000,51: 463-499
    [68]赵可夫,植物对盐渍逆境的适应.生物学通报,2002,37(6)7-10
    [69]Binzel M L.NaCl-induced accumulation of tonoplast and plasma membrane H~+-ATPase message in tomato. Physiol Plant, 1995,94: 722—728
    [70]Ratajczak R, Bichter J, Lutge U.Adaplation of Ⅰ the tonoplast Ⅴ-type H~+-ATPase of Mesembryanthemum crystallinun to salt—stress, C3-CAM transition and plant age. Plant Cell Euvrion,1994, 17: 1101—1112.
    [71]Uozumi N, E J Kim, F Rubio, T Yamaguchi, S Muto, A Tsuboi. The Arabidopsis HKT1 gene homolog mediates inward Na~+ currents in Xenopus laevies oocytes and Na~+ uptake in Saccharomyces cerevisiae.Plant Physiol,122:1249-1259.
    [72]Czempinski K, Gaedeke N, Zlmmermann S, Moller—Ruber. Molecular mechanisms and regulation of plant ion channels. J. Exp. Bot., 1999, 50; 955-966.
    [73]Barkla B J, Pantoja O. Physiology of ion transport across the tonoplast of higher plant. Annu. Rev. Plant Physiol. Plant Mol. Bio, 1996, 47: 127-157.
    [74]李平华,张慧,王宝山.盐胁迫下植物细胞离子稳态重建机制.西北植物学报,2003,23(10):1810-1817
    [75]Liu J, Zhu J K. A calcium sensor homolog requiredfor plant salttolerance. Science, 1998, 280: 1 943-1 945.
    [76]Bush Dr. Calcium regulationin plant cell andits rolein signaling. Annu. Rev. Plant Physiot. Plant Mol. Biol, 1995, 46: 95-122
    [77]吴长艾,棉花Na~+/H~+逆向转运体基因的克降、功能鉴定及其在耐盐性中的重要作用.山东农业大学博士 学位论义。
    [78]Paul M, Hasegawa, Ray A. Plant Cellular and Molecular Responses to High Salinity[J]. Plant Physiol Mol Biol, 2000, 51(2):463~499.
    [79]郝治安,吕有军.植物耐盐机制研究进展,河南农业科学,2004,11:30-33
    [80]黄健,唐学玺,付萌,等盐胁迫对海滨香豌豆叶片三种物质含量的影响,青岛海洋大学学报,1997,27(4):510-515.
    [81]赵福庚,孙诚,刘友良.盐胁迫激活大麦幼苗脯氨酸合成的鸟氨酸途径.植物学报,2001,43(1):36-40.
    [82]陈翠霞,于元杰.棉花耐盐突变体的RAPD分析及抗盐生理研究.作物学报,1999,25(50):643-646.
    [83]孙会月,赵玉田.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究].中国农业科学,1997,30(4):9-12.
    [84]Papageogious G C, Murata N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem Ⅱ complex. Photosynth Res, 1995, 44:243-252.
    [85]侯彩霞,汤章城.细胞相溶性物质的生理功能及其作用机制.植物生理学通讯,1999,35(2):1-7.
    [86]刘家尧,衣艳君,赵可夫.甜菜碱的测定技术及其在植物抗盐生理中的作用.曲阜师范大学学报,1994,20(2):662691
    [87]梁峥,骆爱玲.甜菜碱和甜菜碱合成酶.植物生理学通讯,1995,31(1):1281
    [88]Pollard A, Wyn jones RG. Enzyme activities in concent rated solutions of glycine betaine and ot her solutes. Planta, 1979, 144:291-2981
    [89]毛桂莲,许兴,徐兆桢.植物耐盐生理生化研究进展.中国农业生态学报,2004,12(1):432-461
    [90]Loescher W H, Tyson R H, Gout E. Mannitolsynthesis in higher plants: evidence for the role and characterization of NADH-dependent mannose-phosphatereductase. Plant Physiol, 1992, 98:1396-1402.
    [91]王慧中,黄大年,鲁慧芳.转mtlD/gutD双价基因水稻的耐盐性.科学通报,2000,45(70):724-729.
    [92]Tarczynski M C, Jensen R G, and Bohnert H J.: Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 1993,259, 508-510.
    [93]Sheveleva E, ChmaraW, Bohnert HJ, Jensen R G. Increased salt and drought tolerance by D-ononitol productionin transgenic Nicotiana tabacum L. Plant Physiol, 1997,115, 1211-1219.
    [94]王自章,张树珍,杨本鹏.甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株.中国农业科学,2003,36 (2):140—146.
    [95]Romero, C, Bellés, JM, Vayá, J L, Serrano, VR., Culiánez-Maciá F A. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropicphenotypes include drought tolerance. Planta, 1997,201,293-297.
    [96]Kishor P B K, Hong Z, Miao G.-H, Hu C A., and Verma, D. P. S.Overexpression of _1-pyrrolin-5-carboxylate synthase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 1995,108:1387-1394.
    [97]梁峥,马德钦,汤岚等.菠菜甜菜碱醛脱氢酶(BADH)在烟草中的表达.生物工程学报,1997,13(3):236—240.
    [98]郭北海,张艳敏,李洪杰等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,2000,42(3):279—283.
    [99]Sakamoto, A., Murata, A., Murata, N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 1998, 38, 1011-1019
    [100]Pilon-Smits, E. A. H., Ebskamp, M. J. M., Paul, M. J., Jeuken, M. J.W., Weisbeek, P. J., and Smeekens, S. C. M.: Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol, 1995,107: 125-130
    [101]Bowler C, Slooten L, Larson T J. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J, 1991, 10:1723-1732.
    [102]赵可夫,邹琦.盐分和水分胁迫对盐生和非盐生植物膜脂过氧化作用的效应.植物学报,1993,35(7):519-522.
    [103]刘婉,胡文玉.NaCl胁迫下离体小麦叶片内抗坏血酸与几种生理生化指标变化的关系.植物生理学通讯,1997,33(6):423-425.
    [104]Huang C Y, Liau E C, Roby C. Effects of salt stress on the biosynthesis of lipids in chloroplast membranes of soybean plant. Taiwanis, 1997, 42(1):63-72.
    [105]Xu D. Expression of a late embryogenesis abundant protein gene, HVA1, from barely confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110:249-257
    [106]Shinozaki K and K Yamaguchi-Shinozaki.Molecular response to dehydration and low temperature;Differences and cross-talk between two stress signaling pathways.Curr.Opin.Plant Biol.3:217-223
    [107]Thomashow M F. Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms.Annu.Rev.Plant Physiol. Plant Mol.Biol,1999, 50:571-599.
    [108]Abe H, T Urao, T Ito, M Seki, K Shinozaki,K Yamaguchi-Shinozaki.Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling.Plant Cell, 2003, 15:63-78.
    [109]Ballesterous E, Blumwald E, Donaire J P. Na~+/H~+ antiport activity in tonoplast vesicles isolated from sun flowers root s induced by NaCl stress. Physiologia Plantarum, 1997, 99:328-334.
    [110]Mennen H, Jacoby B, Marschner H. Is sodium proton antiport ubiquitous in plant cells. J Plant Physio, 1990, 137:180-183.
    [111]Ratner A, Jacoby B, Effect of K~+ its counter anion and pH on sodium efflux from barley roots. J Exp Physiol, 1976,148:425-433
    [112]邱念伟,杨红兵,王宝山.Na~+/H~+逆向转运蛋白及其与植物耐盐性的关系.植物生理学通讯,2001,37(3):260-264
    [113]Ballesteros E, Blumwald E, Donaire JP, Belver A. Na~+/H~+ antiporter activity in tonoplast vesicles isolated from sunflower induced by NaCl stress. Physiol Plant, 1997, 99: 328-334
    [114]Staal M, Maathuis FJM, Elzenga JTM, Overbeek JHM. and Prins HBA. Na~+/H~+ antiporter activity in tonoplast vesicles from roots of the salt-tolerant plantago maritima and the salt-sensitive Plantaga Media. Physiol Plant, 1991, 82: 179-184
    [115]Hassidim M, Braun Y, Lwrner YHR, Reinhold L. Na~+/H~+ and K~+/H~+ antiport in root membrane vesicles isolated from the halophyte Atriplex and the glycophyte cotton. Plant Physiol, 1990, 94: 1795-1801
    [116]Braun Y, Hassidim M, Lerne HRR, Teinhold L. Srudies on H~+-translocating ATPases in plants of varying resistance to salinity. Plant Physiol, 1986, 81:1050-1056
    [117]Nass R, Cunningham K W, Rao.Intracellular sequestration of sodium by a novel Na~+/H~+ exchanger in yeast is enhanced by mutations in plasma H~+-ATPase.Insights into mechanisms of sodium tolerance.J Biol Chem, 1997, 272:26145-26152.
    [118]Nass R, Rao R.Novel localization of a Na~+/H~+ exchanger in a late endosomal compartment of yeas. Implication for vacuole biogenesis. J Biol Chem, 1998, 273:21054-21060.
    [119]Gaxiola R A, Rao R, Sherman A The Arabidopsis thaliana ptoton transporters. AtNHXI and Avpl, can founction in cation detoxify-cation in yest.Proc Natl Acad Sci, 1999, 96:1480-1485.
    [120]Fukuda A, Nakamura A, Tanska Y.Molecular cloning and expression of the Na~+/H~+ antiporter gene in Oryza sativa.Biochem Bioph Acta, 1999, 1446.149-155.
    [121]Hamada A, Shono M, Xia T. Isolation and characterization of a Na~+/H~+ antiporter gene from the halophyte Atriplex gmelini.Plant Mol Biol, 2001,46:35-42.
    [122]Apse M P, Aharon G S, Blumwale E. Identification and characterzation of a NaCl-inducible vacuolar Na~+/H~+ antiporter in Beta vulgaris.Physiol Plant, 2002, 116:206-212.
    [123]Chang-Ai Wu, Guo-Dong Yang, Qing-Wei Meng,Cheng-Chao Zheng. The cotton GhNHX1 gene encoding a novel putative tonoplast Na~+/H~+ antiporter plays an important role in salt stress. Plant and Cell Physiology, 2004, 45(5): 600-607
    [124]Yamaguchi T, Apse M P, Shi H.Topollgical analysis of a paint vacuolar Na~+/H~+ antiporter reveals a luminal Cterminus that regulates antiporters cation selectivity.Proc Natl Acad Sci, 2003, 100:12510-12515.
    [125]ShiH, Z, hu JK Regulation of the vacuoiar Na~+/H~+ antiporter gene AtNHX1 expression by salt stress and abscisic acid. Plant Mol Biol, 2002.
    [126]Chauhan S, Forsthoefel N, Ran Y. Na~+/myoinositol symporters and Na~+/H~+-antiport in Mesembryanthemum crystallinum. Plant J, 2000, 24:511-522.
    [127]Quintero FJ, Blatt MR, Pardo JM.Functional conservation between yeast and plant endosomal Na~+/H~+ antiporter.FEBS Lett, 2000, 471:224-228.
    [128]Zhang H X, Blumward E,. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 2001,19: 765-768
    [129]Apse MP, Aharon G S, Snedden W S. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiporter in Arabidops.Science 1999, 285:1256-1258.
    [130]Venema K, Quintero Fj, Pardo JM, Donaire JP. The Arabidopsis Na~+/H~+ exchanger Atnhxl catalyses low affinity Na~+ and K~+ transport in reconstituted lyposomes. Journal of Biological Chemistry, 2002, 277: 2413-2418
    [131]Vichveger K, Dordschbal B, Roos W. Elicitor-activated phopholipase A2 generateslysophosphatidylcholines that mobilize the vacuolar H~+ pool for pH signaling via the activation of Na~+ dependent proton fluxes.Plant Cell, 2002, 14: 1509-1525
    [132]尹小燕,杨爱芳,张可炜.转Atnhx1基因玉米的产生及其耐盐性分析.植物学报,2004,46(7):854—867.
    [133]Zhe-Yong Xue, Da-Ying Zhi, Gang-Ping Xue. Enhanced salt tolerance wheat (Tritivum aestivum L) expressing a vacuolar Na~+/H~+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na~+.Plant Science, 2004, 167:849-859.
    [134]陈刚,草木樨状黄芪高频离体再生体系的建立,西北植物学报2001,21(1):136-141
    [135]陈刚,贾敬芬,郝建国.草木樨状黄芪抗甲硫氨酸变异系的离体筛选与鉴定,实验生物学报,2003,36(2):118-122
    [136]金红,贾敬芬,郝建国.草木樨状黄芪甲硫氨酸变异系的原生质体培养与植株再生,生物工程学报,2004,20(2):221-226
    [137]宋书锋,曹凤,杨培志,陈明利,李传山,郭蔼光.普那菊苣高效再生体系建立和遗传转化研究.分子植物育种,2006,4(4):565-570
    [138]sambrook J,Fritsch E F,Maniatis T.Molecular Cloning(分子克隆)[M].第二版.北京:科学出版社,1989:1183-1187
    [139]Clark MS主编.植物分子生物学--实验手册[M].北京:高等教育出版社,1998,6-7.
    [140]汪沛洪主编,基础生物化学实验指导.西安:陕西科学技术出版社1986:55-56
    [141]王宝山、赵可夫.小麦叶片中Na、K提取方法的比较.植物生理学通讯,1995,31(1):50-52
    [142]谭常,杨惠东,余叔文.植物生理学实验手册,上海:上海科学技术出版社1985:67-72
    [143]王关林,方宏筠.植物基因工程[M].北京,科学出版社,2002:360—421
    [144]徐子勤,Becker,D,通过卡那霉素选择体系再生可育小麦转基因植株.自然科学进展,2001,11(5):486-49
    [145]彭日荷,黄晓敏.带内含子卡那霉素抗性基因双元载体构建及烟草转化,植物生理学报,2001,27(1):56-60
    [146]梁慧敏,夏阳,孙仲序,王太明,刘德玺,王国良,黄剑,陈受宜.根癌农杆菌介导苜蓿遗传转化体系的建立,农业生物技术学报,2005年13卷2期:152-156
    [147]王景雪,杜建中,荣二花,李晓灿,孙毅,油菜下胚轴农杆菌介导法转化影响因素探讨.华北农学报,200520(2):12-16
    [148]胡繁荣,农杆菌介导的高羊茅遗传转化体系的优化,分子植物育种,2005,3(3):375-380
    [149]Tzvi Tzfira, Vitaly Citovsky.Agrobacterium-mediated genetic transformation of plants:biology and biotechnology.Current Opinion in Biotechnology 2006,17:147-154
    [150]Hu Z B, Alfermann.A W.Diterpenoid production in hairy root cultures of Salvia miltiorrhiza Phytochemistry, 1993, 32:699-703
    [151]陶均,谭汝芳,李玲.发根农杆菌介导的向日葵遗传转化.作物学报,2006,32(5):743-748
    [152]孙艳香,杨红梅,耿云红,朱晔荣,王宁宁,王勇.根癌农杆菌介导的百脉根遗传转化体系的优化研究.南开大学学报(自然科学版),2006,39(2):51-57
    [153]王艳,曾幼玲,贺宾,秦丽,李金耀,高燕,张富春.农杆菌介导NHX基因转化甘蓝型油菜的研究.作物学报,2006,32(2):278~282
    [154]刘晶,周树峰,陈华,韩和平,李银心.农杆菌介导的双价抗盐基因转化番茄的研究.中国农业科学,2005,38(8):1636-1644
    [155]耿其芳.农杆菌介导AtNHX1基因转化蓝浆果的研究.南京农业大学硕士学位论文,2004.6
    [156]薛哲勇,支大英,夏光敏,马秀玲,张慧,赵彦修,根癌农杆菌介导AtNHX1基因转化小麦.山东大学学报(理学版),2003,38(1):106-109
    [157]尹小燕,杨爱芳,张可炜,张举仁.转Atnhx1基因玉米的产生及其耐盐性分析.植物学报(英文版),2004,46(7):854-861
    [158]王艳青,陈雪梅,李悦,蒋湘宁,刘群录.植物抗逆中的渗透调节物质及其转基因工程进展.北京林业大学学报,2001,23(4):66-70
    [159]余叔文,汤章城主编,植物生理与分子生物学.北京:科学出版社1998,752—769
    [160]Voetberg GS, Sharp RE, Growth of the maize primary root at low water potentials, plant physiol,1991,96:1125-1129
    [161]贺道耀,余叔文,水稻高脯氨酸愈伤组织变异系的筛选及其耐盐性.植物生理学报1995,21(1):65-72
    [162]中国科学院上海植物生理研究所,上海植物生理学会.现代植物生理学实验指南.北京:科学出版社,1999:302.
    [1] Csonka LN. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 1989, 53: 121-147
    [2] Rhodes D, Hanson AD.Quartenary ammonium and tertiary sulfoniumcompounds in higher plants. Annu Rev Plant Physiol,1993,44:357-384
    [3] Grumet R, Hanson AD. Genetic evidence of an osmoregulatory function of glycine-betaine accumulation in barley. Aust J Plant Physiol,1986,13: 356-364
    [4]Saneoka H, Nagasaka C, Hahn DT, Yang W-J, Premachandra GS, JolyRJ, Rhodes D.Salt tolerance of glycinebetaine-deficient and-containing maize lines. Plant Physiol, 1995,107: 631-638
    [5]梁峥,骆爱玲,甜菜碱和甜菜碱合成酶,植物生理学通讯,1995,31(1):1-8.
    [6]Whire RF, Demaine AL. Catabolism of betaine and its relationship to cobalamin overproduction. Biochim Biophys Acta, 1971, 237:112-119
    [7]Skiba WE, Taylor MP, Wells MS et al. Human hepatic methionine biosynthesis2purification and characterization of betaine:homocysteine S2methyltransferase. J Biol Chem, 1982, 257:14944-14948
    [8]Wyn Jones R G, Storey R. Betaine. In: The Physiology and Biochemisty of Drought Resistancein Plants, Paleg L G and Aspinall D eds. New York: Aademic Press, 1981, 172-204
    [9]Storey R, Wyn Jones R G. Betaine and choline levels in plants and their relationship to NaClstress. Plant Sci Lett, 1975, 4: 161
    [10]Arakawa K, Kartkyama M, Takabe T.Levels of betaine and betaine aldehyde dehydrogenase activity in the green leaves, and etiolated leaves and roots of barly. Plant Cell Physiol, 1990, 31(6):797
    [11]张宁.应用甜菜碱醛脱氢酶基因工程提高马铃薯抗逆性的研究,甘肃农业大学博士学位论文。
    [12]刘友良,毛才良,汪定驹.植物耐盐性研究进展.植物生理学通讯,1987(4):1-5
    [13]Pan S M, Morean R A, Yu C et al. Betaine accumulation and betaine aldehyde dehydrogenase in spinach leaves. Plant Physiol, 1981, 87:1105-1108
    [14]Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44: 357-384
    [15]张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响.植物学通报,1999,16(4):429-432
    [16]孙文越,王辉,黄久常.外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响.西北植物学报,2001,21(3):47-491
    [17]赵博生,衣艳君,刘家尧.外源甜菜碱对干旱/盐胁迫下的小麦幼苗的生长和光合功能的改善.植物学通报,2001,18(3):378-380
    [18]骆爱玲,刘家尧,马德钦等.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高.科学通报.2000,45(18):1953-1956
    [19]衣艳君,刘家尧,骆爱玲等.转BADH基因烟草的光系统Ⅱ和呼吸酶活性的变化.植物学报,1999,41(9):993-996
    [20]Papageorgious G C, Fujimura Y, Murata N. Protection of the oxygen-evolving Photoysstem Ⅱ complex by glycinebetaine. Biochem Biophys Acta, 1991, 1057: 361-366
    [21]侯彩霞,徐春和,汤章城等.甜菜碱对PSⅡ放氧中心结构的选择性保护.科学通报,1997,42:1857-1859
    [22]李秋,杨华,高晓蓉,刘大伟,安利佳.植物甜菜碱合成酶的分子生物学和基因工程.生物工程进展,2002.22(1):84-86
    [23]Burnet M, Lafontaine P J&HansonA D.Assay purification, and partial characterization of choline monooxygenase from spinach.Plant Physiol. 1995, 108:581-588
    [24]Rathinasabapathi B, Burnet M, Russel B L, Gage D A, Liao P C, Nye G J, Scott P, Golbeck J H, Hanson A D. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycinebetaine synthesis in plants: prosthetic group characterization and cDNA cloning. ProcNatl Acad Sci USA, 1997, 94: 3454-3458.
    [25]Russell B L, Rathinasabapathi B, Hanson A D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol, 1998, 116:859-865
    [26]沈义国,杜保兴,张劲松等.山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析.生物工程学报,2001, 17(1): 1-6
    [27] Nuccio M L, McNeil S D, Ziemak M J, Hanson AD, Jain R K, Selvaraj G. Choline import intochloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with achloroplastic or a cytosolic pathway. Metab Eng, 2000, 2: 300-311
    [28] Weretilnyk E A, Hanson A D. Molecular cloning of a plant betaine aldehyde dehydrogenase, aenzyme implicated in adaption to sanlinity and drought. Proc Natl Acad Sci USA, 1990, 87:2745-2749
    [29] 殷晓军,赵彦修,张慧.甜菜碱的合成及与其相关基因的遗传工程,植物生理学通讯,2002,38(3):102-106
    [30] McCue KF, Hanson AD.Effects of soil salinity on the expression of betaine aldehyde dehydrogenase in leaves: investigation of hydraulic, ionic and biochemical signals. Aust J Plant Physiol, 1993,19:555-564
    [31] Ishitani M, Nakamura T, Han SY, Takabe T.Expression of thebetaine aldehyde dehydrogenase gene in barley in response toosmotic stress and abscisic acid. Plant Mol Biol,1995,27: 307-315
    [32] McCue KF, Hanson AD. Drought and salt tolerance: towards understanding and application. Trends Biotech, 1990, 8:358~362
    [33] Nuccio M L, Russell B L, Nolte K D, Rathinasabapathi B, Gage D A, Hanson A D. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J. 1998, 16:487-498
    [34] Rathinasabapathi B, et al, Planta, 1994, 193(2): 155-62.
    [35] Holmstrom KO, Welin B, Mandal A, et al. Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of theosmoprotectant glycine betaine, in transgenic plants[J]. Plant J, 1994, 6(5):749~758
    [36]刘凤华等,遗传学报,1997,24(1):54-58.
    [37] 郭岩,张莉,肖岗等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学,1997,427(2):151~153.
    [38] 李银心,常凤启,杜立群,郭北海,李洪杰,张劲松,陈受宜,朱至清.转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性.植物学报,2000,42(5):480-484
    [39] 曲同宝,王丕武.基因枪法将BADH基因转入羊草的研究.中国草地,2005,27(2):27-30
    [40] 孙仲序,陈受宜,王建设,李桂芬,管雪强。农杆菌介导BADH基因转化葡萄的研究.2003,20(2):89-92
    [41] 王国良.农杆菌介导的紫花苜蓿BADH基因高效转化体系的优化和转基因植株的检测.甘肃农业大学硕士学位论文.2004
    [42] 王艳.苹果砧木品种BADH基因地遗传转化研究,山东农业大学,硕士学位论文,2004。
    [43] 夏阳,梁慧敏,陈受宜等.四倍体刺槐转甜菜碱脱氢酶基因的研究,中国农业科学,2004,37(8):1208—1211
    [44] 陈传芳,李义文,陈豫,白建荣,李辉,朱银锋,陈受宜,贾旭.通过农杆菌介导法获得耐盐转甜菜碱醛脱氢酶基因白三叶草.遗传学报,2004,31(1):97~101
    [45] 周树峰,薛兴宁,李银心.转BADH墓因番茄后代对盐胁迫的生理响应,2005年全国作物生物技术与诱变技术学术研讨会论文摘要集.32-33
    [46] 李秋莉,杨华,高晓蓉,刘大伟,安利佳.植物甜菜碱合成酶的分子生物学和基因工程.生物工程进展2002,22(1):84-86
    [47] Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Algelina2Nakase A M, Takabe T. Compatability of glycinebetaine inrice plants: evalutation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell and Evironment, 2000, 23:107~114.
    [48] HolmstrOm K O, Somersalo S, Mandal A, Palva E T, Welin B. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot, 2000, 51:177~185.
    [49] 彭斌.大麦耐盐性研究进展,大麦科学,2003,1:26-29。
    [50]黄有总,张国平.大麦耐盐机理与化控增强耐盐性的研究进展,大麦科学,2003,2:29-32
    [51]Nakamura T, Ishitani M, Harinasut P etal. Distribution of glycinebetaine in old and young leaf blades of saltstressed barley plants. Plant and Cell Physiology. 1996, 37 (6):873~877
    [52]Toshihide Nakamura, Yokota.S, Muramoto.Y, Tsutsui.K, Oguri. Y, Fukui.K & Takabe.T. Expression of a betaine aldehyde dehydrogenase gene in rice, a glycine betaine nonaccumulator,and possible localization of its protein in peroxissomes.plant J. 11:1115-1120.
    [53]Toshihide Nakamura, Mika Nomura, Hitoshi Mori, Andre T.Jagendorf, Akihiro Ueda & Tetsuko Takabe.An isozyme of betaine aldehydrogenase in Barly.Plant Cell Physiol,2001,42(10):1088-1092.
    [54]李红民,紫杉二烯合成酶及肿瘤血管生成抑制因子基因克隆与转基因研究,西北大学博士学位论文,2006.
    [55]吴乃虎.基因工程原理(第二版),北京,科学出版社
    [56]赵炜,郑佐华,毛裕民.全长cDNA的获得——RACE及其他方法进展,生命科学,1999,11(2):92-96
    [57]何东苟.全长cDNA文库的构建和新基因全长cDNA克隆的策略.热带医学杂志,2003,3(4):473-476
    [58]Gubler U, HoffmanB J. A simple and very efficient method fo r generat ing cDNA libraries. Gene, 1983, 25: 263-269.
    [59]Edery I, Chu L L, Sonenberg N, et al. An efficientst rategy to iso late full2length cDNA s based on an mRNA cap retent ion p rocedure (CAP ture). M ol Cell B iol, 1995,15: 3 363-3 371.
    [60]陶爱林,林兴华,张端品.获取全长cDNA若干方法的比较.武汉植物学研究,2003,21(2):179-186
    [61]FrohmanM A, DushM K, M art in G R. Rapid production of full length cDNAs from rare transcripts: amplification using a single gene specific oligo nucleotide primer. P roc Natl A cad S ci USA, 1988,85:8 998-9 002.
    [62]唐克轩,开国银,张磊,潘征,赵凌侠,孙小芬,郑金贵.RACE的研究及其在植物基因克隆上的应用.复旦学报(自然科学版),2002,21(6):704-709
    [63]Chenchik A, Diachenko L, MoqadamF,etal. Full-length cDNA cloning and determination ofrnRNA5'and 3'ends by amplification of adaptor-ligated CDNA.Biotechniques,1996,21(3):526-534.
    [64]De M, Linda E, Whiteman PH,et al.Isolation and characterisation of a cDNA clone encoding cinnamyl alcohol de-hydrogenase in Eucalyptus globulus Labill.Plant Science,1999,143(2): 173-182.
    [65]ReddyMK, Nair S, Singh B N,et al. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucle-oprotein gene (33RNP) from pea that is light stimulated.Gene,2001,263(1):179-187.
    [66]Etienne P, PetitotAS, HouotV,et al. Induction of tcI 7, a gene encoding a β-subunit of proteasome, intobacco plants treated with elicitins, salicylic acid or hydrogen peroxide.FEBSLetters,2000,466(2-3):213-218.
    [67]姚剑虹,孙小芬,唐克轩.半夏凝集素基因的克隆.复旦学报(自然科学版),2001,40(4):461-464.
    [68]YI Yan jun, XU Chengshui, ZHAO Bosheng, LIU Jiayao, WANG Xuechen. Betaine accumulation and the change of betaine aldehydedehydrogenase activity in barley seedlings under KCl and NaCl stress. Journal of Envi ronmental Sciences. 1999,11(4): 415-418.
    [69]Cheng, S. et al. Proc. Natl. Acad. Sci. USA,1994,91:5695-5699
    [70]Meyers, T.W.and Gelfand, D.H.Biochemistry,1991,30:7661-7666
    [71]Maruyama K,Sugano S.Oligo-capping:a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides.Gene,1994:138:171-174
    [72]Kato S,Sekine S.Oh SW,et al.Construction of a human full-length cDNA bank.Gene, 1994,150:243-250
    [73]Carninci P,Kvvam C,Kitamura A,et al.High efficiency selection of full-length cDNA by improved biotinylated cap trapper.DNA Res,1997,4(1):61-66.
    [74]Chenchik A, Moqadam F, Siebert P. A new method for full-length cDNA cloning by PCR. In: Krieg A ed. A Labo rato ry Guide to RNA: Isolation,Analysis, and Synthesis. New York: Wiley Liss, 1996. 273-321.
    [75]Edery I, Chu L L, Sonenberg N, et al. A n efficientst rategy to iso late full2length cDNA s based on a mRNA cap retent ion p rocedure (CA P ture). Mol Cell Biol, 1995, 15: 3 363-3 371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700