代谢综合征环境下肾结石形成机制的初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肾小管上皮细胞在与脂肪细胞、巨噬细胞共培养条件下促进结晶形成及旁分泌作用的研究
     研究背景
     肾结石是一种严重影响人体健康的临床常见病和多发病,虽然肾结石的诊断及治疗技术在过去的几十年中取得了巨大的进步,但其发病率和复发率仍高居不下,究其原因主要是由于目前对肾结石的发病机制还不明确,相关研究进展也较为缓慢。便捷、稳定的实验细胞和动物草酸钙结石模型是研究肾结石临床和基础研究的重要手段和工具,对探索肾结石产生和防治机制具有重要意义。
     近年来大宗的流行病学研究发现,肥胖、胰岛素抵抗、2型糖尿病、尿pH值降低、高血压等代谢因素不单是肾结石发生的危险因素,而且还与结石的演进密切相关。目前代谢综合征中各个因素具体如何参与结石形成过程的研究相对薄弱。其对结石生成的影响尚未见相关基础研究报道。
     从肾结石成分来看,人类肾结石主要以含钙结石为主,其中又以草酸钙结石最多,约占结石总数的80%左右。主流观点认为尿液中草酸钙晶体的成核、生长、聚集是草酸钙结石形成的主要机制。尿液中结石成分过饱和析出只是结石生成条件之一,在正常生理状态下,肾小管中的草酸钙晶体由于尿液的冲刷作用而随尿液排出,无法在肾小管中聚集形成结石,只有在肾小管上皮损伤情况下,尿中的草酸钙晶体才能够黏附、生长和聚集于。肾内或肾乳头表面形成结石斑,并经过一系列反应最终生成草酸钙结石。因而,草酸钙结晶的沉积被认为是草酸钙结石生成的重要基础,建立一种成熟、稳定的草酸钙结晶模型对研究草酸钙结石早期生成机制具有重要作用。
     研究目的
     通过本研究探索和建立涉及肾小管上皮细胞、巨噬细胞和脂肪细胞的体外实验体系,以模拟代谢综合征下细胞环境,并借助这一细胞模型研究三种细胞间的相互作用以及与晶体之间的作用。
     研究方法
     将小鼠肾小管上皮细胞(M-1)与小鼠脂肪细胞(3T3-L1)和/或巨噬细胞(RAW264.7)进行共培养48小时,然后将一水草酸钙(COM)晶体作用于肾小管上皮细胞(M-1)。然后测定促炎因子骨桥蛋白(OPN)、单核细胞趋化因子1(MCP-1)、肿瘤坏死因子-α(TNF-α)、白介素6(IL-6)以及抗炎因子脂联素(APN)的表达水平,并且测定肾小管上皮细胞上晶体附着的含量。
     研究结果
     炎症因子骨桥蛋白(OPN)、单核细胞趋化因子1(MCP-1)、肿瘤坏死因子α(TNF-α)在共培养组中有显著的上调。骨桥蛋白(OPN)的过表达只发生在含有巨噬细胞(RAW264.7)的共培养组中,而肿瘤坏死因子-α(TNF-α)和单核细胞趋化因子1(MCP-1)在含有脂肪细胞(3T3-L1)的共培养组中出现。而脂联素(APN)的表达在三种细胞共培养的条件下是下调的。这些炎症因子的改变发生于空间隔离互不接触的共培养体系中,从而提示肾小管上皮细胞(M-1)与脂肪细胞(3T3-L1)和巨噬细胞(RAW264.7)之间存在着功能性互动,而且这种相互作用很可能是通过培养液内的可溶性蛋白质介导的。而将肾小管上皮细胞(M-1)与脂肪细胞(3T3-L1)和巨噬细胞(RAW264.7).共同培养后还同时促进了一水草酸钙晶体(COM)对肾小管上皮细胞(M-1)的吸附。
     研究结论
     1.通过将肾小管上皮细胞(M-1)与脂肪细胞(3T3-L1)和巨噬细胞(RAW264.7)共培养模拟的代谢综合征环境下,首次发现多种促炎因子的上调和抗炎因子的下调。
     2.将肾小管上皮细胞(M-1)与脂肪细胞(3T3-L1)和巨噬细胞(RAW264.7)共培养可以促进肾小管上皮细胞对一水草酸钙晶体(COM)的吸附作用,而这一作用至少部分是通过旁分泌机制实现的。这很可能是代谢综合征环境下肾结石形成的重要机制之一。
     第二部分代谢综合征小鼠肾草酸钙结晶模型中炎症因子的改变及脂联素(APN)对结晶形成抑制作用的研究
     研究目的
     通过本研究探索和建立代谢综合征环境下肾结晶小鼠模型,并利用这一模型研究肾结石形成可能的机制,同时观察和评价脂联素(APN)对肾结晶形成的预防作用。
     研究方法
     本研究利用乙醛酸盐按50mg/kg/天×6天诱导8周龄雄性野生型和ob/ob型小鼠产生肾结晶沉积。小鼠分为三组:野生型(+/+)组(对照组, n=12);代谢综合征ob/ob型小鼠组(ob/ob组, n=12);ob/ob型小鼠+APN注射组(APN组,n=12);收集血和尿样进行生化分析,另外收集肾脏标本评估结石的形成和相关炎症细胞因子(OPN),(MCP-1)和(APN)的表达。还进行了TUNEL染色以评估细胞凋亡水平。
     研究结果
     对照组小鼠组(+/+组)没有发现结石形成,而在代谢综合征小鼠模型(ob/ob组)发现了显著的肾结晶的沉积,但是这些肾结晶在APN干预后(APN组)明显减少。在代谢综合征小鼠模型(ob/ob组)发现促炎细胞因子OPN和MCP-1有明显的上调而抗炎细胞因子APN有明显的下调。TUNEL染色显示ob/ob组和APN干预组均有凋亡细胞的增加而前者更加明显。
     研究结论
     本研究成功建立了代谢综合征环境下小鼠肾结晶模型,并借此提供了明确的证据显示代谢综合征环境下可以促进肾结石的形成,而这一过程可能涉及肾组织的炎症反应和凋亡。另外,这也是首次发现脂联素对肾结石的预防保护作用,此作用与对炎症和凋亡的抑制有关。
Part1:AParacrine Loop involving renal tubular cells,Adipocytes andMacropages Aggravates Inflammatory Changes to promote kidney stoneformation in metabolic syndrome
     Background:
     Urolithiasis is a common urological disorder with a lifetime risk of10–12%among thepopulations of industrialized countries. In particular, the prevalence of kidney stones hasincreased, worldwide, over the past few decades. Dietary and lifestyle factors play anincreasing role in the risk of stone disease, with diets high in protein and fat raising the riskof stone formation. Recent studies have indicated that nephrolithiasis is linked to otherchronic diseases, such as diabetes mellitus, obesity and metabolic syndrome (MetS).
     MetS involves a constellation of manifestations, including visceral fat obesity, impairedglucose metabolism, atherogenic dyslipidemia, and hypertension. There is compellingevidence that obesity is a crucial etiologic factor in the development of MetS, with obesityalso being considered a metabolic disease and a chronic, low-grade, inflammatory disease.Recent studies have revealed that adipose tissue in MetS is characterized by the infiltrationof macrophages, which are responsible for the production of inflammatory cytokines.
     Despite a large amount of epidemiologic evidence supporting the association betweenMetS and kidney stone formation, the mechanism linking MetS with the formation ofkidney stones is largely unknown. Our previous research in mice showed that MetSaggravates the formation of calcium oxalate kidney stones by enhancing inflammation. Tofurther elucidate how MetS promotes susceptibility to urolithiasis before and during kidneystone formation, we simulated MetS by coculturing renal tubular epithelial cells with adipocytes and/or macrophages. We hypothesized that adipocytes and macrophagesincreased their cellular interactions to accelerate stone formation.
     Objective:
     The aim of this study is to establish an in vitro experimental system composed of renaltubular cells with adipocytes and macrophages to simulate metabolic syndrome, and thenexamine the molecular mechanism whereby these cells communicate.
     Methods:
     Mouse renal tubular cells (M-1s) is cocultured with adipocytes (3T3-L1s) or/andmacrophages (RAW264s). The calcium oxalate monohydrate (COM) crystals wereexposed onto M-1cells after48hours of coculture and quantification of adherent COMcrystals were evaluated. Expression analysis of kidney stone-and adipocytes-relatedinflammatory genes and proteins were performed.
     Results:
     Inflammatory including monocyte chemoattractant protein-1(MCP-1),osteopontin (OPN)and tumor necrosis factor-α (TNF-α) were up-regulated markedly in coculture groups.OPNover-expression of M-1occurs in coculture systems contained RAW264. TNF-α andMCP-1over-expression are detected from coculture systems contained3T3-L1. Suchinflammatory changes are induced by the coculture without direct contact, suggesting therole of soluble factors. Coculturing M-1s with3T3-L1s and RAW264s resulted insignificantly increased adhesion of calcium oxalate monohydrate (COM) crystals to M-1.Conclusion: Our results postulate that paracrine loop involving renal tubular cells,adipocytes and/or macrophages aggravates inflammatory changes of renal tubular cells inmetabolic syndrome or obesity, which may promote the susceptibility of urolithiasis.
     Part2:Inflammatory Changes and Effect ofAdiponectin on KidneyCrystal Formation in Metabolic Syndrome Model Mice
     Objective:
     Although an epidemiological link between the metabolic syndrome and kidney stoneformation has been reported, the mechanism by which metabolic syndrome promoteskidney stone formation has yet to be elucidated. We investigated calcium oxalate (CaOx)kidney stone formation in a mouse metabolic syndrome model.The aims of the presentstudy were to elucidate a possible mechanism of kidney crystal formation by using ametabolic syndrome (MetS) mouse model and to assess the effectiveness of adiponectintreatment for the prevention of kidney crystals.
     Methord:
     We induced CaOx crystal deposition in8-week-old male ob/ob mouse, and a control strain,Wild-type(+/+) mouse, by administering50mg/kg glyoxylate (GOx) for6days. Mice weredivided into3groups: Wild-type (+/+) mouse(control, n=12); ob/ob mouse (stone forming,n=12); APN treatment (n=12);Urine and blood samples were collected for biochemistrytesting, and the kidneys were harvested for estimation of crystal deposition anddeterminations of the expression of osteopontin(OPN),monocyte chemoattractantprotein-1(MCP-1) andAdiponectin(APN).
     Results:
     Wild-type (+/+) mice showed no kidney crystal formation, whereas ob/ob mice showedcrystal depositions in their renal tubules. However, this deposition was remarkably reducedby adiponectin.Significant upregulation of both inflammatory OPN and MCP-1was seenin the kidneys of ob/ob mice and whereas downregulation of antiinflammatory cytokineAPN. By TUNEL staining, ob/ob and ob/ob+APN kidneys showed stained nuclei in thearea from the cortex to medulla, with the cortico-medullary junction showing particularlystrong staining.
     Conclusion:
     The results of this study provide compelling evidence that the mechanism of kidney crystalformation in the MetS environment involves the progression of an inflammation, mightincluding oxidative stress and apoptosis in renal tissues. This is the first report to prove thepreventive effect of adiponectin treatment for kidney crystal formation by renoprotectiveactivities and inhibition of inflammation and apoptosis.
引文
1. Moe OW kidney stones:pathophysiology and medical management. lancet.2006;367:333-344
    2. Curhan GCEpidemiology of stone disease. Urol Clin North Am.2007;34:287–293
    3. EN Taylor, MJ Stampfer, GC Curhan Diabetes mellitus and the risk ofnephrolithiasis. Kidney Int.2005;68:1230–1235
    4. EN Taylor, MJ Stampfer, GC Curhan Obesity, weight gain, and the risk of kidneystones. JAMA.2005;293:455–462
    5. Obligado SH, Goldfarb DS,The association of nephrolithiasis with hypertension andobesity: a review.Am J Hypertens.2008;21(3):257-64.
    6. Saucier NA, Sinha MK, Liang KV, Krambeck AE, Weaver AL, Bergstralh EJ, Li X,Rule AD, Lieske JC. Risk factors for CKD in persons with kidney stones: aase-control study in Olmsted County, Minnesota. Am J Kidney Dis,2010;55:61-68
    7. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among USadults: findings from the third National Health and Nutrition Examination Survey. JAm MedAssoc.2002287:356–359
    8. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C Definition ofmetabolic syndrome: Report of the National Heart, Lung, and Blood Institute/AmHeart Association conference on scientific issues related to definition.Circulation.2004;109:433–438
    9. Montague CT, O’Rahilly S The perils of portliness: causes and consequences ofvisceral adiposity. Diabetes.2000;49:883-888
    10. Matsuzawa Y, Funahashi T, Nakamura TMolecular mechanism of metabolic syndromeX: contribution of adipocytokines adipocyte-derived bioactive substances. Ann N YAcad Sci.1999;892:146-154
    11. Surmi BK, Hasty AH Macrophage infiltration into adipose tissue:initiation,propagation and remodeling. Future Lipidol.2008;3:545-556.
    12. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr.Obesityis associated with macrophage accumulation in adipose tissue. J ClinInvest.2003;112:1796-1808
    13. Cancello R, Clement K: Is obesity an inflammatory illness? Role of low-gradeinflammation and macrophage infiltration in human white adipose tissue. BJOG.2006;113:1141
    14. Heilbronn LK, Campbell LV: Adipose tissue macrophages, low grade inflammationand insulin resistance in human obesity. Curr Pharm Des2008;14:1225
    15. Kohri K, Nomura S, Kitamura Y, et al: Structure and expression of the mRNAencoding urinary stone protein (osteopontin). J Biol Chem1993;268:15180
    16. Okada A, Nomura S, Saeki Y, et al: Morphological conversion of calcium oxalatecrystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res2008;23:1629.
    17. Farell G, Huang E, Kim SY, et al: Modulation of proliferating renal epithelial cellaffinity for calcium oxalate monohydrate crystals. J Am Soc Nephrol2004;15:3052
    18. Lieske JC, Leonard R, Swift H: Adhesion of calcium oxalate monohydrate crystals toanionic sites on the surface of renal epithelial cells. Am J Physiol1996;270: F192.
    19. Chien YC, Masica DL, Gray JJ, et al: Modulation of calcium oxalate dihydrate growthby selective crystal-face binding of phosphorylated osteopontin and polyaspartatepeptide showing occlusion by sectoral (compositional) zoning. J Biol Chem2009;284:23491
    20. Samuvel DJ, Sundararaj KP, Li Y, et al: Adipocyte-mononuclear cell interaction,Toll-like receptor4activation, and high glucose synergistically up-regulateosteopontin expression via an interleukin6-mediated mechanism. J Biol Chem2010;285:3916
    21. Umekawa T, Chegini N, Khan SR: Increased expression of monocyte chemoattractantprotein-1(MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate,phosphate and uric acid crystals. Nephrol Dial Transplant2003;18:664
    22. Khan SR: Role of renal epithelial cells in the initiation of calcium oxalate stones.Nephron Exp Nephrol2004;98: e55.
    23. Umekawa T, Chegini N, Khan SR: Increased expression of monocyte chemoattractantprotein-1(MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate,phosphate and uric acid crystals. Nephrol Dial Transplant2003;18:664
    24. Umekawa T, Chegini N, Khan SR: Oxalate ions and calcium oxalate crystals stimulateMCP-1expression by renal epithelial cells. Kidney Int2002;61:105
    25. Rovin BH, Yoshiumura T, Tan L: Cytokine-induced production of monocytechemoattractant protein-1by cultured human mesangial cells. J Immunol1992;148:2148
    26. Rovin BH, Rumancik M, Tan L, et al: Glomerular expression of monocytechemoattractant protein-1in experimental and human glomerulonephritis. Lab Invest1994;71:536
    27. Okada A, Yasui T, Fujii Y, et al: Renal macrophage migration and crystal phagocytosisvia inflammatory-related gene expression during kidney stone formation andelimination in mice: Detection by association analysis of stone-related gene expressionand microstructural observation. J Bone Miner Res2010;25:2701.
    28. Kriegler M, Perez C, DeFay K, et al: A novel form of TNF/cachectin is a cell surfacecytotoxic transmembrane protein: ramifications for the complex physiology of TNF.Cell1988;53:45
    29. Weisberg SP, McCann D, Desai M, et al: Obesity is associated with macrophageaccumulation in adipose tissue. J Clin Invest2003;112:1796
    30. Clark DL, Connors BA, Evan AP, et al: Localization of renal oxidative stress andinflammatory response after lithotripsy. BJU Int2009;103:1562
    31. Suganami T, Nishida J, Ogawa Y: A paracrine loop between adipocytes andmacrophages aggravates inflammatory changes: role of free fatty acids and tumornecrosis factor alpha. Arterioscler Thromb Vasc Biol2005;25:2062
    32. Rhee E, Santiago L, Park E, et al: Urinary IL-6is elevated in patients with urolithiasis.J Urol1998;160:2284
    33. Huang MY, Chaturvedi LS, Koul S, et al: Oxalate stimulates IL-6production in HK-2cells, a line of human renal proximal tubular epithelial cells. Kidney Int2005;68:497.
    34. Hirano T: Interleukin-6. In: The Cytokine Handbook. Edited by Thomson AW. SanDiego: Academic Press1994; pp145–168
    35. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C,Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S,Tomita M, Froguel P, Kadowaki T: Nature Med7: The fat-derived hormoneadiponectin reverses insulin resistance associated with both lipoatrophy andobesity.2001;255;941–946,
    36. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M,Okamoto Y, Nagaretani H, Nishizawa H, Kishida K, Komuro R, Ouchi N, Kihara S,Nagai R, Funahashi T, Matsuzawa Y: Role of adiponectin in preventing vascularstenosis. The missing link of adipo-vascular axis. J Biol Chem2002;277:37487–37491
    37. Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, Uchida S, Ito Y,Takakuwa K, Matsui J, Takata M, Eto K, Terauchi Y, Komeda K, Tsunoda M,Murakami K, Ohnishi Y, Naitoh T, Yamamura K, Ueyama Y, Froguel P, Kimura S,Nagai R, Kadowaki T: Globular adiponectin protected ob/ob mice from diabetes andApoE-deficient mice from atherosclerosis. J Biol Chem.2003;278:2461–2468,
    1. Curhan GC Epidemiology of stone disease. Urol Clin North Am2007;34:287–293.
    2. Yasui T, Iguchi M, Suzuki S, Okada A, Itoh Y, et al. Prevalence and epidemiologiccharacteristics of lower urinary tract stones in Japan. Urology2008;71:209–213.
    3. Coe FL, Parks JH, Asplin JR The pathogenesis and treatment of kidney stones—medicalProgress. N Engl J Med1992;327:1141–1152.
    4. Levy FL, Adams-Huet B, Pak CY Ambulatory evaluation of nephrolithiasis: an updateof a1980protocol.Am J Med1995;98:50–59.
    5. Asplin JR, Parks JH, Coe FL Dependence of upper limit of metastability onsupersaturation in nephrolithiasis. Kidney Int1997;52:1602–1608.
    6. Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, et al. Structure and expressionof the mRNA-encoding urinary stone protein osteopontin. J Biol Chem1993;268:15180–15184.
    7. Okada A, Nomura S, Higashibata Y, Hirose M, Gao B, et al.Successful formation ofcalcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylateinjection. Urol Res2007;35:89–99.
    8. Okada A, Nomura S, Saeki Y, Higashibata Y, Hamamoto S, et al. Morphologicalconversion of calcium oxalate crystals into stones is regulated by osteopontin in mousekidney. J Bone Miner Res2008;23:1629–1637.
    9. Hirose M, Tozawa K, Okada A, Hamamoto S, Shimizu H, et al. Glyoxylate inducesrenal tubular cell injury and microstructural changes in experimental mouse. UrolRes2008;36:139–147.
    10.Taylor EN, Stampfer MJ, Curhan GC Obesity, weight gain, and the risk of kidneystones. JAMA2005;293:455–462.
    11.Abate N, Chandalia M, Cabo-Chan AV Jr, Moe OW, Sakhaee K The metabolicsyndrome and uric acid nephrolithiasis: Novel features of renal manifestation of insulinresistance. Kidney Int2004;65:386–392.
    12.Borghi L, Meschi T, Guerra A, Briganti A, Schianchi T, et al. Essential arterialhypertension and stone disease. Kidney Int1999;55:2397–2406.
    13.Yasui T, Itoh Y, Bing G, Okada A, Tozawa K, et al. Aortic calcification in urolithiasispatients. Scand J Urol Nephrol.2007;41:419–421.
    14.Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, et al. Replenishment of thefat-derived hormone adiponectin reverses insulin resistance associated with bothlipoatrophy and obesity. Nature Med2001;7:941–946.
    15.Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, et al. Role of adiponectin inpreventing vascular stenosis: the missing link of adipo-vascular axis. J Biol Chem2002;277:37487–37491.
    16.Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, et al. Globular adiponectinprotected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. JBiol Chem2003;278:2461–2468.
    17.Ohashi K, Iwatani H, Kihara S, Nakagawa Y, Komura N, et al.() Globular adiponectinprotected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis.Arterioscler Thromb Vasc Biol2007;27:1910–1919.
    18.Hudkins KL, Giachelli CM, Cui Y, Couser WG, Johnson RJ, Alpers CE. Osteopontinexpression in fetal and mature human kidney. J.Am. Soc. Nephrol.1999;10:444–57.19Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F. Expression, roles,receptors, and regulation of osteopontin in the kidney. Kidney Int.2001;60:1645–57.
    20.Kahn SR, Johnson JM, Peck AB, Cornelius JM, Glenton PA. Expression of osteopontinin rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis.J. Urol.2002;168:1173–81.
    21.Kelly DJ, Wilkinson-Berka JL, Ricardo SD, Cox AJ,Gilbert RE. Progression oftubulointerstitial injury by osteopontin-induced macrophage recruitment in advanceddiabetic nephropathy of transgenic(mRen-2)27rats.Nephrol. Dial. Transplant.2002;17:985–91.
    22.Giachelli CM, Lombardi D, Johnson RJ, Murry CE,Almeida M. Evidence for a role ofosteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am.J. Pathol.1998;152:353–8.
    23.Khan SR. Crystal-induced inflammation of the kidneys:Results from human studies,animal models, and tissue-culture studies. Clin. Exp. Nephrol.2004;8:75–88.
    24.Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein1in obesity and insulinresistance. Proc. Natl. Acad. Sci.USA2003;100:7265–70.
    25.Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ, Tesch GH. Monocytechemoattractant protein-1promotes the development of diabetic renal injury instreptozotocin-treated mice. Kidney Int.2006;69:73–80.
    26.Curhan GC, Taylor EN24-h uric acid excretion and the risk of kidney stones. KidneyInt.2008;73:489–496.
    27.Byer K, Khan SR Citrate provides protection against oxalate and calcium oxalatecrystal induced oxidative damage to renal epithelium. J Urol.2005;173:640–646.
    28.Pucci ML, Endo S, Nomura T, Lu R, Khine C, et al. Coordinate control of prostaglandinE2synthesis and uptake by hyperosmolarity in renal medullary interstitial cells. Am JPhysiol Renal Physiol.2006;290: F641–649.
    29.Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, et al. cDNA cloning andexpression of a novel adipose specific collagen-like factor, apM1(AdiPose Mostabundant Gene transcript1). Biochem Biophys Res Commun1996;16:286–289.
    30.Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, et al.Insulin/Foxo1pathway regulatesexpression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem2004;279:30817–30822.
    31.Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, et al. Adiponectin protectsagainst myocardial ischemia-reperfusion injury through AMPK-and COX-2-dependentmechanisms. Nat Med.005;11:1096–1103.
    32.Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, et al. Renal macrophage migrationand crystal phagocytosis via inflammatory-related gene expression during kidney stoneformation and elimination in mice: Detection by association analysis of stone-relatedgene expression and microstructural observation. J Bone Miner Res.2010;25:2701–2711.
    1. Pearle MS1, Calhoun EA, Curhan GC;Urologic Diseases of America Project.Urologicdiseases inAmerica project: urolithiasis.J Urol.2005Mar;173(3):848-57.
    2.葛利辉,谢丽娟.人群泌尿系结石发病的流行病学调查.广西预防医学.1998.4(6):337-338.
    3. Curhan GC1, Curhan SG.Dietary factors and kidney stone formation.Compr Ther.1994;20(9):485-9.
    4. FLOCKS RH.Kidney stones.Dis Men.1958.8:1-32.
    5. Taylor EN, Stampfer MJ, Curhan GC. Diabetes mellitus and the risk ofnephrolithiasis.Kidney Int.2005.68(3):1230-5.
    6. Lifford KL,Curhan GC,Hu FB,Barbieri RL,Grodstein E Type2diabetes mellitusand risk of developing urinary incontinence.J Am Geriatr Soc.2005.53(11):185l-7.
    7. Marangella M,Vitale C,Petraruio M,Bagnis C,Bruno M,Ramello八Renal stones:from metabolic to physicochemical abnormalities. How usefuI are inhibitors. JNephroi.2000.13Suppl3:S5l-60.
    8. Coe FL,Favus MJ.Idiopathic hypercalciuria in calcium nephrolithiasis.Dis Men.1980.26(12):1-36.
    9. TefeldiA,Kurtoglu H,Tepeler K et a1.Does the metabolic s”dmme or its componentsaffect the outcome ofpercutaneous nephrolithotomy.J Endourol.2008.22(1):35-40.
    10. Tibblin QA population study of50-year-old men.An analysis of the non-participationgroup.Acta Med Scand.1965.178(4):453-9.
    11. Cappuccio FP,Siani A, Barba G et a1.A prospective study of hypertension and theincidence of kidney stones in men.J Hypertens.1999.17(7):1017-22.
    12. Cho Y Maeng J,Ryu J, et a1. Hypertension resulting from overexpression oftranslationally controlled tumor protein increases the severity of atherosclerosis inapolipoprotein E knock-out mice.Transgenic Res.2012.
    13. Madore F,Stampfer MJ,Wilier WC,Speizcr FE,Curhan GC.Nephrolithiasis and riskof hypertension in women.Am J Kidney Dis.1998.32(5):802-7.
    14. Madore F,Stampfer MJ, Rimm EB, Curhan GC. Nephrolithiasis and risk ofhypertension.Am J Hypertens.1998.1l(1Pt1):46-53.
    15. Cho Y Maeng J,Ryu J, et a1. Hypertension resulting from overexpression oftranslationally controlled tumor protein increases the severity of atherosclerosis inapolipoprotein E knock-out mice.Transgenic Res.2012.
    16. Hall WD, Pettinger M, Oberman A, et al. Risk factors for kidney stones in olderwomen in the southern United States. Am J Med Sci2001;322:12-18.
    17. Matlaga B&Coe FL,Evan AP,Lingernan JE.The role of Randall’S plaques in thepathogenesis of calcium stones.J Uml.2007.177(1):31-8.
    18. Koletsky S. Pathologic findings and laboratory data in a new strain of obesehypertensive rats.Am J Path01.1975.80(1):129-42.
    19. Wexler BC,McMurtry JP.Kidney and bladder calculi in spontaneously hypertensiverats.Br J Exp Pathol.1981.62(4):369-74.
    20. Eisner BH,Porten SP,Bechis SK,Stoller ML.Hypertension is associated withincreased urinary calcium excretion in patients with nephrolithiasis.J Ur01.2010.183(2):576-9.
    21. Tisler A,Pierratos A,Honey JD,Bull SB,Logan AG.Hypertension aggregates infamilies ofkidney stone patients with high unnary excretion of uric acid.J Hypertens.
    1999.17(12Pt2):1853-8.
    22. Aruga S,Honma YR. Renal calcium excretion and urolithiasis.Clin Calcium.2011.2l(10):1465-72.
    23. Meydan N,Barutca S,Caliskan S,Camsad T.Urinary stone disease in diabetesmellitus.Scand J Urol Nephrol.2003.37(1):64-70.
    24. Taylor EN, Stampfer MJ, Curhan GC. Diabetes mellitus and the risk ofnephrolithiasis.Kidney Int.2005.68(3):1230-5.
    25. Domingos F,Serra A.Nephmlithiasis is associated with an increased prevalence ofcardiovascular disease.Nephrol Dial Transplant.2011.26(3):864-8.
    26. Daudon M,Lacour B,Jungers P.Influence of body size on urinary stone compositionin mell and women.Urol Res.2006.34(3):193-9
    27. Ramey SL, Franke WD,2nd SMC. Relationship among risk factors fornephrolithiasis,cardiovascular disease,and ethnicity:focus on a law enforcementcohort.AAOHN J.2004.52(3):l16-21.
    28. Domingos F'Serra A.Nephrolithiasis is associated with an increased prevalence ofcardiovascular disease.Nephrol Dial Transplant.2011.26(3):864-8.
    29. Reiner AP, Kahn A, Eisner BH, et al. Kidney stones and subclinical atherosclerosis inyoung adults: the CARDIA study. J Urol2011;185:920-925.
    30. Domingos F, Serra A. Nephrolithiasis is associated with an increased prevalence ofcardiovascular disease. Nephrol Dial Transplant2011;26:864-868.
    31. Hamano S, Nakatsu H, Suzuki N, et al. Kidney stone disease and risk factors forcoronary heart disease. Int J Urol2005;12:859-863.
    32. Eisner BH,Porten SP,Bechis SK,Stoller ML. Hypertension is associated with increasedurinary calcium excretion in patients with nephrolithiasis.J Urol.2010.183(2):576.9.
    33. Domingos F, Serra A. Nephrolithiasis is associated with an increased prevalence ofcardiovascular disease. Nephrol Dial Transplant2011;26:864-868.
    34. Taylor EN,Stampfer Nl l,Curhan GC.Obesity,weight gain,and the risk of kidneystones.JAMA.2005.293(4):455-62.
    35. Daudon M,Lacour B,Jungers P.Influence of body size on urinary stone compositionin men and women.Urol Res.2006.34(3):193-9.
    36. RuleAD,Bergstralh EJ,LiX,Weaver AL,Lieske JC.Kidney stones and the risk forchronic kidney disease.Clin JAm Soc Nephr01.2009.4(4):804-11.
    37. Jeong IG, Kang T, Bang JK, et al. Association between metabolic syndrome and thepresence of kidney stones in a screened population. Am J Kidney Dis2011;58:383-388.
    38.陈希,谌卫,丁家荣等.泌尿系结石患者血脂及相关影响因素的研究.中国全科医学.2011.14(34):3924-26.
    39. Eisner BH,Eisenberg ML,Stoller ML.Relationship between body mass index andquantitative24-hour mine chemistriesin patients with nephmlithiasis.Urology.2010.75(6):1289-93.
    40. RuleAD,Krambock AE,Lieske JC.Chronic kidney disease in kidney stone formers.Clin JAm Soc Nephr01.2011.6(8):2069-75.
    41. Vupputuri S.Soucie JM,McClellan Wj Sandier DE History of kidney stones as apossible risk factor for chronic kidney disease.Ann Epidemioi.2004.14(3):222-28.
    42. Meneses JA,Lucas FM, Assuncao FC, Castro JP,Monteiro RB. ne impact ofmetaphylaxis of kidney stone disease in the renal function at long term in activekidney stone formers patients.Urol Res.2011.14(2):274-277
    43. Curhan GC, Taylor EN.24-h uric acid excretion and the risk of kidney stones. KidneyInt2008;73:489-496.]
    44. Taylor EN, Mount DB, Forman JP, et al. Association of prevalent hypertension with24-h urinary excretion of calcium, citrate, and other factors.Am J Kidney Dis.2006;47(5):780-9.
    45. Losito A, Nunzi EG, Covarelli C, et al. Increased acid excretion in kidney stoneformers with essential hypertension.Nephrol Dial Transplant.2009Jan;24(1):137-41.
    46. Maalouf NM, Sakhaee K, Parks JH, et al. Association of urinary pH with body weightin nephrolithiasis. Kidney Int2004;65:1422-1425
    47. Abate N, Chandalia M, Cabo-Chan AV Jr, et al. The metabolic syndrome and uric acidnephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int2004;65:386-392.
    48. Maalouf NM, Cameron MA, Moe OW, et al. Low urine pH: a novel feature of themetabolic syndrome. Clin J Am Soc Nephrol2007;2:883-888.,
    49. Sakhaee K, Maalouf NM. Metabolic syndrome and uric acid nephrolithiasis. SeminNephrol2008;28:174-180.
    50. Bobulescu IA, Dubree M, Zhang J, et al. Effect of renal lipid accumulation onproximal tubule Na+/H+exchange and ammonium secretion. Am J Physiol RenalPhysiol2008;294:F1315-F1322
    51. Cupisti A, Meola M, D’Alessandro C, et al. Insulin resistance and low urinary citrateexcretion in calcium stone formers. Biomed Pharmacother2007;61:86-90.
    52. Taylor EN, Curhan GC. Determinants of24-h urinary oxalate excretion. Clin J AmSoc Nephrol2008;3:1453-1460.
    53. Eisner BH, Porten SP, Bechis SK, et al. Diabetic kidney stone formers excrete moreoxalate and have lower urine pH than nondiabetic stone formers. J Urol2010;183:2244-2248.
    54. Lemann J Jr, Pleuss JA, Worcester EM, et al. Urinary oxalate excretion increases withbody size and decreases with increasing dietary calcium intake among healthy adults.Kidney Int1996;49:200-208.
    55. Curhan GC, Willett WC, Rimm EB, et al. A prospective study of dietary calcium andother nutrients and the risk of symptomatic kidney stones. N Engl J Med1993;328:833-838.
    56. Curhan GC, Willett WC, Knight EL, et al. Dietary factors and the risk of incidentkidney stones in younger women: Nurses’ Health Study II. Arch Intern Med2004;164:885-891.
    57. Curhan GC, Willett WC, Speizer FE, et al. Comparison of dietary calcium withsupplemental calcium and other nutrients as factors affecting the risk for kidney stonesin women. Ann Intern Med1997;126:497-504.
    58. McCarron DA, Morris CD, Cole C. Dietary calcium in human hypertension. Science1982;217:267-269.
    59. McCarron DA, Morris CD, Stanton JL. Hypertension and calcium. Science1984;226:386-393.
    60. Zemel MB. Calcium modulation of hypertension and obesity: mechanisms andimplications. JAm Coll Nutr2001;20:428S-435S.discussion440S-442S.
    61. Taylor EN, Curhan GC. Fructose consumption and the risk of kidney stones. KidneyInt2008;73:207-212
    62. Fung TT, Malik V, Rexrode KM, et al. Sweetened beverage consumption and risk ofcoronary heart disease in women. Am J Clin Nutr2009;89:1037-1042.
    63. Rule AD, Bergstralh EJ, Melton LJ3rd, et al. Kidney stones and the risk for chronickidney disease. Clin JAm Soc Nephrol2009;4:804-811.
    64. Gillen DL, Worcester EM, Coe FL. Decreased renal function among adults with ahistory of nephrolithiasis: a study of NHANES III. Kidney Int2005;67:685-690.
    65. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death,cardiovascular events, and hospitalization. N Engl J Med2004;351:1296-1305.
    66. Worcester EM, Coe FL. Evidence for altered renal tubule function in idiopathiccalcium stone formers. Urol Res2010;38:263-269.
    67. Worcester EM, Gillen DL, Evan AP, et al. Evidence that postprandial reduction ofrenal calcium reabsorption mediates hypercalciuria of patients with calciumnephrolithiasis.Am J Physiol Renal Physiol2007;292:F66-75.
    68. Petrazzuolo O, Trepiccione F, Zacchia M, et al. Hypertension and renal calciumtransport. J Nephrol2010;23(Suppl16):S112-S117.
    69. Tsao KC, Wu TL, Chang PY, et al. Multiple risk markers for atherogenesis associatedwith chronic inflammation are detectable in patients with renal stones. J Clin Lab Anal2007;21:426-431.
    70. Holoch PA, Tracy CR. Antioxidants and self-reported history of kidney stones: thenational health and nutrition examination survey. J Endourol2011;25:1903-1908.
    71. Khan SR.Is oxidative stress,a link between nephrolithiasis andobesity,hypertension,diabetes,chronic kidney disease,metabolic syndrome.Urol Res.2012;12:487-96.
    72. Siener K Glatz S,Nicolay C,Hesse A.The role of overweight and obesity in calciumoxalate stone formation.Obes Res.2004.12(1):106—13.
    73. Kopple JD.Obesity and chronic kidney disease.J Ren Nutr.2010.20(5Suppl):S29-30.
    74. Scheuer H,Gwinner W:Hohbach J,et a1.Oxidant stress in hyperlipidemia—inducedrenal damage.Am J Physiol Renal Physi01.2000.278(1):F63-74.
    75. Davalos M,Konno S,Eshghi M,Choudhury M.Oxidative renal cell injury inducedby calcium oxalate crystal and renoprotection with antioxidants:a possible role ofoxidative Stress in nephrolithiasis.J Endourol.2010.24(3):339-45.
    76. Thamilselvan S,Seivam R.Efirect of vitamin E and mannitoI on reaRl calcium oxalateretention in experimental nephrolithiasis.Indian J Biochem Biophys.1997.34(3):319-23.
    77. Hirose M,Yasui T,Okada A et a1.Renal tubular epithelial cell injury and oxidativestress induce calcium oxalate crystal formation in mouse kidney.Int J Urol.2010.7(1):83-92.
    78. Okada A, YasuiT,Fujii Y et al.Renal macrophage migration and crystal phagocytosisviainflammatory-related gene expression during kidney stone formation andelimination in mice:Detection by association analysis of stone-related gene expressionand microstructurai observation.J Bone Miner Res.2010.25(12):2701-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700