反相乳液技术制备纳米杂化粒子及其形态调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作利用反相乳液技术,将银离子在水相中原位还原和金属氧化物水解先驱体在油水界面水解反应结合起来,按照预期性能对其进行形态设计、调控和制备研究,得到了具有核壳结构和似草莓(镶嵌)结构的Ag/TiO2纳米杂化粒子。在对聚合物反相胶乳稳定性与相行为详细研究的工作基础上,于反相乳液体系中引入水溶性聚合物,利用纳米微反应器原理制备聚合物/纳米ZnS复合分散粒子。仅根据反相乳液体系的特点,利用水溶性聚合物对无机反应的限域和导向作用,在各种预设计的高分子模板中、选用不同的沉淀剂实现了粒子大小基本均一的ZnS纳米材料的形貌调控。这些研究工作实现了对纳米导体杂化新材料的设计、合成以及纳米导体粒子的形态可控制备与结构性能调变,为扩展纳米导体在各领域的实际应用提供了可能。
The structural design and controllable preparation of hybrid nanomaterialsfor the purpose of obtaining expectant properties is a focus of research inmaterials science. Hybrid nanomaterials can display the advantages of eachcomponent, furthermore give significant play to their cooperative advantages dueto the hybridization between their components. Hybrid nanomaterials hence havevaried functions and can be used for both constructional materials and functionmaterials, and have a vast range of prospects for applying. Semiconductor hybridnanomaterial is a typical and important kind of hybrid nanomaterial, it hasattracted considerable attention from physicists, chemists and materials scientists,and metal/semiconductor composite nanoparticles have been applied in catalyst,electronic devices and so on due to the possible interactions between metals andsemiconductors in the particles and the researches on their preparation andproperties have aroused general interest. Zinc sulfide is a fine semiconductormaterial with some characteristics such as infrared transparency, fluorescence andphosphorescence, and has been extensively used in sensors, high resolutiondisplays and electro luminescence materials and so on. The properties of ZnSnanomaterials are dependent to particle size and distribution of their particles aswell as their morphology to a great extent, thus it is a key to control these factors.
     There are many methods of preparing hybrid nanoparticles, which have theirrespective features. For example, the preparation of metal/semiconductorcomposite nanoparticles needs to tread the interface relations between metals andsemiconductors, which generally are achieved by modifying the surface polar ofmetals using an appropriate coupling agent, and the experimental procedures
    generally are overelaborate;Inverse emulsion technique is a new preparationtechnique, which uses non-polar media as a continuous phase, and waterdissolving reactants as a dispersed phase to form isolated very fine aqueous cellsas a micromicelle reactor or nano-reactor (or aqueous core called). Inverseemulsion technique is a simple, fast and effective method for preparing variouscharacteristic nanomaterials by designing and adjusting the reactionmicroenvironment, and open up a new way to prepare new materials.In this dissertation, we first report the structural design and controllablepreparation of Ag/TiO2 hybrid nanoparticles for the purpose of obtainingexpectant properties by use of the reduction of Ag+ in water phase and thehydrolysis of Ti(OC4H9)4 at the water/oil interface in water-in-oil emulsions.Ag/TiO2 hybrid nanoparticles with core-shell and strawberry-like structures wererespectively obtained by the use of the special interfacial properties in inverseemulsions under the optimized experimental conditions. The chemicalcomponents, morphology and photo-electric properties of the Ag/TiO2 hybridnanoparticles were characterized with TEM、IR、TG-DTA、XPS、XRD and SPS.The phase transformation of TiO2 from anatase, a crystal phase with catalyticactivity, to rutile usually occurs at 500-600℃. However, in our experiments, bothTiO2 and Ag@TiO2 nanoparticles prepared in the same system of inverse emulsionkept their anatase structure after calcinations at 700℃ for 4h. This observationopens up new possibilities for the application of photocatalysis over a widertemperature range. The effect of preparation methods on the phase-transformationtemperature of TiO2 from anatase to rutile needs further investigation. The resultsof Raman spectra indicated that the Ag/TiO2 hybrid nanoparticles withstrawberry-like structure are a surface-enhanced Raman scattering active medium.
    It is essential for controlling morphology of hybrid nanoparticles by usingconfinement and channel effect of water-soluble polymers in inverse emulsions oninorganic reactions to construct a stable inverse emulsion containing polymers.The stability of inverse emulsions can be usually adjusted though controllingexperimental conditions such as regulating oil/water ratio, emulsifiers and so on.The complication of constitution in an inverse emulsion containing polymersdecides the complication of the factors influencing their stability, and it is not onlydifficult to obtain a stable inverse emulsion containing polymers but go so far asto result in a phase inversion, if only some one factor is considered simply. Thus,the stability and phase behavior of acrylamide-based emulsions, prepared withsurfactants consisting of lipophilic Span80 and hydrophilic OP10, before and afterpolymerization were investigated. The research results two kinds of phaseseparation mechanisms caused by the ratio of toluene to water and an equivalenceprinciple of acrylamide concentration and HLB value. When the water volumefraction was larger, the phase separation mechanism was mainly a penetrating ofaqueous molecules from the dispersed phase droplets. When the water volumefraction was smaller, the phase separation mechanism was mainly sedimentationof the separated aqueous droplets. At a fixed toluene /water ratio, the emulsionstability and the emulsion type do not only relate to the ratio of the two surfactantsbut also to acrylamide concentration, and the effect of increasing acrylamideconcentration on character of the emulsions is similar to that of increasing OP10mass fraction (increasing HLB value), which determines the correspondingrelationship between acrylamide concentration and HLB value in the most stableemulsion system. In order to obtain the most stable emulsion at a fixed acrylamideconcentration, the emulsion with higher acrylamide concentration needs lower
    HLB value for the emulsion systems. This work laid a foundation for optimizing arecipe of a stable acrylamide-based emulsion by controlling these factors.On the basis of the above research on the stability of the acrylamide-basedemulsions, ZnS nanoparticles with various shapes were prepared in variousinverse emulsions containing polyacrylamide(PAM) and the formation mechanismof ZnS nanoparticles was investigated. The morphology of ZnS nanoparticlesprepared in this series of water-in-oil (W/O) emulsions was studied with TEM andXRD, and their photoelectric characteristics were characterized simply withphotoluminescence spectra and surface photovoltaic spectroscopy (SPS)measurements. The research results indicate that not only the PAM template butalso the precipitating agents (Na2S or H2S) can have an effect on the modalities ofZnS nanoparticles. The method developed in this work, based on the confinementand channel effect of the water-soluble polymer in an inverse emulsions on theinorganic reactions, can achieve success in controlling the morphology of ZnSnanomaterials in the various designed polymer templates by using differentprecipitators. The thermal stability of ZnS/PAM composite microspheres has anobvious increase, compared with the PAM microspheres. The hybrid materialswith a core-shell structure of the ZnS nanoparticles coated by PAM have potentialapplications in fluorescence and electroluminescence materials.In summary, some novel semiconductor hybrid nanoparticles were preparedby inverse emulsion technique in this dissertation, and the results obtained by thesystematic study in the dissertation have revealed the feasibility for thecontrollable preparation of the semiconductor hybrid nanomaterials by the use ofinverse emulsion technique.
引文
[1] Z M Stadnik, P Griesbach, G Dehe, P Gütlich, T Kohara, G Stroink, Ni M?ssbauer Study of the Hyperfine Magnetic Field Near the Ni Surface, Phys. Rev., 1987, B35(13), 6588.
    [2] 李新勇,李树本,纳米导体研究进展,化学进展,1996,8(3),231.
    [3] R Birringer, H Gleiter, H P Klein, Nanocrystalline Materials an Approach to a Novel Solid Structure with Gas-like Disorder, Phys. Lett., 1984, 102A(2), 365.
    [4] 李民乾,纳米科学技术—面向 21 世纪的新科技物理,物理,1992,21 (2),65.
    [5] E L Brus, Electron–electron and Electron-hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State, J. Chem. Phys., 1984, 80(9), 4403.
    [6] M L Steiqerwald, Surface Derivatization and Isolation of Semiconductor Cluster Molecules, J. Am. Chem. Soc., 1988, 110(10), 3046.
    [7] H Yoneyama, Polarization-Dependent Total-Refletion Fluorescence XAFS Study of Mo Oxide on a Rutile TiO2 (110) Single Crystal Surface, Cryt. Rev. Solid State Mater. Sci., 1993, 18(1), 69.
    [8] W J Albery, P N Bartlett, The Transport and Kinetics of Photogenerated Carriers in Colloidal Semiconductor Electrode Particles, J. Electrochem. Soc., 1984, 131(2), 315.
    [9] M A Fox, Photocatalysis on Modified Semiconductor Surfaces and on Bipolar Photoelectrodes, Nouv. J. Chim., 1987, 11(2), 129.
    [10] A Hagfeld, M Gratzel, Light Induced Chemical Reactions in Nanocrystalline Systems, Chem. Rev., 1995, 95(1), 49.
    [11] O Regan, M Gratzel, A Low-cost High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2, Nature, 1991, 353(3), 737.
    [12] M Gratzel, Heterogeneous Photochemical Electron Transfer. CRC Press, Baton Rouge, FL, 1998.
    [13] 沈伟韧,赵文宽,贺飞,TiO2 光催化反应及其在废水处理中的应用,化学进展,1998, 10, 349.
    [14] O M Alfano, D Bahnemann, A R Cassaro, R Dillert, R Goslich, Photocatalysis in Water Environments Using Artificial and Solar Light, Catalysis Today, 2000, 58, 199.
    [15] G B Raupp, A Alexiadis, M M Hossain, R Changrani, Scaling Laws and Design of Structured Photocatalytic Oxidation Reactors for Air Purification , Catalysis Today, 2001, 69, 41.
    [16] 下吹越光秀,工业材料,1997,45,67.
    [17] 张明,吉林大学博士学位论文,2005,长春.
    [18] 吕孟凯,固态化学,山东大学出版社,1996.
    [19] B Shinner, Am. Mineral, 1960, 45, 612.
    [20] S H Yu, M Yoshimura, AFM Contents, Adv. Mater., 2002, 14(4), 296.
    [21] S B Qadri, E F Skelton, D Hsu, Transport Spin Polarization of NixFe1-x: Electronic Kinematics and Band Structure, Phys. Rev B., 1999, 60(1), 9191.
    [22] Y D Kin, M H Sonezakik, Sintering Behaviour of Monodispersed ZnS Powders, J. Mater. Sci., 1997, 32, 5101.
    [23] N Q Liema, V X Quang, Solidstate Communications, 2001, 117, 255.
    [24] 张海明,王之建,张力功,化学合成法制备 ZnS 基纳米荧光粉研究,无机材料学报,2002,17(6),1148.
    [25] 杨素华,科学发展,2002,358,66.
    [26] 陈谋智,柳兆洪,王余姜,薄膜 ZnS: Er~(3+)的近红外发光,厦门大学学报,1997,36(4),545.
    [27] 马国宏,杜祖亮,赵伟利,ZnS 超微粒有序组装体系制备与结构研究,化学物理学报,1998,11(3),252.
    [28] 匡汉茂,邓兆祥,李春辉,CdS/MS(M=Ag,Pb,Cu,Zn)导体纳米复合结构的制备,无机化学学报,2002,18(2),133.
    [29] 王文保,岳永德,花日茂,ZnS 对可溶性染料的光催化降解研究,安徽农业大学学报,1997,24(4),401.
    [30] 憨勇,刘正堂,郑修麟,化学气相沉积制备 ZnS 块材料均匀性的研究,硅酸盐通报,1998,4,15.
    [31] 牛新书,刘艳丽,徐甲强,纳米硫化锌的合成研究,无机材料学报,2002,17(4),817.
    [32] 张贻瑞,王建,基础材料与新材料,天津大学出版社,1994.
    [33] US Pat: 4102696, DOS 2734690, DOS 2734692, Bayer AG.
    [34] S T Hobson, K J Shea, Bridged Bisimide Polysilsesquioxane Xerogels: New Hybrid Organic-Inorganic Materials, Chem. Mater., 1997, 9, 616.
    [35] Y Kim, W K Lee, Polym. Inter., 1997, 43, 129.
    [36] A Morikawa, H Yamaguchi, Formation of Interconnected Globular Structure of Silica Phase in Polyimide-Silica Hybrid Films Prepared by the Sol-Gel Process, Chem. Mater., 1994, 6, 913.
    [37] A Morikawa, Y Iyoku, Preparation of a New Class of Polyimide Silica Hybride Films by Sol-gel Process, Polymer, 1992, 24(1), 107.
    [38] Lamer, Dineger, Theory, Production, and Formation of Monodispersed Hydrosols, J. Am. Chem. Soc., 1950, 72, 4847.
    [39] 傅献彩,沈文霞,姚天扬,物理化学,高等教育出版社,1995.
    [40] P R Mc Daniel, T L St Clair, Morphology and Physical Properties of Polyimide-inorganic Hybrids, Polym. Mater. Sci. Eng., 1997, 76, 181.
    [41] Q Hu, E Marand, Poly (amide-imide)/TiO2 Nano-composite Gas Separation Membranes: Fabrication and Characterization, J. Membr. Sci., 1997, 135, 65.
    [42] X H Chon, K E Gonsalves, Synthesis and Properties of an Aluminum Nitride/Polyimide Nanocomposite Prepared by a Nonaqueous Suspension Process, J. Mater Res., 1997, 12, 1274.
    [43] F Hide, K Nito A Yasuda, Photoinduced Doping of Thin Amorphous NO3 Films, Thin Solid Film, 1994, 240, 157.
    [44] J L Hedrick, R D Miller, D Yoon, Nanoscopically Engineered Organic-Inorganic Hybrids as Low Dielectric Constant, High Modulus Insulating Materials for Microlectronic Applications, Polym. Prepr., 1997, 38(1), 987.
    [45] S A Srinivasan, J L Hedrick, Crosslinked Networks Based on Trimethoxysilyl Functionalized Poly(amic ethyl ester) Chain Extendable Oligomers, Polymer, 1997, 38, 3129.
    [46] Q Fu, G Wang, Polyethylene Toughened by CaCO3 Particle: Brittle-ductile Transition of CaCO3-toughened HDPE, J. Appl. Poly. Sci., 1993, 50, 673.
    [47] B Wang, G L Wilkes, Novel Hybrid Inorganic–organic Abrasion-resistant Coatings Prepared by a Sol–gel Process, J. Macro. Sci. Pure Appl. Chem., 1994, A31(2), 249.
    [48] S Yano, Preparation and Characterization of Hydroxypropyl Cellulose/Silica Micro-hybrids, Polymer, 1994, 35(25), 5565.
    [49] S Amberg-Schwab, M Hoffmann, Inorganic-organic Polymers with Barrier Properties for Water, Vapor, Oxygen and Flavor, J. Sol-gel Sci. Tech., 1998, 1/2, 141.
    [50] 潘伟,翟普,刘立志,SiO2 纳米粉对炭黑/硅橡胶复合材料的压阻、阻温特性的影响,材料研究学报,1997,4,397.
    [51] S W Muh, T Pinnaviaia, Clay-Polymer Nanocomposites Formed from Acidic Derivatives of Montmorillonite and an Epoxy Resin, J. Chem. Mater., 1994, 6, 468.
    [52] P Aranda, E Ruiz-Hitzky, Poly (ethylene oxide)-Silicate Intercalation Materials, J. Chem. Mater., 1992, 4, 1395.
    [53] B Tony, D Morais, Hybrid Organic–Inorganic Light-Emitting Diodes, Adv. Mater., 1999, 11(2), 107.
    [54] 唐芳琼,丁晓武,赵果求,陈东,陈艳丽,可控无机纳米颗粒制备与调变,中国粉体技术,2000,6(6).
    [55] M S Fleming, T K Mandal, D R Walt, Nanosphere-Microsphere Assembly: Methods for Core-shell Material Spreparation, Chem. Mater., 2001, 13, 2210.
    [56] F Caruso, H Lichtenfeld, M Giersig, Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles, J. Am. Chem. Soc., 1998, 120, 8523.
    [57] F Caruso, H M?hwald, Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids, Langmuir, 1999, 15, 8276.
    [58] F Caruso, A S Susha, M Giersig, Magnetic Core-Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres, Adv. Mater., 1999, 11, 950.
    [59] R A Caruso, A Susha, F Caruso, Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres, Chem. Mater., 2001, 13, 400.
    [60] F Caruso, Hollow Capsule Processing through Colloidal Templating and Self-Assembly.Chem, Chem. Eur. J., 2000, 6, 413.
    [61] F Caruso, C Schüler, D G Kurth, Core-Shell Particles and Hollow Shells Containing Metallo-Supramolecular Components, Chem. Mater., 1999, 11, 3394.
    [62] F Caruso, D Trau, H M?hwald, Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules, Langmuir, 2000, 16, 1485.
    [63] 黄琨,向明,周德惠,胡文军,核壳式无机-高分子纳米复合粒子的制备与表征,化工新型材料,2002,30(10),8.
    [64] X P Qiu, F Winnik, Preparation and Characterization of PVA Coated Magnetic Nanoparticles, Chinese Journal of Polymer Science, 2000, 18, 535.
    [65] 施卫贤,杨俊,王亭杰,磁性 Fe3O4 微粒表面有机改性,物理化学学报,2001,17,507.
    [66] 官建国,邓惠勇,王维,任平,以胶体粒子为模板制备核壳纳米复合粒子,化学进展,2004,16(3),327.
    [67] M J Percy, C Barthet, J C Lobb, Synthesis and Characterization of Vinyl Polymer-Silica Colloidal Nanocomposites, Langmuir, 2000, 16, 6913.
    [68] H T Oyama, R Sprycha, Y Xie, Coating of Uniform Inorganic Particles with Polymers, J. Colloid Interface Sci., 1993, 160(2), 298.
    [69] E Bourgeat Lami, J Lang, Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media: 1. Silica Nanoparticles Encapsulated by Polystyrene, J. Colloid Interface Sci., 1998, 197(2), 293.
    [70] R Partch, S G Gangolli, E Matijevic, Conducting Polymer Composites: I. Surface-induced Polymerization of Pyrrole on Iron (III) and Cerium (IV) Oxide Particles, J.Colliod Interface Sci., 1991, 144, 27.
    [71] C L Huang, E Matijevic, Coating of Uniform Inorganic Particles with Polymers: III. Polypyrrole on Different Metal Oxides, J. Mater. Res., 1995, 10, 1327.
    [72] T K Mandal, M S Fleming, D R Walt, Preparation of Polymer Coated Gold Nanoparticles by Surface-Confined Living Radical Polymerization at Ambient Temperature, NanoLett, 2002, 2(1), 3.
    [73] 刘润静,邹海魁,郭奋,核壳结构型纳米 CaCO3-SiO2·nH2O 复合粒子的制备,材料研究学报,2001,15,61.
    [74] 程彬,朱玉瑞,江万权,无机-高分子磁性复合粒子的制备与表征,化学物理学报,2000,13,359.
    [75] 臧丽坤,陈运,吴镇江,一种制备 Ni/Al2O3 复合陶瓷的新方法,功能材料,2002,33 (5),548.
    [76] M Ocana, A R Gonzale Elipe, Preparation and Characterization of Uniform Spherical Silica Particles Coated with Ni and Co Compounds, Colloidsand Surfaces A: Physico chemical and Engineeing Aspects, 1999, 157, 315.
    [77] A Imhof, Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells, Langmuir, 2001, 17, 3579.
    [78] H X Guo, X P Zhao, Synthesis of Ni/Polystyrene/TiO2 Multiply Coated Microspheres, Langmuir, 2003, 19, 4884.
    [79] C Song, Z Hu, Preparation and Characterization of Silver/TiO2 Composite Hollow spheres, Journal of Colloid and Interface Science, 2004, 272, 340.
    [80] H Kawaguchi, K Fujimoto, Y Nakazawa, Modification and Functionalization of Hydrogel Microspheres, Colloids Surf. A, 1996, 109, 147.
    [81] H Bamnolker, B Nitzan, S Gura, New Solid and Hollow, Magnetic and Non-magnetic, Organic-inorganic Monodispersed Hybrid Microspheres: Synthesis and Characterization, J. Mater. Sci. Lett., 1997, 16, 1412.
    [82] 曹同玉,刘庆普,胡金生,聚合物乳液合成原理 性能及应用,化学工业出版社,2000.
    [83] 王晓茹,潘志存,刘德山,周其痒,反相乳液聚合的新进展,现代化工,1996,4,18.
    [84] 刘春秀,章悦庭,反相乳液聚合及其应用,金山油化纤,3002,2(22),22.
    [85] M A Lopez-Quintela, J Rivas, Chemical Reactions in Microemulsions: A Powerful Method to Obtain Ultrafine Particles, J. Colloid Interf. Sci., 1993, 158, 4462.
    [86] M P Pilenni, J. Phys. Chem., 1993, 97, 69713.
    [87] F G Sherif, L J Shyu, Emulsion Precipitation of Yttria Stabilized Zirconia for Plasma Spray Coatings, J. Amer. Ceram Soc., 1991, 74, 3754.
    [88] I Sevic, Y Sarikaya, M Akinc, Adsorption Characteristics of Alumina Powders Produced by Emulsion Evaporation, Ceram Int., 1991, 17, 15.
    [89] G Wilson, R Heathcote, Role of Sol--Gel Powders in Thermal-Spraying Processes, Ceram Bull., 1990, 69, 1137.
    [90] 黄宵滨,马季铭,程虎民,赵振国,齐利民,乳状液法制备ZnS纳米粒子,应用化学,1997,14(1),117.
    [91] J H Park, C Oh, S I Shin, S K Moon, S G Oh, Preparation of Hollow Silica Microspheres in W/O Emulsions with Polymers, J. Colloid Interf. Sci., 2003, 266, 107.
    [92] C Me′nager, O Sandre, J Mangili, V Cabuil, Preparation and Swelling of Hydrophilic Magnetic Microgels, Polymer, 2004, 45, 2475.
    [93] S Mann, The chemistry of form, Angew. Chem. Int. Ed., 2000, 39, 3392.
    [94] H Yang, N Coombs, G A Ozin, Morphogenesis of Shapes and Surface Patterns in Mesoporous Silica, Nature, 1997, 386, 692.
    [95] W L Murphy, D J Mooney, Bioinspired Growth of Crystalline Carbonate Apatite on Biodegradable Polymer Substrata, J. Am. Chem. Soc., 2002, 124(9), 1910.
    [96] H J Shin, R Ryoo, Z Liu, O Terasaki, Template Synthesis of Asymmetrically Mesostructured Platinum Networks, J. Am. Chem. Soc., 2001, 123(6), 1246.
    [97] B R Sauders, B Vincent, Steady-state Foaming and the Properties of Thin Liquid Films from Aqueous Alcohol Solutions, Adv. Colloid Interf. Sci., 1999, 80, 1.
    [98] M J Murrray, M J Snowden, The Preparation, Characterisation and Applications of Colloidal Microgels, Adv. Colloid Interf. Sci., 1995, 54, 73.
    [99] W Sch?rtl, Crosslinked Spherical Nanoparticles with Core-Shell Topology, Adv. Mater., 2000, 12(24), 1899.
    [100] 张颖,房喻,林书玉,刘静,杨娟玲,纳米结构型PMAA/CdS复合微球的微凝胶模板法制备研究,物理化学学报,2004,20,897.
    [101] R T Tom, A S Nair, N Singh, M Aslam, C L Nagendra, R Philip, K Vijayamohanan, T Pradeep, Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 Core-Shell Nanoparticles: One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties, Langmuir, 2003, 19, 3439.
    [102] A Ueno, N Kakuta, K H Park, M F Finlayson, A J Bard, A Campion, M A Fox, S E Webber, J M White, Silica-supported ZnS Cntdot CdS Mixed Semiconductor Catalysts for Photogeneration of Hydrogen, J. Phys. Chem., 1985, 89, 3828.
    [103] C Nasr, H S Chandini, W Y Kim, R H Schmehl, P V Kamat, Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of SnO2/CdS Coupled Nanocrystallites with a Ruthenium Polypyridyl Complex, J. Phys. Chem. B, 1997, 101, 7480.
    [104] I P Santos, D S Koktysh, A A Mamedov, M Giersig, N A. Kotov, L M Liz-Marzan, One-Pot Synthesis of Ag@TiO2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly, Langmuir, 2000, 16, 2731.
    [105] K Kalyanasundaram, M Gratzel, Optoelectronic Properties of Inorganic Solids (Ed.: D. M. Roundhill, J. P. Fackler), Plenum Press, New York, 1999, p. 169.
    [106] I Pastoriza-Santos, L M Liz-Marzan, Formation and Stabilization of Silver Nanoparticles through Reduction by N,N-Dimethylformamide, Langmuir, 1999, 15, 948.
    [107] T Ung, L M Liz-Marzan, P Mulvaney, Redox Catalysis Using Ag@SiO2 Colloids, J. Phys. Chem. B, 1999, 103, 6770.
    [108] L M Liz-Marzan, M Giersig, P Mulvaney, Synthesis of Nanosized Gold-Silica Core-Shell Particles, Langmuir, 1996, 12, 4329.
    [109] S Link, Z L Wang, M A El-Sayed, Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition, J. Phys. Chem. B, 1999, 103, 3529.
    [110] L M. Liz-Marzan, A P Philipse, Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers, J. Phys. Chem., 1995, 99, 15120.
    [111] Y Mizukoshi, K Okitsu, Y Maeda, T A Yamamoto, R Oshima, Y Nagata, Sonochemical Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution, J. Phys. Chem. B, 1997, 101, 7033.
    [112] M Treguer, C Cointet, H Remita, J Khatouri, M Mostafavi, J Amblard, J Belloni, R Keyzer, Dose Rate Effects on Radiolytic Synthesis of Gold-Silver Bimetallic Clusters in Solution, J. Phys. Chem. B, 1998, 102, 4310.
    [113] G C Papavassiliou, Surface Plasmons in Small Au-Ag Alloy Particles, J. Phys. F: Met. Phys., 1976, 6, L103.
    [114] M Boutonnet, J Kizling, P Stenius, G Maire, The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions, Colloids Surf., 1982, 5, 209.
    [115] K Osseo-Asare, F Arriagada, Growth Kinetics of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion: A Reverse Micellar Pseudophase Reaction Model, J. Colloid Interface Sci., 1990, 50, 321.
    [116] N Moumen, M P Pileni, R A Mackay, Polymerization of Methacrylate in a W/O Microemulsion Stabilized by a Methacrylate Surfactant, Colloid Surf. A, 1999, 151, 409.
    [117] T F Xie, D J Wang, S M Chen, T J Li, Photovoltaic Properties of Novel Conjugated Oligomer/n-Si (111) Heterostructures, Thin Solid Films, 1998, 415, 327.
    [118] H Du, Y Cao, Y Bai, P Zhang, X Qian, D Wang, T Li, X Tang, Photovoltaic Properties of Polymer/Fe2O3/Polymer Heterostructured Microspheres, J. Phys. Chem. B, 1998, 102, 2329.
    [119] L Armelao, R Bertoncello, E Cattaruzza, S Gialanella, S Gross, G Mattei, P Mazzoldi, E Tondello, Synthesis and Characterization of Crystalline Tin Oxide Nanoparticles, J. Mater. Chem., 2002, 12, 2401.
    [120] L Q Jing, X J Sun, W M Cai, Z L Xu, Y G Du, H G Fu, The Preparation and Characterization of Nanoparticle TiO2/Ti films and Their Photocatalytic Activity, J. Phys. Chem. Solids, 2003, 64, 615.
    [121] Z Qinghong, G Lian, G Jingkun, B McKinney, M Rouse, Effects of Calcination on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis, Appl. Catal. B, 2000, 26, 207.
    [122] N Yoshio, K Mitsuo, N Junichi, Factors Governing the Initial Process of TiO2 Photocatalysis Studied by Means of in-Situ Electron Spin Resonance Measurements, J. Phys. Chem. B, 1998, 102, 10279.
    [123] W H Brattain, The Transistors, a Semiconductor Triode, Phys. Rev., 1947, 72, 345.
    [124] C G B Grrrett, W H Brattain, Physical Theory of Semiconductor Surfaces, Phys. Rev., 1955, 99, 376.
    [125] C L Balestra, J Lagowski, H C Gatos, Determination of Surface State Parameters from Surface Photovoltage Transients, Surf. Sci., 1971, 26, 317.
    [126] H C Gatos, J Lagowski, R Banisch, Photo. Sci. & Eng., 1982, 26, 42.
    [127] H C Gatos, J Lagowski, Surface Photovoltage Spectroscopy-a New Approach to the Study of High-gap Semiconductor Surfaces, J. Vas. Sci. Techol., 1973, 10, 130.
    [128] K Germanova, C H Hardalov, EL2 Deep Level in Sub-bandgap Surface Photovoltage Spectra in GaAs Bulk Crystals, Appl. Phys.,1987, A43, 117.
    [129] S Y Rosenwak, L Burstein, Effects of Reactive Versus Unreactive Metals on the Surface Recombination Velocity at CdS and CdSe(11 0) Interfaces, Appl. Phys. Lett., 1990, 57, 458.
    [130] J Clabes, M Henzler, Determination of Surface States on Si(111) by Surface Photovoltage Spectroscopy, Phys. Rev., 1980, B21, 625.
    [131] Y S Tang, Photoreflectance Line Shapes of Semiconductor Microstructures, J. Appl. Phys., 1991, 69(12), 8298.
    [132] J Zhang, D J Wang, Photovoltaic Properties of Porphyrin Solid Films With Electric-field Induction, Thin Solid Film, 1996, 284-285, 596.
    [133] F Steinrisser, R E Hetrick, Electron Beam Technique for Measuring Microvolt Changes in Contact Potential, Rev. Sci. Instrum., 1971, 42, 34.
    [134] 曹建,汪茫,孙景志,周雪琴,表面光电压谱(SPS)在有机导体材料研究中的应用,功能材料,2002,33(3),231.
    [135] K Nauka, T I Kamins, Surface Photovoltage Measurement of Hydrogen-Treated Si Surfaces, J. Electrochem. Soc.,1999, 146, 292.
    [136] K Yanagisawa, J Ovenstone, Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature, J. Phys. Chem. B, 1999, 103, 7781.
    [137] L Q Jing, X J Sun, J Shang, W M Cai, Z L Xu, Y G Du, H G Fu, Review of Surface Photovoltage Spectra of Nano-sized Semiconductor and its Applications in Heterogeneous Photocatalysis, Sol. Energy Mater. Sol. Cells., 2003, 79, 133.
    [138] X M Qian, X T Zhang, Y B Bai, J. Nano. Res., 2000, 2, 191.
    [139] L Q Jing, Z L Xu, Surface Properties and Photocatalytic Activities of ZnO Ultrafine Particles, Appl. Surf. Sci., 2001, 180, 308.
    [140] M Sadeghi, W Liu, Role of Photoinduced Charge Carrier Separation Distance in Heterogeneous Photocatalysis: Oxidative Degradation of CH3OH Vapor in Contact with Pt/TiO2 and Cofumed TiO2-Fe2O3, J. Phys. Chem., 1996, 100, 19466.
    [141] N J Renault, Study of the Effect of Deposited Platinum Particles on the Surface Charge of Titania Aqueous Suspensions by Potentiometry, Electrophoresis, and Labeled-ion Adsorption, J. Phy. Chem., 1986, 90, 2732.
    [142] L Q Jing, Y G Zhang, Z L Xu, ZnO 超微粒子的 EPR 特性和光催化性能,J. Chin. Univ., 2001, 22, 1885.
    [143] H Tsutomu, V K Prashant, Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters, Langmuir, 2004, 20, 5645.
    [144] 张明,高歌,刘凤岐,TiO2 纳米粒子包覆聚苯乙烯球的结晶性能与表面光电压特性,高等学校化学学报,2004,25(11),2122.
    [145] 徐用军,谢腾峰,王德军,TiO2 负载型催化剂及光催化还原 CO2 反应的表面光电压谱研究,高等学校化学学报,1999,22(3),461.
    [146] D H Chen, C J Chen, Formation and Characterization of Au–Ag Bimetallic Nanoparticles in Water-in-oil Microemulsions, J. Mater. Chem., 2002, 12, 1557.
    [147] G Busca, G Ramis, A Gallardo, J. Chem. Soc., 1994, 90, 3181.
    [148] M Kerker, C G Blatchford, Elastic Scattering, Absorption, and Surface-enhanced Raman Scattering by Concentric Spheres Comprised of a Metallic and a Dielectric Region, Phys. Rev. B, 1982, 26, 4052.
    [149] Y Zhou, C Y Wang, H J Liu, J. Mater. Sci., 1999, 67, 95.
    [150] 刘云,刘春艳,张志颖,银-金红石复合纳米微晶的光谱性能,化学学报,2000,58(4),397.
    [151] D Hunkeler, J H Barajas, In Industrial Water Soluble Polymers;C A Finch, Ed.;The Royal Society of Chemistry: Cambridge, U.K.;1996;pp 10-27.
    [152] F L Buchholz, In Ullmann's Encyclopedia of Industrial Chemistry;B Elvers, S Hawkins, G Schulz, Eds.;Wiley-VCH: Weinheim, Germany, 1992;pp 143-156.
    [153] R S Farinato, S Y Huang, In Colloid-Polymer Interactions: From Fundamentals to Practice;R S Farinato, P Dubin, Eds.;Wiley: New York, 1998;pp 3-50.
    [154] P Martial, C Jean-Marc, S Joseph, C Fran?oise, Synthesis in Inverse Emulsion and Properties of Water-soluble Associating Polymers, J. Appl. Polym. Sci. 2002, 84(7), 1418.
    [155] F Chatzopoulos, J L Fugit, I Ouillon, F Rodriguez, J LTaverdet, étude, en fonction de différents paramètres, de l'absorption et de la désorption d'eau par un copolymère acrylamide–acrylate de sodium réticulé, Eur. Polym. J., 2000, 36, 51.
    [156] Z F Liu, W B Brian, Inverse Dispersion Polymerisation of Acrylic Acid Initiated by a Water-soluble Redox Pair: the Role of Drop Mixing, Polymer, 1999, 40, 2181.
    [157] S J Lu, R X Liu, X X Sun, A Study on the Synthesis and Application of an Inverse Emulsion of Amphoteric Polyacrylamide as a Retention Aid in Papermaking , J. Appl. Polym. Sci., 2002, 84(2), 343.
    [158] S L Goh, N Murthy, M Xu, J M Frechet, Cross-Linked Microparticles as Carriers for the Delivery of Plasmid DNA for Vaccine Development, J. Bioconjugate Chem., 2004, 15(3), 467.
    [159] S Buck, P S Pennefather, H Y Xue, J Grant, Y L Cheng, C J Allen, Engineering Lipobeads: Properties of the Hydrogel Core and the Lipid Bilayer Shell, Biomacromolecules, 2004, 5(6), 2230.
    [160] C Marina, P Giovanna, C Giacomo, C Marcella, Separation of Proteins in a Multicompartment Electrolyzer with Chambers Defined by a Bed of Gel Beads, Electrophoresis 2003, 24(4), 577.
    [161] E A S Doherty, W K Cheuk, E B Annelise, Sparsely Cross-linked Nanogels for Microchannel DNA Sequencing, Electrophoresis, 2003, 24(24), 4170.
    [162] A Ray, Solvophobic Interactions and Micelle Formation in Structure Forming Nonaqueous Solvents, Nature, 1971, 231, 313.
    [163] J Hernández-Barajas, D J Hunkeler, Heterophase Water-in-oil Polymerization of Acrylamide by a Hybrid Inverse Emulsion/Inverse Microemulsion Process, Polymer 1997, 38(22), 5623.
    [164] D Hunkeler, Heterophase Polymerizations: A Physical and Kinetic Comparison and Categorization, Adv. Polym. Sci., 1994, 112, 115.
    [165] W Albers, J T G Overbeek, J. Colloid Sci., 1959, 14, 510.
    [166] F Candau, In Emulsion Polymerization and Emulsion Polymers;P A Lovell, M S El-Aasser, Eds;Wiley: New York, 1997;pp 724-741.
    [167] 彭顺金,陈正国,张贵军,可聚合非离子型乳化剂稳定的聚丙烯酰胺反相胶乳,应用化学,1998,5,80.
    [168] 杨振忠,赵得禄,许元泽,环氧树脂相反转乳化过程相态发展研究,高等学校化学学报,1999,20(5),809.
    [169] 哈润华,胡金生,丙烯酰胺聚合进展,石油化工,1985,14(6),2122.
    [170] J Hernández-Barajas, D J Hunkeler, Inverse-emulsion Copolymerization of Acrylamide and Quaternary Ammonium Cationic Monomers with Block Copolymeric Surfactants: Copolymer Composition Control Using Batch and Semi-batch Techniques, Polymer, 1997, 38 (2), 449.
    [171] J Hernández-Barajas, D J Hunkeler, Inverse-emulsion Polymerization of Acrylamide Using Block Copolymeric Surfactants: Mechanism, Kinetics and Modeling, Polymer, 1997, 38 (2), 437.
    [172] X W Ge, Q Ye, X L Xu, Z C Zhang, Radiation Copolymerization of Acrylamide and Cationic Monomer in an Inverse Emulsion, Polymer, 1998, 39(10), 1917.
    [173] P Martial, S Joseph, C Francoise, G G Robert, Polymerization of Acrylamide in Solution and Inverse Emulsion: Number Molecular Weight Distribution with Chain Transfer Agent, Polymer, 1999, 40, 3101.
    [174] B R Midmore, The Role of Added Electrolyte in the Stabilization of Inverse Emulsions, J. Colloid Interface Sci. 1999, 213, 352.
    [175] B Jaroslav, C Ignac, Acrylamide and Butyl Acrylate Polymerization in Winsor IV (w/o) and Winsor I (o/w) Microemulsions, Macromolecules 2000, 33, 5353.
    [176] D Zhang, R W Zhang, M Zhang, G Gao, X M Song, D M Wang, F Q Liu, Y Li, Inverse Emulsion Polymerization of Acrylamide, Polymer Preprints, 2004, 45(1), 1034.
    [177] 宫建国,何平,谢洪泉,石油化工,1994,23(8),514.
    [178] C Boned, M Clausse, J P Lagourelte, Detection of Structural Transitions in Water-in-oil Microemulsion-type Systems through Conductivity and Permittivity Studies, J. Phys. Chem., 1980, 84, 1520.
    [179] S Myung-Geun, J Sung-Ho, K Jong-Yun, K Jong-Duk, Rapid Evaluation of Water-in-Oil (w/o) Emulsion Stability by Turbidity Ratio Measurements, J. Colloid Interface Sci., 2000, 230, 213.
    [180] K Paul, R S Brian, The Role of Added Electrolyte in the Stabilization of Inverse Emulsions, J. Colloid Interface Sci., 2001, 242, 437.
    [181] A Luc, H David, Manifestation of Polyacrylamide Inverse-Emulsion Instabilities through Oscillatory Shear, Langmuir, 2003, 19(18), 7164.
    [182] Brcher, P. Emulsion: Theory and Practice, Reinhold Puslishing Co.;New York, 1957. Ch10.
    [183] 杨锦宗,曹亚峰,刘兆丽,非离子乳化剂对淀粉接枝丙烯酰胺、丙烯酸反相乳液聚合反应的作用,应用化学,2003,20(8),769.
    [184] O O Foyeke, J B Diane, Influence of Interfacial Properties of Lipophilic Surfactants on Water-in-Oil Emulsion Stability, J. Colloid Interface Sci., 1998, 197, 142.
    [185] S Mukherjee, C A Miller, T Fort, Theory of Drop Size and Phase Continuity in Microemulsions I. Bending Effects with Uncharged Surfactants, J. Colloid Interface Sci., 1983, 91, 223.
    [186] J B M Eric, D S Richard, Phase Behavior of Inverse Microemulsions for the Polymerization of Acrylamide in Near-critical and Supercritical Continuous Phases, J. Phys. Chem., 1990, 94, 345.
    [187] C Graillat, C Pichot, A Guyot, M S El-Aasser, Inverse Emulsion Polymerization of Acrylamide. I. Contribution to The Study of Some Mechanistic Aspects, J. Polym. Sci. Polym. Chem. Ed., 1986, 24, 427.
    [188] A Henglein, Small-particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles, Chem Rev, 1989, 89, 1861.
    [189] K Masashi, H Hiroji, W Yuji, J. Chem Soc. Faraday Trans., 1996, 92(13), 2401.
    [190] B R Müller, S Majoni, R Memming, Particle Size and Surface Chemistry in Photoelectrochemical Reactions at Semiconductor Particles, J. Phys. Chem. B, 1997, 101, 2501.
    [191] P Calandra, A Longo, V T Liveri, Synthesis of Ultra-small ZnS Nanoparticles by Solid-Solid Reaction in the Confined Space of AOT Reversed Micelles, J. Phys. Chem. B, 2003, 107, 25.
    [192] S H Cheng, W M Liu, Preparation and Characterization of Surface-Coated ZnS Nanoparticles, Langumuir, 1999, 15, 8100.
    [193] Y Xie, J X Huang, B Li, Y Liu, Y T Qian, A Novel Peanut-like Nanostructure of II-VI Semiconductor CdS and ZnS, Adv. Mater., 2000, 12, 1523.
    [194] J X Huang, Y Xie, B Li, Y Liu, Y T Qian, In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres, Adv. Mater., 2000, 12, 808.
    [195] L P Wang, G Y Hong, Mater. Res. Bull., 2000, 35, 695.
    [196] C Kaito, Y Saito, K Fujita, Studies on The Structure and Morphology of Ultrafine Particles of Metallic Sulfides, J. Crystal Growth, 1989, 94, 967.
    [197] Y K Ezhovskii, A H Klywikov, A V P yotkovskaya, Growth of Zinc Sulfide Layers Using Molecular Beams, Inog. Mater., 2001, 37(3), 213.
    [198] M Abboudi, A Mosset, Synthesis of d Transition Metal Sulfides from Amorphous Dithiooxamide Complexes, J. Solid State Chemisty, 1994, 109, 70.
    [199] K L Dloczi, R Engelhardt, K Ernst, Zinc Sulfide Columns by Chemical Conversion of Zinc Oxide, Sensors and Actuators B, 2002, 84, 33.
    [200] K Okuyama, W Lenggoyol, N Tagami, Preparation of ZnS and CdS Fine Particles with Different Particle Sizes by a Spray-pyrolysis Method, J. Mater. Sci., 1997, 32, 1229.
    [201] M L Breen, A D Dinsmore, R H Pink, Sonochemically Produced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals, Langumuir, 2001, 17, 903.
    [202] X C Jian, Y Xie, J Lu, Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by -Irradiation, Chem. Mater., 2001, 13, 1213.
    [203] T Hirai, H Sato, I Komasaw, Mechanism of Formation of CdS and ZnS Ultrafine Particles in Reverse Micelles, Ind. Eng. Chem. Res., 1994, 33(12), 3262.
    [204] J Ma, X Huang, H Cheng, Polymer-inorganic Nanocomposites Prepared by Hydrothermal Method: PVA/ZnS, PVA/CdS, Preparation and Characterization, J. Mater. Sci., 1996, 15, 1247.
    [205] Y D Li, Y Ding, Y T Qian, A Solvothermal Elemental Reaction to Produce Nanocrystalline ZnSe, Inorg. Chem., 1998, 37, 28.
    [206] X F Qian, J Yin, X X Guo, Polymer-inorganic Nanocomposites Prepared by Hydrothermal Method: PVA/ZnS, PVA/CdS, Preparation and Characterization, J. Mater. Sci. Lett., 2000, 19, 2235.
    [207] B Thomas, M Abdulkhadar, Elastic Properties of Consolidated Nano-particles of ZnS and CdS, Solid State Communications, 1995, 94(3), 205.
    [208] J F Xu, W Ji, J Y Lin, Preparation of ZnS Nanoparticles by Ultrasonic Radiation Method, Appl. Phys. A, 1998, 66, 639.
    [209] J F Xu, W Ji, Characterization of ZnS Nanoparticles Prepared by New Route, J. Mater. Sci. Lett., 1999, 18, 115.
    [210] Y N Zhang, N Raman, J K Bailey, A New Sol-gel Route for the Preparation of Nanometer-scale Semiconductor Particles that Exhibit Quantum Optical Behavior, J. Phys. Chem., 1992, 96(23), 9098.
    [211] Y Yang, J M Hang, S Y Liu, Preparation, Characterization and Electroluminescence of ZnS Nanocrystals in a Polymer Matrix, J. Mater. Chem., 1997, 7(1), 131.
    [212] T A Guiton, C L Czekaj, C G Pantano, J. Non-Cryst. Solids, 1990, 121(1-3), 7.
    [213] S W Haggata, J David, Synthesis and Characterization of II–VI Semiconductor Nanoparticulates by the Reaction of a Metal Alkyl Polymer Adduct with Hydrogen Sulfide, J. Mater. Chem., 1996, 6(11), 1771.
    [214] S Tadao, S H Chen, M Atsushi, Synthesis of Uniform Particles of CdS, ZnS, PbS and CuS from Concentrated Solutions of the Metal Chelates, Collid and Surface A, 1998, 135, 207.
    [215] M Boutonnet, J Kizling, P Stenius, G Maire, The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions, Colloids Surf., 1982, 5, 209.
    [216] K Osseo-Asare, F Arriagada, J. Colloid Interface Sci., 1990, 50, 321.
    [217] S Xu, H C Zhou, J Xu, Y D Li, Synthesis of Size-Tunable Silver Iodide Nanowires in Reverse Micelles, Langmuir, 2002, 18, 10503.
    [218] D Zhang, X M Song, F Q Liu, Preparation and Characterization of Ag@TiO2 Core-Shell Nanoparticles in Water-in-Oil Emulsions, Eur. J. Inorg. Chem., 2005, 1643.
    [219] 张丹,宋溪明,刘凤岐,核壳结构PAM-ZnS纳米杂化微球的制备研究,高等学校化学学报,2005, 26(11),2170.
    [220] 张丹,宋溪明,刘凤岐,反相乳液中Ag/TiO2纳米杂化粒子的制备及其SERS效应,高等学校化学学报,2005,26(12), 2203.
    [221] L E Brus, An Investigation of Solid Adamantane by a Modified Isothermal-isobaric Ensemble Monte Carlo Simulation, J. Phys. Chem., 1986, 90, 2552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700