特色资源果胶的提取和物理化学性质表征及微射流降解机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果胶是一系列具有相同特性,但精细结构不同的结构杂多糖的总称,从植物中提取的果胶已经被广泛用于食品,医药和化妆品行业中。目前,低酯果胶正日益受到关注。然而商业低酯果胶常通过对高酯果胶进行酶法或酸碱去酯化得到,步骤复杂且容易引起降解,较好的方法是从自然资源中直接提取果胶。薜荔籽和豆腐柴叶在民间常被用于制作“凉粉”和“神仙豆腐”,然而关于其制作机理目前尚不清楚。初步研究表明,这两种资源中蕴含有丰富的果胶,可是关于其果胶的提取,物理化学和流变性能缺乏充分研究。本文首先采用各种溶剂从薜荔籽和豆腐柴叶中提取果胶;然后采用现代分析技术对果胶进行物理化学性质表征,考察所得果胶的流变性能和凝胶性质,解释传统食品“凉粉”和“神仙豆腐”的制作之谜。采用阴离子交换色谱分级薜荔籽果胶得到两组分,通过X-衍射等手段分析两组分溶解性差异的原因。此外本论文还特别关注透析溶液对果胶性质的影响,及果胶在动态高压微射流(DHPM)处理过程中的降解问题。研究发现,低酯果胶在透析过程中易于吸收透析溶液中的金属离子,特别是钙离子;DHPM处理会造成果胶的降解,经对DHPM引起的果胶降解的表征,探讨了DHPM降解果胶的机理。本文进一步采用DHPM制备果胶低聚糖,所得低聚糖具有明显的益生活性。主要研究结论如下:
     1.采用水,草酸铵和盐酸分别提取薜荔籽中的凝胶物质,结果表明三种方法提取的主要成分均为低酯果胶,且该果胶主要分布于薜荔籽的表面,因此解释了传统“凉粉”制作工艺中采用挤压和揉搓方法的可行性。与草酸铵提和盐酸提果胶相比,水提果胶具有最高的半乳糖醛酸含量、粘均分子量和特征粘性,以及最低的甲酯化。这种水提低酯果胶为薜荔籽水提物的主要多糖组分,同时检测到水提物中存有大量的钙离子,暗示“凉粉”的自凝胶可能是基于低酯果胶的“蛋盒”模型。
     2.薜荔籽水提果胶经阴离子交换柱分离,得到两组分WEP-0.3及WEP-0.4,这两个组分的溶解性表现出明显的差异性。WEP-0.3能较快溶解在水中,而约有89.5%的WEP-0.4不溶于水。该结果与红外光谱得出的WEP-0.4具有比WEP-0.3更低的酯化度,而酯化度越低,溶解性应该越好的常理相违背。扫描电镜表明WEP-0.4形成面条状的紧致结构,X-衍射分析表明WEP-0.4存在结晶区。而WEP-0.3结构比较松散且均为无定形区域,这些结果表明WEP-0.4不易溶解是因为其在透析的过程中形成了部分凝胶。凝胶形成可能是因为低酯果胶在透析过程中吸收了Ca2+,反映在金属元素分析中WEP-0.4含有更高的钙离子含量。
     3.对豆腐柴叶进行组分分析得知,豆腐柴叶的细胞壁物质(AIS)占干叶质量的77.82%,AIS中总膳食纤维,不可溶性膳食纤维和半乳糖醛酸含量分别为69.45%,56.35%,23.94%。采用水,草酸铵,盐酸和氢氧化钠对AIS进行连续提取,发现草酸铵溶性果胶(OXSP)占总果胶的大部分(59.48%),其半乳糖醛酸含量为76.15%,酯化度为14.90%,平均分子量为980.67kDa.这些理化性质导致OXSP具有很好的凝胶性能。本研究能促进豆腐柴叶作为膳食纤维和低酯果胶资源而被开发利用。
     4.本研究分别采用自来水和去离子水对豆腐柴叶提取的果胶进行透析,发现透析溶剂对果胶溶液外观,果胶得率,蛋白质含量及形貌产生重大的影响。水溶性果胶,草酸铵溶性果胶及碱溶性果胶经自来水透析后都形成或部分形成凝胶。这主要是由于低酯果胶在自来水透析过程中吸收钙离子形成了凝胶,这一推论与组分中Ca离子含量及灰分含量较高的结果一致。本章还考察了连续提取每个步骤后残渣的形貌,表明连续提取是个逐步释放果胶的过程,其中采用草酸铵提取后,细胞壁物质的形貌变化最大,印证草酸铵是提取豆腐柴叶果胶较为理想的提取剂。
     5.采用动态高压微射流法对高酯果胶进行处理,发现高酯果胶的表观粘度,分子量和粒径随压力的升高而降低,还原糖含量则随压力的升高而升高。同时果胶的表观形貌也由块状向多孔碎片转变。傅里叶红外光谱表明动态高压微射流对果胶的基本结构没有影响,同时由于还原糖的升高和分子量的降低呈线性关系,表明果胶的降解可能源于分子内糖苷键的断裂。当H+离子浓度降低时降解得到抑制,表明这种糖苷键的断裂可能不仅仅来自于强烈的机械力作用也可能来自于酸水解作用。因此,本研究认为机械力可以打开果胶分子或者使果胶分子更加伸展,使得更多的糖苷键可以暴露给机械力和H+攻击。
     6.采用动态高压微射流对苹果果胶进行降解制备果胶低聚糖,经响应曲面优化,在果胶浓度为1.84%,溶液温度63℃,微射流处理压力155MPa,循环次数6次时,果胶制备成果胶低聚糖的转化率为32.92%。所得果胶低聚糖含有29.56%的半乳糖醛酸以及58.53%的中性糖。粪便发酵实验表明,果胶低聚糖较母体果胶更能增加双歧杆菌和乳酸杆菌的数量,同时产生更多的乙酸,乳酸和丙酸。而且,果胶低聚糖能抑制拟杆菌和梭状芽胞杆菌但其母体果胶则促进这两种菌的生长。另外,果胶低聚糖对细菌生长的影响和短链脂肪酸的产生能力和最常用的益生元-低聚果糖相当。本研究结果表明动态高压微射流是制备果胶低聚糖比较适合的手段,所得果胶低聚糖可能是一种有效的新型益生元。
Pectin describes a family of structural hetropolysaccharides that have common features, but are extremely diverse in their fine structure. Pectins extracted from plants have been used widely as gelling agent, thicker, texturizer in food, pharmacy and cosmetic area. There is growing interest in low methoxyl pectin. However, LMP has to be prepared from HMP by reducing the DM through acid demethoxylation, alkali demethoxylation, or demethoxylating reaction of pectin methyl esterase. These methoxylations are complex and may cause potential depolymerization. An alternative approach for manufacturing LMP is to 'mine' plant cell walls that are enriched with LMP. Creeping fig (Ficus pumila Linn) seeds and Premna microphylla turcz leaves have been used to prepare a "Liangfen" and "Shenxian tofu", respectively by local Chinese people. However, their making secret have not been explored. Preliminary experiments indicated that both resources contain high amount of pectic polysaccharides. However, extraction, physicochemical and rheological properties of pectin was rarely reported. In this study, pectic polysaccharides were extracted from Creeping fig seeds and Premna microphylla turcz leaves using kinds of extracting agent, then the physicochemical properties and gelling capability of resulting pectin were investigated to explain why "Liangfen" and "Shenxian tofu" would be manufactured in the traditional methods. The pectin isolated from creeping fig seeds was fractionated into two components by ion exchange column, techniques such as X-ray diffraction were used to explain the reason why two fractions have significant different solublities. During investigation, we also pay attention to the effect of dialysis solution on properties of pectin, and degradation of pectin induced by dynamic high pressure microfluidization (DHPM). We found out that low methoxyl pectin tends to absorb metal ions from dialysis solution. After characterizing the extent of degradation of pectin induced by DHPM, the mechanism of degradation was discussed. This technique was also used to produce pectic oligosaccharides (POS), the resulting POS exhibit a notable prebiotic properties. Main conclusions are summarized as follows:
     1. Gelling material was extracted from creeping fig seeds using water, ammonium oxalate and hydrochloric acid, respectively. Results showed the main component of three extracts is low methoxyl pectin. The pectin locates in a transparent layer on the surface of seeds, as revealed by an inverted microscope. Hence, explained the feasibility of the squeezing and rubbing method in traditional handcraft. Comparing with the other methods, water-extracted pectin has high galacturonic acid content, viscosity-average molecular weight and intrinsic viscosity but low degree of methoxylation. This pectin forms the major component of WE, together with the high amount of calcium ions present in WE, it suggests the spontaneous gelation may be based on the'egg-box'formation.
     2. The water-extracted pectin (WEP) from creeping fig seeds can be fractionated into two components (WEP-0.3and WEP-0.4) by ion exchange column. These two fractions showed a notable difference in dissolution behavior, WEP-0.3can be easily dissolved into water while89.5%of WEP-0.4become insoluble after dialysis against running water and distilled water later and freeze-dried. This phenomenon was contradicted with the results of FTIR spectrum where WEP-0.4have lower degree of methoxylation should have better solubility. For WEP-0.4, partial crystal was observed by X-ray diffraction and noodle like-shape was found by environmental scanning electronic microscopy. In the case of WEP-0.3, it's surface topography was relatively loosely and it has amorphous structure. These results indicated a microgel was formed for WEP-0.4in the process of dialysis. The formation of microgel may due to the adsorption of Ca2+by WEP-0.4, as reflected in a high calcium content in WEP-0.4.
     3. Premna microphylla turcz leaves (PMTL) have been used for preparing a "Shenxian tofu" by Chinese for a long history. Cell-wall material of PMTL extracted as alcohol insoluble solids (AIS) was analyzed. The AIS recovery accounted for77.82g/100g dried leaves, while the total, insoluble dietary fiber and galacturonic acid content was69.45,56.35and23.94g/100g of the AIS, respectively. A sequential extraction, using water, ammonium oxalate, hydrochloric acid and sodium hydroxide, was used to extract different pectic fractions. Oxalate-soluble pectin (OXSP) was found to be the major pectic fraction (59.48%), which contains high amounts of galacturonic acids (76.15%) with mainly homogalacturonan, and has low degree of methoxylation (14.90%) and high average molecular weight (980.67kDa). All of these characteristics have contributed an excellent gelling capability of OXSP. The results might allow an improved use of PMTL as a resource of dietary fiber and low-methoxyl pectin.
     4. Pectin sequentially isolated from Premna microphylla turcz leaves were dialyzed against running tap water or deionized water. It was found that dialysis solution has significant impact on appearance, final yield, ash and protein content, and surface topography of pectin. Water soluble pectin, oxalate-soluble pectin and alkali-soluble pectin formed or partial formed gels. The formation of gel would be due to low methoxyl pectin associated with calcium, which absorbed into dialysis tube when dialysis against running taping water. This deduction agrees with that a high amount of calcium and ash content were detected in these samples. The morphology of plant cell wall after each isolation step was observed. The results showed that sequential isolation steps are processes, which gradually release pectin from plant cell wall materials. The most remarkable change of morphology of cell wall material was found when ammonium oxalate were used as extracting agent, indicating ammonium oxalate is suitable for isolation of pectin in Premna microphylla turcz leaves.
     5. High-methoxyl pectin was degraded by dynamic high pressure microfluidization (DHPM). It was found that apparent viscosity, average molecular weight and particle size of pectin decreased, whereas the amount of reducing sugars increased with increasing DHPM pressure. At the same time, the surface topography of pectin was changed from large flake-like structure to smaller porous chips. The mechanism of DHPM-induced degradation of pectin was also investigated. Fourier transform infrared spectra showed DHPM had no effect on the primary structure of pectin. On the other hand, reducing sugars content increased linearly with decreasing average molecular weight, suggesting the degradation may derive from the rupture of glycosidic bond. The breakdown of glycosidic bond may not only result from intensive mechanical forces but also from acid hydrolysis, which was evidenced in the reduction of degradation when the concentration of H+was lowered. In addition, neither P-elimination nor demethoxylation occurred with DHPM. Based on these results, a model was proposed to illustrate the degradation of pectin induced by DHPM.
     6. Pectic-oligosaccharides (POS) were prepared from apple pectin by dynamic high-pressure microfluidization. Operating under selected conditions (pectin concentration1.84%, solution temperature63℃, DHPM pressure155MPa and number of cycles6passes),32.92%of the pectin was converted into POS. The resulting POS contains29.56%galacturonic acid and58.53%neutral sugars. The prebiotic properties of POS were then evaluated using a fecal batch culture fermentation. The POS increased the number of Bifidobacteria and Lactobacilli, and produced a higher concentration of acetic, lactic, and propionic acid than their parent pectin. Furthermore, POS decreased the number of Bacteroides and Clostridia while their parent pectin increased them. Moreover, the effects of POS on the growth of these bacteria and production of short-chain fatty acids are comparable to those of the most studied prebiotic, fructooligosaccharide. These results indicated that the POS prepared by DHPM has a potential to be an effective prebiotic.
引文
[1]Albersheim, P.; Darvill, A.; O'neill, M., et al. An hypothesis:the same six polysaccharides are components of the primary cell walls of all higher plants[J]. Progress in Biotechnology,1996, 14:47-55.
    [2]Ridley, B. L.; O'Neill, M. A.; Mohnen, D. Pectins:structure, biosynthesis, and oligogalacturonide-related signaling[J]. Phytochemistry,2001,57(6):929-967.
    [3]Willats, W. G. T.; McCartney, L.; Mackie, W., et al. Pectin:cell biology and prospects for functional analysis[J]. Plant Molecular Biology,2001,47(1-2):9-27.
    [4]Round, A. N.; Rigby, N, M.; MacDougall, A. J., et al. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy[J]. Carbohydrate Research,2010, 345(4):487-497.
    [5]Vincken, J. P.; Schols, H. A.; Oomen, R., et al. If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture[J]. Plant Physiology,2003, 132(4):1781-1789.
    [6]Willats, W. G T.; Knox, P.; Mikkelsen, J. D. Pectin:new insights into an old polymer are starting to gel[J]. Trends in Food Science & Technology,2006,17(3):97-104.
    [7]Sharma, B.; Naresh, L.; Dhuldhoya, N., et al. An overview on pectins[J]. Times Food Process Journal,2006,23(2):44-51.
    [8]Kurita, O.; Miyake, Y.; Yamazaki, E. Chemical modification of citrus pectin to improve its dissolution into water[J]. Carbohydrate Polymers,2012,87(2):1720-1727.
    [9]Owens, H. S.; Maclay, W. D. Effect of methoxyl content of pectin on the properties of high-solids gels[J]. Journal of Colloid Science,1946,1(4):313-326.
    [10]Oakenfull, D. G.; Scott, A. G. Gelation of high methoxyl pectins [J]. Food Technology in Australia,1985,37(4):156-158.
    [11]Morris, E. R.; Gidley, M. J.; Murray, E. J., et al. Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties[J]. International Journal of Biological Macromolecules,1980,2(5):327-330.
    [12]Morris, E. R.; Powell, D. A.; Gidley, M. J., et al. Conformations and interactions of pectins: I. Polymorphism between gel and solid states of calcium polygalacturonate[J]. Journal of Molecular Biology,1982,155(4):507-516.
    [13]Gigli, J.; Gamier, C.; Piazza, L. Rheological behaviour of low-methoxyl pectin gels over an extended frequency window[J]. Food Hydrocolloids,2009,23(5):1406-1412.
    [14]Walter, R. H.; Sherman, R. M. Flow profiles of aqueous dispersed pectins[J]. Journal of Food Science,1984,49(1):67-69.
    [15]Laurent, M.; Boulenguer, P. Stabilization mechanism of acid dairy drinks (ADD) induced by pectin[J]. Food Hydrocolloids,2003,17(4):445-454.
    [16]Hoefier, A. Other pectin food products[J]. The Chemistry and Technology of Pectin, 1992:51.
    [17]Yamada, H. Contribution of pectins on health care[J]. Progress in Biotechnology,1996, 14:173-190.
    [18]Behall, K.; Reiser, S. In Effects of pectin on human metabolism, Chemistry and Function of Pectins (248-265), Eds. ML Fishman, JJ Jen, ACS Symposium Series,1986; ACS Publications: 1986.
    [19]Nelson, D.; Smit, C.; Wiles, R. Commercially important pectic substances[J]. Food Colloids, 1977:418-437.
    [20]Gan, C.-Y.; Latiff, A. A. Extraction of antioxidant pectic-polysaccharide from mangosteen (Garcinia mangostana) rind:Optimization using response surface methodology[J]. Carbohydrate Polymers,2011,83(2):600-607.
    [21]Torralbo, D. F.; Batista, K. A.; Di-Medeiros, M. C. B., et al. Extraction and partial characterization of Solanum lycocarpum pectin[J]. Food Hydrocolloids,2012,27(2):378-383.
    [22]Wai, W. W.; Alkarkhi, A. F. M.; Easa, A. M. Effect of extraction conditions on yield and degree of esterification of durian rind pectin:An experimental design[J]. Food and Bioproducts Processing,2010,88(2-3):209-214.
    [23]吴松成.薜荔的开发利用及栽培技术[J].林业科技通讯,2001,(2):38.
    [24]彭玲;吕艳.薜荔籽胶凝果冻的研制[J].食品工业科技,2004,(2):90-91.
    [25]叶功富;许信玲;徐俊森,等.爱玉子与薜荔比较分析研究[J].福建林业科技,2006,33(4):5-7.
    [26]中国科学院植物所.中国高等植物图鉴.第三册;科学出版社:北京,1983.
    [27]刘世彪;朱杰英;李国民,等.豆腐柴及其开发利用初步研究[J].中国野生植物资源,2001,20(4):11-12.
    [28]陈福明.豆腐柴叶提取果胶工艺研究[J].浙江林业科技,1988,(3):20-26.
    [29]曾诠;刘成基;刘利根.黄毛豆腐柴皮酯溶性化学成分研究[J].中国药科大学学报,1989,20(2):94-96.
    [30]安徽植物志协作组.安徽植物志.安徽科学技术出版社:合肥,1991;Vol.4.
    [31]邵伟;唐明;熊泽.豆腐柴果冻加工工艺[J].食品科技,2003,(9):50-51.
    [32]May, C. D. Industrial pectins:sources, production and applications[J]. Carbohydrate Polymers,1990,12(l):79-99.
    [33]Voragen, A.; Pilnik, W.; Thibault, J. F., et al. Pectins[J]. Food Science and Technology, New York, Marcel Dekker,1995:287-287.
    [34]Kertesz, Z. I. The pectic substances. Interscience Publishers New York:1951; Vol.1.
    [35]Thibault, J. F.; Rombouts, F. M. Effects of some oxidising agents, especially ammonium peroxysulfate, on sugar-beet pectins[J]. Carbohydrate Research,1986,154(1):205-215.
    [36]Selvendran, R. R.; O'Neill, M. A. Isolation and analysis of cell walls from plant material[J]. Methods of Biochemical Analysis,1987:25-153.
    [37]Vierhuis, E.; Schols, H.; Beldman, G., et al. Isolation and characterisation of cell wall material from olive fruit(Olea europaea cv koroneiki) at different ripening stages[J]. Carbohydrate Polymers,2000,43(1):11-21.
    [38]Sakai, T. Degradation of pectins[J]. Microbial degradation of natural products. Weinheim, Germany, VCH Publishers,1992:57-81.
    [39]Shkodina, O. G.; Zeltser, O. A.; Selivanov, N. Y, et al. Enzymic extraction of pectin preparations from pumpkin[J]. Food Hydrocolloids,1998,12(3):313-316.
    [40]Matthew, J. A.; Howson, S. J.; Keenan, M. H. J., et al. Improvement of the gelation properties of sugarbeet pectin following treatment with an enzyme preparation derived from aspergillus niger--comparison with a chemical modification[J]. Carbohydrate Polymers,1990, 12(3):295-306.
    [41]Williamson, G.; Faulds, C. B.; Matthew, J. A., et al. Gelation of sugarbeet and citrus pectins using enzymes extracted from orange peel[J]. Carbohydrate Polymers,1990,13(4):387-397.
    [42]Thibault, J. F.; Ralet, M. C.; Axelos, M., et al. Effects of extrusion-cooking on pectin-rich materials[J]. Progress in Biotechnology,1996,14:425-437.
    [43]Guo, X.; Han, D.; Xi, H., et al. Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating:A comparison[J]. Carbohydrate Polymers, 2012,88(2):441-448.
    [44]Bagherian, H.; Zokaee Ashtiani, F.; Fouladitajar, A., et al. Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit[J]. Chemical Engineering and Processing:Process Intensification,2011, 50(11):1237-1243.
    [45]Renard, C. M. G. C.; Thibault, J. F. Structure and properties of apple and sugar-beet pectins extracted by chelating agents[J]. Carbohydrate Research,1993,244(1):99-114.
    [46]Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose[J]. Journal of Biological Chemistry,1944,153(2):375-380.
    [47]Dygert, S.; Li, L.; Florida, D., et al. Determination of reducing sugar with improved precision[J]. Analytical Biochemistry,1965,13(3):367-374.
    [48]Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426-428.
    [49]Waffenschmidt, S.; Jaenicke, L. Assay of reducing sugars in the nanomole range with 2,2'-bicinchoninate[J]. Analytical Biochemistry,1987,165(2):337-340.
    [50]Dische, Z. A new specific color reaction of hexuronic acids[J]. The Journal of Biological Chemistry,1947,167(1):189.
    [51]Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54(2):484-489.
    [52]Scott, R. W. Colorimetric determination of hexuronic acids in plant materials[J]. Analytical Chemistry,1979,51(7):936-941.
    [53]McFeeters, R.; Armstrong, S. Measurement of pectin methylation in plant cell walls[J]. Analytical Biochemistry,1984,139(1):212-217.
    [54]Thibault, J. Automatisation du dosage des substances pectiques par la m6thode au meta-hydroxydiphenyl[J]. Food Science and Technology,1979,12:247-251.
    [55]Ahmed, A. E. R.; LABAVITCH, J. M. A simplified method for accurate determination of cell wall uronide content[J]. Journal of Food Biochemistry,1978, 1(4):361-365.
    [56]Robertson, G. L. The fractional extraction and quantitative determination of pectic substances in grapes and musts[J]. American Journal of Enology and Viticulture,1979, 30(3):182-186.
    [57]Schultz, T. Determination of the degree of esterification of pectin[J]. Methods in Carbohydrate Chemistry,1965,5:189-194.
    [58]Perry, M.; Hulyalkar, R. The analysis of hexuronic acids in biological materials by gas-liquid partition chromatography[J]. Canadian Journal of Biochemistry,1965,43(5):573-584.
    [59]Ford, C. W. A routine method for identification and quantitative determination by gas-liquid chromatography of galacturonic acid in pectic substances[J]. Journal of the Science of Food and Agriculture,1982,33(4):318-324.
    [60]Voragen, A.; Schols, H.; De Vries, J., et al. High-performance liquid chromatographic analysis of uronic acids and oligogalacturonic acids[J]. Journal of Chromatography A,1982, 244(2):327-336.
    [61]Hatanaka, C.; Yokohiki, K.; Matsuhashi, S. Analysis of galacturonic acid and oligogalacturonic acids by high-performance liquid chromatography [an application for food technology][J]. Journal of the Faculty of Applied Biological Science-Hiroshima University,1986, 25.
    [62]Schols, H.; Reitsma, J.; Voragen, A., et al. High-performance ion exchange chromatography of pectins[J]. Food Hydrocolloids,1989,3(2):115-121.
    [63]Garleb, K.; Bourquin, L.; Fahey Jr, G Galacturonate in pectic substances from fruits and vegetables:comparison of anion exchange HPLC with pulsed amperometric detection to standard colorimetric procedure[J]. Journal of Food Science,1991,56(2):423-426.
    [64]De Ruiter, G A.; Schols, H. A.; Voragen, A. G J., et al. Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods[J]. Analytical Biochemistry,1992,207(1):176-185.
    [65]FCC. Food chemical codex. National Academy of Sciences:Washington, DC,1981.
    [66]Keijbets, M. J. H.; Pilnik, W. Some problems in the analysis of pectin in potato tuber tissue[J]. Potato Research,1974,17(2):169-177.
    [67]Kujawski, M.; Tuszynski, T. A comparison of some methods for the determination of methoxyl groups in commercial pectin preparations [J]. Food/Nahrung,1987,31(3):233-238.
    [68]Wood, P. J.; Siddiqui, I. Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity[J]. Analytical Biochemistry,1971, 39(2):418-428.
    [69]Klavons, J. A.; Bennett, R. D. Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins[J]. Journal of Agricultural and Food Chemistry, 1986,34(4):597-599.
    [70]Hoff, J. E.; Feit, E. D. New technique for functional group analysis in gas chromatography. syringe reactions[J]. Analytical Chemistry,1964,36(6):1002-1008.
    [71]Bartolome, L. G; Hoff, J. E. Gas-chromatographic methods for the assay of pectin methylesterase, free methanol, and methoxy groups in plant tissues[J]. Journal of Agricultural and Food Chemistry,1972,20(2):262-266.
    [72]Gandelman, M. S.; Birks, J. W. Photooxygenation-chemiluminescence high-performance liquid chromatographic detector for the determination of aliphatic alcohols, aldehydes, ethers and saccharides[J], Journal of Chromatography A,1982,242(1):21-31.
    [73]Voragen, A.; Schols, H.; Pilnik, W. Determination of the degree of methylation and acetylation of pectins by HPLC[J]. Food Hydrocolloids,1986, 1(1):65-70.
    [74]Selvendran, R. R.; March, J. F.; Ring, S. G. Determination of aldoses and uronic acid content of vegetable fiber[J]. Analytical Biochemistry,1979,96(2):282-292.
    [75]Englyst, H. N.; Cummings, J. H. Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates[J]. Analyst,1984,109(7):937-942.
    [76]Ball, G. The application of HPLC to the determination of low molecular weight sugars and polyhydric alcohols in foods:a review[J]. Food Chemistry,1990,35(2):117-152.
    [77]Morris, G.; Foster, T.; Harding, S. The effect of the degree of esterification on the hydrodynamic properties of citrus pectin[J]. Food Hydrocolloids,2000,14(3):227-235.
    [78]Fishman, M. L.; Pepper, L.; Damert, W., et al. A critical reexamination of molecular weight and dimensions for citrus pectins[J]. Chemistry and Function of Pectins,1986,310:22.
    [79]Martinsen, A.; Skjak-Braek, G.; Smidsr(?)d, O., et al. Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates[J]. Carbohydrate Polymers,1991,15(2):171-193.
    [80]Jordan, R. C.; Brant, D. A. An investigation of pectin and pectic acid in dilute aqueous solution[J]. Biopolymers,1978,17(12):2885-2895.
    [81]Plashchina, I.; Semenova, M.; Braudo, E., et al. Structural studies of the solutions of anionic polysaccharides. IV. Study of pectin solutions by light-scattering[J]. Carbohydrate Polymers, 1985,5(3):159-179.
    [82]Chapman, H. D.; Morris, V. J.; Selvendran, R. R., et al. Static and dynamic light-scattering studies of pectic polysaccharides from the middle lamellae and primary cell walls of cider apples[J]. Carbohydrate Research,1987,165(1):53-68.
    [83]Anger, H.; Berth, G. Gel permeation chromatography and the Mark-Houwink relation for pectins with different degrees of esterification[J]. Carbohydrate Polymers,1986,6(3):193-202.
    [84]Deckers, H.; Olieman, C.; Rombouts, F., et al. Calibration and application of high-performance size exclusion columns for molecular weight distribution of pectins[J]. Carbohydrate Polymers,1986,6(5):361-378.
    [85]Berth, G; Lexow, D. The determination of the molecular-weight distribution of pectins by calibrated GPC. Part Ⅱ:The universal calibration[J]. Carbohydrate Polymers,1991,15(1):51-65.
    [86]Hourdet, D.; Muller, G Solution properties of pectin polysaccharides--Ⅲ:Molecular size of heterogeneous pectin chains. Calibration and application of SEC to pectin analysis[J]. Carbohydrate Polymers,1991,16(4):409-432.
    [87]Christensen, P.E. Methods of grading pectin in relation to the molecular weight (intrinsic viscosity) of pectin [J]. Journal of Food Science,1954,19(1-6):163-172.
    [88]Kontominas, M.; Kokini, J. Measurement of molecular parameters of water soluble apple pectin using low angle laser light scattering[J]. Lebensmittel-Wissenschaft+ Technologie,1990, 23(2):174-177.
    [89]Harding, S. E.; Berth, G.; Ball, A., et al. The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics[J], Carbohydrate Polymers,1991, 16(1):1-15.
    [90]Renard, C.; Jarvis, M. Acetylation and methylation of homogalacturonans 1:optimisation of the reaction and characterisation of the products[J]. Carbohydrate Polymers,1999, 39(3):201-207.
    [91]Einhorn-Stoll, U.; Salazar, T.; Jaafar, B., et al. Thermodynamic compatibility of sodium caseinate with different pectins. Influence of the milieu conditions and pectin modifications[J]. Food/Nahrung,2001,45(5):332-337.
    [92]Fan, L.; Cao, M.; Gao, S., et al. Preparation and characterization of a quaternary ammonium derivative of pectin[J]. Carbohydrate Polymers,2012,88:707-712.
    [93]Sharma, R.; Ahuja, M. Thiolated pectin:Synthesis, characterization and evaluation as a mucoadhesive polymer[J]. Carbohydrate Polymers,2011,85:658-663.
    [94]Vityazev, F.; Golovchenko, V.; Patova, O., et al. Synthesis of sulfated pectins and their anticoagulant activity[J]. Biochemistry (Moscow),2010,75(6):759-768.
    [95]Bellu, S. E.; Gonzalez, J. C; Garcia, S. I., et al. Kinetics and mechanism of oxidation of apple pectin by CrVI in aqueous acid medium[J]. Journal of Physical Organic Chemistry,2008, 21(12):1059-1067.
    [96]Semde, R.; Moes, A. J.; Devleeschouwer, M. J., et al. Synthesis and enzymatic degradation of epichlorohydrin cross-linked pectins[J]. Drug Development and Industrial Pharmacy,2003, 29(2):203-213.
    [97]Assaf, S. M.; Abul-Haija, Y. M.; Fares, M. M. Versatile pectin grafted poly (N-isopropylacrylamide); Modulated targeted drug release[J]. Journal of Macromolecular Science, Part A,2011,48(6):493-502.
    [98]Coenen, G. J.; Kabel, M. A.; Schols, H. A., et al. CE-MSn of complex pectin-derived oligomers[J]. Electrophoresis,2008,29(10):2101-2111.
    [99]Yamaguchi, F.; Shimizu, N.; Hatanaka, C. Preparation and physiological effect of low-molecular-weight pectin[J]. Bioscience, Biotechnology, and Biochemistry,1994, 58(4):679-682.
    [100]Byun, M. W.; Kang, H. J.; Jo, C., et al. Antioxidant and cancer cell proliferation inhibition effect of citrus pectin-oligosaccharide prepared by irradiation[J]. Journal of Medicinal Food, 2006,9(3):313-320.
    [101]Maxwell, E. G.; Belshaw, N. J.; Waldron, K. W., et al. Pectin-An emerging new bioactive food polysaccharide[J]. Trends in Food Science & Technology,2012,24(2):64-73.
    [102]Xu, Y; Dong, Q.; Qiu, H., et al. A homogalacturonan from the radix of Platycodon grandiflortm and the anti-angiogenesis activity of poly-/oligogalacturonic acids derived therefrom[J]. Carbohydrate Research,2011,346(13):1930-1936.
    [103]Li, T.; Yamauchi, R.; Kato, K. Antibacterial activity of enzymolysate of haw pectin[J], Journal of Applied Glycoscience,1997,44(4):489-495.
    [104]Olano-Martin, E.; Gibson, G. R.; Rastall, R. A. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides[J]. Journal of Applied Microbiology,2002, 93(3):505-511.
    [105]Bonnin, E.; Le Goff, A.; Korner, R., et al. Hydrolysis of pectins with different degrees and patterns of methylation by the endopolygalacturonase of Fusarium moniliforme[S]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2002,1596(l):83-94.
    [106]Azadi, P.; O'Neill, M. A.; Bergmann, C., et al. The backbone of the pectic polysaccharide rhamnogalacturonan I is cleaved by an endohydrolase and an endolyase[J]. Glycobiology,1995, 5(8):783-789.
    [107]Mutter, M.; Renard, C. M. G.C.; Beldman, G., et al. Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolasel[J]. Carbohydrate Research,1998, 311(3):155-164.
    [108]Schols, H. A.; Voragen, A. G. J., The chemical structure of pectins. In Pectins and their Manipulation, Seymour, G. B.; Knox, J. P., Eds. CRC Press:2002.
    [109]Sajjaanantakul, T.; Van Buren, J. P.; Downing, D. L. Effect of cations on heat degradation of chelator-soluble carrot pectin[J]. Carbohydrate Polymers,1993,20(3):207-214.
    [110]Krall, S. M.; McFeeters, R. F. Pectin hydrolysis:Effect of temperature, degree of Methylation, pH, and calcium on hydrolysis rates[J]. Journal of Agricultural and Food Chemistry, 1998,46(4):1311-1315.
    [111]Thibault, J.-F.; Renard, C. M. G C.; Axelos, M. A. V., et al. Studies of the length of homogalacturonic regions in pectins by acid hydrolysis [J]. Carbohydrate Research,1993, 238:271-286.
    [112]Fry, S. C.; Miller, J. G.; Dumville, J. C. A proposed role for copper ions in cell wall loosening[J]. Plant and Soil,2002,247(1):57-67.
    [113]Elboutachfaiti, R.; Delattre, C.; Michaud, P., et al. Oligogalacturonans production by free radical depolymerization of polygalacturonan[J]. International Journal of Biological Macromolecules,2008,43(3):257-261.
    [114]Seshadri, R.; Weiss, J.; Hulbert, G J., et al. Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions[J]. Food Hydrocolloids,2003, 17(2):191-197.
    [115]Leighton, T. Bubble population phenomena in acoustic cavitation[J]. Ultrasonics Sonochemistry,1995,2(2):S123-S136.
    [116]Tiwari, B. K.; Muthukumarappan, K.; O'Donnell, C. P., et al. Rheological properties of sonicated guar, xanthan and pectin dispersions[J]. International Journal of Food Properties,2010, 13(2):223-233.
    [117]Harish Prashanth, K.; Tharanathan, R. Chitin/chitosan:modifications and their unlimited application potential-an overview[J], Trends in Food Science & Technology,2007, 18(3):117-131.
    [118]Makuuchi, K. Critical review of radiation processing of hydrogel and polysaccharide[J]. Radiation Physics and Chemistry,2010,79(3):267-271.
    [119]Zegota, H. The effect of y-irradiation on citrus pectin in N2O and N2O/O2 saturated aqueous solutions[J]. Food Hydrocolloids,1999,13(1):51-58.
    [120]Ayyad, K.; Hassanien, F.; Ragab, M. The effect of 7 irradiation on the structure of pectin[J]. Food/Nahrung,1990,34(5):465-468.
    [121]Sjoberg, A. M. The effects of y irradiation on the structure of apple pectin[J]. Food Hydrocolloids,1987,1(4):271-276.
    [122]Dogan, M.; Kayacier, A.; Ic, E. Rheological characteristics of some food hydrocolloids processed with gamma irradiation[J]. Food Hydrocolloids,2007,21(3):392-396.
    [123]Burana-osot, J.; Soonthornchareonnon, N.; Hosoyama, S., et al. Partial depolymerization of pectin by a photochemical reaction[J]. Carbohydrate Research,2010,345(9):1205-1210.
    [124]Dongowski, G; Schnorrenberger, B.; Platzer, M., et al. Interactions between food components and drugs. Part 5:Effect of acetylation and amidation of pectins on the interaction with drugs[J]. International Journal of Pharmaceutics,1997,158(1):99-107.
    [125]Hwang, J. K.; Kim, C. J.; Kim, C. T. Extrusion of apple pomace facilitates pectin extractio[J]. Journal of Food Science,1998,63(5):841-844.
    [126]Plat, D.; Ben-Shalom, N.; Levi, A. Changes in pectic substances in carrots during dehydration with and without blanching[J]. Food Chemistry,1991,39(1):1-12.
    [127]De Roeck, A.; Duvetter, T.; Fraeye, I., et al. Effect of high-pressure/high-temperature processing on chemical pectin conversions in relation to fruit and vegetable texture[J]. Food Chemistry,2009,115(1):207-213.
    [128]Corredig, M.; Wicker, L. Changes in the molecular weight distribution of three commercial pectins after valve homogenization[J]. Food Hydrocolloids,2001,15(1):17-23.
    [129]Liu, W.; Liu, J.; Xie, M., et al. Characterization and high-pressure microfluidization-Induced activation of polyphenoloxidase from Chinese pear (Pyrus pyrifolia Nakai)[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5376-5380.
    [130]Laneuville, S. I.; Paquin, P.; Turgeon, S. L. Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes[J]. Food Hydrocolloids,2000, 14(4):305-314.
    [131]刘伟.动态高压微射流技术对酶的活性与构象变化的影响[D].南昌大学,2009.
    [132]Paquin, P.; Lebeuf, Y.; Richard, J., et al. In Microparticulation of milk proteins by high pressure homogenization to produce a fat substitute, Protein and fat globule modifications by heat treatment, homogenization and other technological means for high quality dairy products. IDF Seminar, Munich (Germany),25-28 Aug 1992,1993; FIL-IDF:1993.
    [133]lordache, M.; Jelen, P. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality[J]. Innovative Food Science & Emerging Technologies,2003, 4(4):367-376.
    [134]Oboroceanu, D.; Wang, L.; Kroes-Nijboer, A., et al. The effect of high pressure microfluidization on the structure and length distribution of whey protein fibrils[J]. International Dairy Journal,21(10),823-830.
    [135]Liu, C.-M.; Zhong, J.-Z.; Liu, W., et al. Relationship between functional properties and aggregation changes of whey protein induced by high pressure microfluidization[J]. Journal of Food Science,2011,76(4):E341-E347.
    [136]Zhong, J.; Liu, C.; Liu, W., et al. Effect of dynamic high-pressure microfluidization at different temperatures on the antigenic response of bovine β-lactoglobulin[J]. European Food Research and Technology,2011,233(1):95-102.
    [137]涂宗财;汪菁琴;李金林,等.大豆蛋白动态超高压微射流均质中机械力化学效应[J].高等学校化学学报,2007,28(11):2225-2228.
    [138]Zongcai, T.; Xuechun, Z.; Chengmei, L., et al. Effect of ultra-high pressure microfluidization on the structure of peanut protein[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,9:065.
    [139]Shen, L.; Tang, C.-H. Microfluidization as a potential technique to modify surface properties of soy protein isolate[J]. Food Research International,2012,48(1):108-118.
    [140]Liu, W.; Liu, J.; Liu, C., et al. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment[J]. Innovative Food Science & Emerging Technologies,2009,10(2):142-147.
    [141]Liu, W.; Zhang, Z.-Q.; Liu, C.-M., et al. The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin[J]. Food Chemistry,2010, 123(3):616-621.
    [142]Silvestri, S.; Gabrielson, G. Degradation of tragacanth by high shear and turbulent forces during microfluidization[J]. International Journal of Pharmaceutics,1991,73(2):163-169.
    [143]Cencia-Rohan, L.; Silvestri, S. Effect of solvent system on microfluidization-induced mechanical degradation[J]. International Journal of Pharmaceutics,1993,95(1-3):23-28.
    [144]Silvestri, S.; Gabrielson, G.; Wu, L. L. Effect of treminal block on the microfluidization induced degradation of a model A-B-A block copolyme[J]. International Journal of Pharmaceutics,1991,71 (1-2):65-71.
    [145]Tsai, M. L.; Tseng, L. Z.; Chen, R. H. Two-stage microfluidization combined with ultrafiltration treatment for chitosan mass production and molecular weight manipulation[J]. Carbohydrate Polymers,2009,77(4):767-772.
    [146]Chen, R. H.; Huang, J. R.; Tsai, M. L., et al. Differences in degradation kinetics for sonolysis, microfluidization and shearing treatments of chitosan[J]. Polymer International,2011, 60(6):897-902.
    [147]Lagoueyte, N.; Paquin, P. Effects of microfluidization on the functional properties of xanthan gum[J]. Food Hydrocolloids,1998,12(3):365-371.
    [148]Kasaai, M. R.; Charlet, G.; Paquin, P., et al. Fragmentation of chitosan by microfluidization process[J]. Innovative Food Science & Emerging Technologies,2003,4(4):403-413.
    [149]Kasemwong, K.; Ruktanonchai, U. R.; Srinuanchai, W., et al. Effect of high-pressure microfluidization on the structure of cassava starch granule[J]. Starch-Starke,2011, 63(3):160-170.
    [150]Wang, B.; Li, D.; Wang, L.-j., et al. Effect of high-pressure homogenization on the structure and thermal properties of maize starch[J]. Journal of Food Engineering,2008, 87(3):436-444.
    [151]万婕;刘成梅;蓝海军,等.动态瞬时高压作用对膳食纤维酶解速度的影响[J].高压物理学报,2008,22(04):439-444.
    [152]Ronkart, S. N.; Paquot, M.; Deroanne, C., et al. Development of gelling properties of inulin by microfluidization[J]. Food Hydrocolloids,2010,24(4):318-324.
    [153]Turner, J.; Dritz, S.; Minton, J. Review:Alternatives to conventional antimicrobials in swine diets[J]. The Professional Animal Scientist,2001,17(4):217-226.
    [154]Iyer, C.; Kailasapathy, K. Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and inyogurt[J]. Journal of Food Science,2005,70(1):M18-M23.
    [155]Gibson, G. R.; Probert, H. M.; Van Loo, J., et al. Dietary modulation of the human colonic microbiota:updating the concept of prebiotics[J]. Nutrition Research Reviews,2004, 17(2):259-275.
    [156]Hotchkiss, A.; Manderson, K.; Olano-Martin, E., et al. In Orange peel pectic oligosaccharide prebiotics with food and feed applications, Papers,228th ACS National Meeting, Philadelphia, PA,2004; 2004.
    [157]Rastall, R. A.; Olano-Martin, E.; Williams, M. R., et al. Pectins and pectic-oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29[J]. Fems Microbiology Letters,2003,218(1):101-105.
    [158]Guggenbichler, J.; Bettignies-Dutz, A. D.; Meissner, P., et al. Acidic oligosaccharides from natural sources block adherence of Escherichia coli on uroepithelial cells[J]. Pharmaceutical and Pharmacological Letters,1997,7(1):35-38.
    [159]Rastall, R. A.; Olano-Martin, E.; Rimbach, G. H., et al. Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells[J]. Anticancer Research,2003, 23(1A):341-346.
    [160]Vos, A.; Van Esch, B.; Stahl, B., et al. Dietary supplementation with specific oligosaccharide mixtures decreases parameters of allergic asthma in mice[J]. International Immunopharmacology,2007,7(12):1582-1587.
    [161]Inoue, K.; Rinat, S.; Makino, K. Simple method for removing lead ion using orange juice residue[J]. Journal of the Japan Society of Waste Management Experts,2002,13:216-222.
    [162]Van, K. T. T.; Toubart, P.; Cousson, A., et al. Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins[J]. Nature,1985,314:615-617.
    [163]Olano-Martin, E.; Mountzouris, K.; Gibson, G., et al. Continuous production of pectic oligosaccharides in an enzyme membrane reactor[J]. Journal of Food Science,2001, 66(7):966-971.
    [164]Li, T.; Li, S.; Du, L., et al. Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet[J]. Food Chemistry, 2010,121(4):1010-1013.
    [165]Du, B.; Song, Y.; Hu, X., et al. Oligosaccharides prepared by acid hydrolysis of polysaccharides from pumpkin (Cucurbita moschata) pulp and their prebiotic activities[J]. International Journal of Food Science & Technology,2011.
    [166]Hu, K.; Liu, Q.; Wang, S., et al. New oligosaccharides prepared by acid hydrolysis of the polysaccharides from Nerium indicum Mill and their anti-angiogenesis activities[J]. Carbohydrate Research,2009,344(2):198-203.
    [167]Ducasse, M.-A.; Williams, P.; Meudec, E., et al. Isolation of Carignan and Merlot red wine oligosaccharides and their characterization by ESI-MS[J]. Carbohydrate Polymers,2010, 79(3):747-754.
    [168]Nemati, N.; Karapetyan, G.; Nolting, B., et al. Synthesis of rhamnogalacturonan I fragments by a modular design principle[J]. Carbohydrate Research,2008, 343(10-11):1730-1742.
    [169]Courtois, J. Oligosaccharides from land plants and algae:production and applications in therapeutics and biotechnology[J]. Current Opinion in Microbiology,2009,12(3):261-273.
    [170]Mandalari, G; Palop, C. N.; Tuohy, K., et al. In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel[J]. Applied Microbiology and Biotechnology,2007,73(5):1173-1179.
    [171]Martinez, M.; Gullon, B.; Schols, H. A., et al. Assessment of the production of oligomeric compounds from sugar beet pulp[J]. Industrial & Engineering Chemistry Research,2009, 48(10):4681-4687.
    [172]Combo, A. M. M.; Aguedo, M.; Goffin, D., et al. Enzymatic production of pectic oligosaccharides from polygalacturonic acid with commercial pectinase preparations[J]. Food and Bioproducts Processing,2012,90(3):588-596.
    [173]Concha Olmos, J.; Zuniga Hansen, M. Enzymatic depolymerization of sugar beet pulp: Production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates[J]. Chemical Engineering Journal,2012:29-36.
    [174]Grohmann, K.; Cameron, R. G; Buslig, B. S. Fractionation and pretreatment of orange peel by dilute acid hydrolysis[J]. Bioresource Technology,1995,54(2):129-141. [175] Martinez, M.; Yanez, R.; Alonso, J. L., et al. Chemical Production of Pectic Oligosaccharides from Orange Peel Wastes[J]. Industrial & Engineering Chemistry Research, 2010,49(18):8470-8476.
    [176]Rastall, R. A.; Manderson, K.; Pinart, M., et al. In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream[J]. Applied and Environmental Microbiology,2005,71(12):8383-8389.
    [177]Coenen, G.; Bakx, E.; Verhoef, R., et al. Identification of the connecting linkage between homo-or xylogalacturonan and rhamnogalacturonan type I[J]. Carbohydrate Polymers,2007, 70(2):224-235.
    [178]Renard, C. M.; Lahaye, M.; Mutter, M., et al. Isolation and structural characterisation of rhamnogalacturonan oligomers generated by controlled acid hydrolysis of sugar-beet pulp[J]. Carbohydrate Research,1997,305(2):271-280.
    [179]Hellin, P.; Ralet, M.-C.; Bonnin, E., et al. Homogalacturonans from lime pectins exhibit homogeneous charge density and molar mass distributions[J]. Carbohydrate Polymers,2005, 60(3):307-317.
    [180]Akpinar, O.; Ak, O.; Kavas, A., et al. Enzymatic production of xylooligosaccharides from cotton stalks[J]. Journal of Agricultural and Food Chemistry,2007,55(14):5544-5551.
    [181]Miyazawa, T.; Ohtsu, S.; Funazukuri, T. Hydrothermal degradation of polysaccharides in a semi-batch reactor:product distribution as a function of severity parameter[J]. Journal of Materials Science,2008,43(7):2447-2451.
    [182]Martinez, M.; Yafiez, R.; Alonso, J. L., et al. Chemical production of pectic oligosaccharides from orange peel wastes[J]. Industrial & Engineering Chemistry Research, 2010.
    [183]Rastall, R. A.; Olano-Martin, E.; Mountzouris, K. C., et al. Continuous production of pectic oligosaccharides in an enzyme membrane reactor [J]. Journal of Food Science,2001, 66(7):966-971.
    [184]Bonnin, E.; Dolo, E.; Le Goff, A., et al. Characterisation of pectin subunits released by an optimised combination of enzymes[J]. Carbohydrate Research,2002,337(18):1687-1696.
    [185]Jenkins, D. J. A.; Leeds, A. R.; Wolever, T. M. S., et al. Unabsorbable carbohydrates and diabetes:Decreased post-prandial hyperglycaemia[J]. The Lancet,1976,308(7978):172-174.
    [186]Knopp, R. H.; Superko, H. R.; Davidson, M., et al. Long-term blood cholesterol-lowering effects of a dietary fiber supplement[J]. American Journal of Preventive Medicine,1999, 17(1):18-23.
    [187]Lupton, J. R. Is fiber protective against colon cancer? Where the research is leading us[J]. Nutrition,2000,16(7):558-561.
    [188]Kravtchenko, T. P.; Arnould, I.; Voragen, A. G. J., et al. Improvement of the selective depolymerization of pectic substances by chemical [beta]-elimination in aqueous solution[J]. Carbohydrate Polymers,1992,19(4):237-242.
    [189]Nikolic, M. V.; Mojovic, L. Hydrolysis of apple pectin by the coordinated activity of pectic enzymes[J]. Food Chemistry,2007,101(1):1-9.
    [190]Olano-Martin, E.; Gibson, G.; Rastall, R. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides[J]. Journal of Applied Microbiology,2002, 93(3):505-511.
    [191]Martinez, M.; Gull6n, B.; Yanez, R., et al. Direct enzymatic production of oligosaccharide mixtures from sugar beet pulp:Experimental evaluation and mathematical modeling[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5510-551
    [1]Kitajima, J.; Kimizuka, K.; Tanaka, Y. Three new sesquiterpenoid glucosides of Ficus pumila fruit[J]. Chemical and Pharmaceutical Bulletin-Tokyo-,2000,48(1):77-80.
    [2]Leong, C. N. A.; Tako, M.; Hanashiro, I., et al. Antioxidant flavonoid glycosides from the leaves of Ficus pumila L[J]. Food Chemistry,2008,109(2):415-420.
    [3]Koubala, B. B.; Kansci, G.; Mbome, L. I., et al. Effect of extraction conditions on some physicochemical characteristics of pectins from "Amelioree" and "Mango" mango peels[J]. Food Hydrocolloids,2008,22(7):1345-1351.
    [4]Turquois, T.; Rinaudo, M.; Taravel, F. R., et al. Extraction of highly gelling pectic substances from sugar beet pulp and potato pulp:influence of extrinsic parameters on their gelling properties[J]. Food Hydrocolloids,1999,13(3):255-262.
    [5]Gnanasambandam, R.; Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy[J]. Food Chemistry,2000,68(3):327-332.
    [6]Blumenkrantz, N.; Asboe-Hansen, G New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54(2):484-489.
    [7]Ahmed, A. E.; Labavitch, J. M. A simplified method for accurate determination of cell wall uronide content[J]. Journal of Food Biochemistry,1977,1:361-365.
    [8]Taboada, E.; Fisher, P.; Jara, R., et al. Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits[J]. Food Chemistry,2010,123(3):669-678.
    [9]Liu, L.; Cao, J.; Huang, J., et al. Extraction of pectins with different degrees of esterification from mulberry branch bark[J]. Bioresource Technology,2010,101(9):3268-3273.
    [10]Mead, D. J.; Fuoss, R. M. Viscosities of solutions of polyvinyl chloride[J]. Journal of the American Chemical Society,1942,64(2):277-282.
    [11]Rao, M. A., Introduction:intrinsic viscosity. In Rheology of fluid and semisolid foods, Rao, M. A., Ed. Aspen:Maryland,1999; pp 12-14.
    [12]Gamier, C.; Axelos, M. A. V.; Thibault, J.-F. Phase diagrams of pectin-calcium systems: Influence of pH, ionic strength, and temperature on the gelation of pectins with different degrees of methylation[J]. Carbohydrate Research,1993,240:219-232.
    [13]AOAC. Official methods of analysis of AOAC international. AOAC International:Maryland, 1997.
    [14]Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976, 72(1-2):248-254.
    [15]Rascon-Chu, A.; Martinez-Lopez, A. L.; Carvajal-Millan, E., et al. Pectin from low quality 'Golden Delicious' apples:Composition and gelling capability[J]. Food Chemistry,2009, 116(1):101-103.
    [16]Schmelter, T.; Wientjes, R.; Vreeker, R., et al. Enzymatic modifications of pectins and the impact on their rheological properties[J]. Carbohydrate Polymers,2002,47(2):99-108.
    [17]Cernd, M.; Barros, A.; Nunes, A., et al. Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives[J]. Carbohydrate Polymers,2003,51(4):383-389.
    [18]Singthong, J.; Ningsanond, S.; Cui, S. W., et al. Extraction and physicochemical characterization of Krueo Ma Noy pectin[J]. Food Hydrocolloids,2005,19(5):793-801.
    [19]Jolie, R. P.; Duvetter, T.; Houben, K., et al. Plant pectin methylesterase and its inhibitor from kiwi fruit:Interaction analysis by surface plasmon resonance[J]. Food Chemistry,2010, 121(1):207-214.
    [20]Yapo, B. M. Biochemical characteristics and gelling capacity of pectin from yellow passion fruit rind as affected by acid extractant nature[J]. Journal of Agricultural and Food Chemistry, 2009,57(4):1572-1578.
    [21]Diaz-Rojas, E.; Pacheco-Aguilar, R.; Lizardi, J., et al. Linseed pectin:gelling properties and performance as an encapsulation matrix for shark liver oil[J]. Food Hydrocolloids,2004, 18(2):293-304.
    [22]May, C. D. Industrial pectins:Sources, production and applications[J]. Carbohydrate Polymers,1990,12(l):79-99.
    [23]Levigne, S.; Ralet, M.-C.; Thibault, J.-F. Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design[J]. Carbohydrate Polymers, 2002,49(2):145-153.
    [24]Rombouts, F. M.; Thibault, J.-F. Feruloylated pectic substances from sugar-beet pulp[J]. Carbohydrate Research,1986,154(1):177-187.
    [25]Liu, Y; Ahmad, H.; Luo, Y., et al. Citrus Pectin:Characterization and inhibitory effect on fibroblast growth factor-receptor interaction[J]. Journal of Agricultural and Food Chemistry, 2001,49(6):3051-3057.
    [26]BeMiller, J. N. An introduction to pectins:structure and properties[J]. Chemistry and Function of Pectins,1986,310:4-11.
    [27]Cui, S. W. Food carbohydrates:chemistry, physical properties, and applications. CRC:2005.
    [28]Kratchanova, M.; Benemou, C.; Kratchanov, C. On the pectic substances of mango fruits[J]. Carbohydrate Polymers,1991,15(3):271-282.
    [29]Miyamoto, A.; Chang, K. C. Extraction and physicochemical characterization of pectin from sunflower head residues[J]. Journal of Food Science,1992,57(6):1439-1443.
    [30]Kalapathy, U.; Proctor, A. Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin[J]. Food Chemistry,2001,73(4):393-396.
    [31]Yapo, B. M.; Koffi, K. L. Yellow passion fruit rind-A potential source of low-methoxyl pectin[J]. Journal of Agricultural and Food Chemistry,2006,54(7):2738-2744.
    [32]Montero, P.; Fernadez-Diz, M. D.; Goez-Guille, M. C. Characterization of gelatin gels induced by high pressure[J]. Food Hydrocolloids,2002,16(3):197-205.
    [33]Koubala, B. B.; Kansci, G.; Gamier, C., et al. Rheological and high gelling properties of mango (Mangifera indica) and ambarella (Spondias cythered) peel pectins[J]. International Journal of Food Science & Technology,2009,44(9):1809-1817.
    [34]M. J. Gidley; E. R. Morris; E. J. Murray, et al. Evidence for two mechanisms of interchain association in calcium pectate gels[J]. International Journal of Biological Macromolecules,1980, 2(5):332-334.
    [35]Grant, G. T.; Morris, E. R.; Rees, D. A., et al. Biological interactions between polysaccharides and divalent cations:The egg-box model[J]. FEBS Letters,1973,32(1):195-198.
    [36]Fraeye, I.; Doungla, E.; Duvetter, T., et al. Influence of intrinsic and extrinsic factors on rheology of pectin-calcium gels[J]. Food Hydrocolloids,2009,23(8):2069-2077.
    [37]McKenna, B. A.; Nicholson, T. M.; Wehr, J. B., et al. Effects of Ca, Cu, A1 and La on pectin gel strength:implications for plant cell walls[J]. Carbohydrate Research,2010, 345(9):1174-1179.
    [38]May, C. D., Pectins. In Thickening and gelling agents for food, Imeson, A., Ed. Aspen Publishers:Maryland,1999; pp 231-261.
    [39]Kim, Y.; Yoo, Y. H.; Yam, K. O., et al. Textural properties of gelling system of low-methoxy pectins produced by demethoxylating reaction of pectin methyl esterase[J]. Journal of Food Science,2008,73(5):C367-C372.
    [40]Witten Jr, T.; Cohen, M. Crosslinking in shear-thickening ionomers[J]. Macromolecules, 1985,18(10):1915-1918.
    [1]方积年;丁侃.天然药物-多糖的主要生物活性及分离纯化方法[J].中国天然药物,2007,5(5):338-347.
    [2]Yang, L.; Zhang, L.-M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J]. Carbohydrate Polymers,2009, 76(3):349-361.
    [3]Zhang, X.; Yu, L.; Bi, H., et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer [J]. Carbohydrate Polymers,2009, 77(3):544-552.
    [4]Huang, X.; Wang, D.; Hu, Y., et al. Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus[J]. International Journal of Biological Macromolecules,2008,42(2):166-171.
    [5]Zhang, S.; Xu, C.; Santschi, P. H. Chemical composition and 234Th (IV) binding of extracellular polymeric substances (EPS) produced by the marine diatom Amphora sp. [J]. Marine Chemistry,2008,112(1):81-92.
    [6]DuBois, M.; Gilles, K. A.; Hamilton, J. K., et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350-356.
    [7]Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54(2):484-489.
    [8]Westerlund, E.; Aman, P.; Andersson, R., et al. Chemical characterization of water-soluble pectin in papaya fruit[J]. Carbohydrate Polymers,1991,15(1):67-78.
    [9]Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976, 72(1-2):248-254.
    [10]Einhorn-Stoll, U; Kunzek, H. Thermoanalytical characterisation of processing-dependent structural changes and state transitions of citrus pectin[J]. Food Hydrocolloids,2009, 23(1):40-52.
    [11]Whistler, R. L. Solubility of polysaccharides and their behavior in solution[J]. Advances in Chemistry Series,1973,117:242-255.
    [1]Zhan, Z. J.; Tang, L.; Shan, W. G. A new triterpene glycoside from Premna microphylla[5]. Chemistry of Natural Compounds,2009,45(2):197-199.
    [2]Wang, C.-w.; Xu, W.; Wang, W.-g., et al. Kinetics of pectin extraction from Premna microphylla turcz leaves[J]. Chemistry and Industry of Forest Products,2008,28(5):16-20.
    [3]Chau, C.; Huang, Y. Characterization of passion fruit seed fibres-a potential fibre source[J]. Food Chemistry,2004,85(2):189-194.
    [4]Taboada, E.; Fisher, P.; Jara, R., et al. Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits[J]. Food Chemistry,2010,123(3):669-678.
    [5]AOAC.1997. Official methods of analysis of AOAC international. AOAC International, Maryland.
    [6]Femenia, A., Garcia-Pascual, P., Simal, S., & Rossello, C. Effects of heat treatment and dehydration on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller[J]. Carbohydrate Polymers,2003,51(4),397-405.
    [7]International, A., Total Dietary Fiber (Codex Alimentarius Definition), Method 32-45.01. In Approved Methods of Analysis,11 ed.; AACC international:St. Paul, MN, USA,2010.
    [8]Yapo, B. M. Pineapple and banana pectins comprise fewer homogalacturonan building blocks with a smaller degree of polymerization as compared with yellow passion fruit and lemon pectins: Implication for gelling properties[J]. Biomacromolecules,2009,10(4):717-721.
    [9]Liu, C.-M.; Zhong, J.-Z.; Liu, W., et al. Relationship between functional properties and aggregation changes of whey protein induced by high pressure microfluidization[J]. Journal of Food Science,2011,76(4):E341-E347.
    [10]Rascon-Chu, A.; Martinez-L6pez, A. L.; Carvajal-Milldn, E., et al. Pectin from low quality 'Golden Delicious' apples:Composition and gelling capability [J]. Food Chemistry,2009, 116(1):101-103.
    [11]Schmelter, T.; Wientjes, R.; Vreeker, R., et al. Enzymatic modifications of pectins and the impact on their rheological properties[J]. Carbohydrate Polymers,2002,47(2):99-108.
    [12]Kunzek, H.; Kabbert, R.; Gloyna, D. Aspects of material science in food processing: changes in plant cell walls of fruits and vegetables[J]. Zeitschrift fur Lebensmitteluntersuchung und-Forschung A,1999,208(4):233-250.
    [13]Yapo, B. M.; Koffi, K. L. Yellow passion fruit rind-A potential source of low-methoxyl pectin[J]. Journal of Agricultural and Food Chemistry,2006,54(7):2738-2744.
    [14]Thomas, M.; Guillemin, F.; Guillon, F., et al. Pectins in the fruits of Japanese quince (Chaenomeles japonica)[J]. Carbohydrate Polymers,2003,53(4):361-372.
    [15]高贵珍;曹稳根;蔡红,等.野生豆腐柴叶营养成分分析及评价[J].植物资源与环境学报,2003,12(1):60-61.
    [16]陈福明.豆腐柴叶提取果胶工艺研究[J].浙江林业科技,1988,(3):20-26.
    [17]罗曼;蒋立科;杨永年.豆腐柴叶蛋白质营养及安全性研究[J].应用与环境生物学报,1999,5(3):283-287.
    [18]张凤霞;朱俊;蔡荣,等.湖北罗田野生豆腐柴营养成分分析[J].长江大学学报:自然版,农学卷,2007,4(1):72-73.
    [19]张驰;刘信平;周大寨.豆腐柴中蛋白质及氨基酸的测定[J].湖北民族学院学报:自然科学版,2003,21(1):68-70.
    [20]Liang, R.-h.; Chen, J.; Liu, W., et al. Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds[J]. Carbohydrate Polymers,2012,87(1):76-83.
    [21]Singthong, J.; Ningsanond, S.; Cui, S. W., et al. Extraction and physicochemical characterization of Krueo Ma Noy pectin[J]. Food Hydrocolloids,2005,19(5):793-801.
    [22]Simas, K. N. d.; Vieira, L. d. N.; Podestd, R., et al. Microstructure, nutrient composition and antioxidant capacity of king palm flour:A new potential source of dietary fibre[J]. Bioresource Technology,2010,101(14):5701-5707.
    [23]Sengkhamparn, N.; Verhoef, R.; Schols, H. A., et al. Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench)[J]. Carbohydrate Research, 2009,344(14):1824-1832.
    [24]Mohamed, S.; Hasan, Z. Extraction and characterisation of pectin from various tropical agrowastes[J]. ASEAN Food Journal,1995,10:43-43.
    [25]罗文谦.从豆腐柴中提取果胶的研究[J].安康师专学报,2003,15(4):67-68.
    [26]徐汶;张俊峰;王存文.豆腐柴叶果胶的提取工艺条件研究[J].天然产物研究与开发,2003,15(2):138-140.
    [27]Christiaens, S.; Van Buggenhout, S.; Vandevenne, E., et al. Towards a better understanding of the pectin structure-function relationship in broccoli during processing:Part Ⅱ-Analyses with anti-pectin antibodies[J]. Food Research International,2011,44(9):2896-2906.
    [28]Li, D.-q.; Jia, X.; Wei, Z., et al. Box-Behnken experimental design for investigation of microwave-assisted extracted sugar beet pulp pectin[J], Carbohydrate Polymers,2012, 88(1):342-346.
    [29]Raynal, J.; Mourgues, J.; Conte, T. Pectic substances from plum fruits (Prunus domestica L.) cv d'ente. Fractional extraction and general characteristics[J]. Lebensmittel-Wissenschaft+ Technologie,1991,24(3):263-265.
    [30]Happi Emaga, T.; Robert, C.; Ronkart, S. N., et al. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties[J]. Bioresource Technology,2008,99(10):4346-4354.
    [31]Zhang, J.; Wang, Z.-W.; Yu, W.-J., et al. Pectins from Canna edulis Ker residue and their physicochemical characterization[J]. Carbohydrate Polymers,2011,83(1):210-216.
    [32]Koubala, B. B.; Kansci, G.; Mbome, L. I., et al. Effect of extraction conditions on some physicochemical characteristics of pectins from "Amelioree" and "Mango" mango peels[J]. Food Hydrocolloids,2008,22(7):1345-1351.
    [33]Aman, P.; Westerlund, E. Cell Wall Polysaccharides Structural, Chemical, and Analytical Aspects[J]. Carbohydrates in Food,1996,74:191.
    [34]BeMiller, J. N., An introduction to pectins:Structures and properties. In Chemistry and Function of Pectins, Fishman, M. L.; Jen, J. J., Eds. American Chemical Society:Washington, DC,1986; pp 2-10.
    [35]Kostalovda Z.; Hromadkova, Z.; Ebringerova, A. Isolation and characterization of pectic polysaccharides from the seeded fruit of oil pumpkin (Cucurbita pepo L. var. Styriaca)[3]. Industrial Crops and Products,2010,31(2):370-377.
    [36]Mort, A. J.; Moerschbacher, B. M.; Pierce, M. L., et al. Problems encounted during the extraction, purification, and chromatography of pectic fragments, and some solutions to them[J]. Carbohydrate Research,1991,215(l):219-227.
    [37]Fraeye, I.; Knockaert, G; Buggenhout, S. V., et al. Enzyme infusion and thermal processing of strawberries:Pectin conversions related to firmness evoIution[J]. Food Chemistry,2009, 114(4):1371-1379.
    [38]Pinheiro, E. R.; Silva, I. M. D. A.; Gonzaga, L. V., et al. Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology [J]. Bioresource Technology,2008,99(13):5561-5566.
    [39]Kim, Y.; Yoo, Y. H.; Yam, K. O., et al. Textural properties of gelling system of low-methoxy pectins produced by demethoxylating reaction of pectin methyl esterase[J]. Journal of Food Science,2008,73(5):C367-C372.
    [1]Beda M, Y. Pectic substances:From simple pectic polysaccharides to complex pectins-A new hypothetical model[J]. Carbohydrate Polymers,2011,86(2):373-385.
    [2]Willats, W. G. T.; Knox, P.; Mikkelsen, J. D. Pectin:new insights into an old polymer are starting to gel[J]. Trends in Food Science & Technology,2006,17(3):97-104.
    [3]Christiaens, S.; Van Buggenhout, S.; Houben, K., et al. Unravelling process-induced pectin changes in the tomato cell wall:An integrated approach[J]. Food Chemistry,2012, 132(3):1534-1543.
    [4]Eriksson, I.; Andersson, R.; Aman, P. Extraction of pectic substances from dehulled rapeseed[J]. Carbohydrate Research,1997,301(3-4):177-185.
    [5]AOAC. Official methods of analysis of AOAC international. AOAC International:Maryland, 1997.
    [6]International, A., Total Dietary Fiber (Codex Alimentarius Definition), Method 32-45.01. In Approved Methods of Analysis,11 ed.; AACC international:St. Paul, MN, USA,2010.
    [7]Yapo, B. M.; Koffi, K. L. Yellow Passion Fruit RindA Potential Source of Low-Methoxyl Pectin[J]. Journal of Agricultural and Food Chemistry,2006,54(7):2738-2744.
    [8]Tzeng, Y.-M.; Diosady, L. L.; Rubin, L. J. Production of canola protein materials by alkaline extraction, precipitation, and membrane processing[J]. Journal Food Science,2006, 55(4):1147-1151.
    [9]Lee, H.; Htoon, A.; Uthayakumaran, S., et al. Chemical and functional quality of protein isolated from alkaline extraction of Australian lentil cultivars:Matilda and Digger[J]. Food Chemistry,2007,102(4):1199-1207.
    [10]Westereng, B., Michaelsen, T. E., Samuelsen, A. B., & Knutsen, S. H. Effects of extraction conditions on the chemical structure and biological activity of white cabbage pectin[J]. Carbohydrate Polymers,2008,72(1),32-42.
    [1]Corredig, M.; Wicker, L. Changes in the molecular weight distribution of three commercial pectins after valve homogenization[J]. Food Hydrocolloids,2001,15(1):17-23.
    [2]Liu, W.; Liu, J.; Liu, C., et al. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment[J]. Innovative Food Science & Emerging Technologies,2009,10(2):142-147.
    [3]Kasemwong, K.; Ruktanonchai, U. R.; Srinuanchai, W., et al. Effect of high-pressure microfluidization on the structure of cassava starch granule[J]. Starch-Starke,2011, 63(3):160-170.
    [4]Chen, R. H.; Huang, J. R.; Tsai, M. L., et al. Differences in degradation kinetics for sonolysis, microfluidization and shearing treatments of chitosan[J]. Polymer International,2011, 60(6):897-902.
    [5]Ronkart, S. N.; Paquot, M.; Deroanne, C., et al. Development of gelling properties of inulin by microfluidization[J]. Food Hydrocolloids,2010,24(4):318-324.
    [6]Visser, J., Voragen, A.GJ., Pectins and pectinases, progress in biotechnology. Elsevier: Amsterdam,1996; Vol.14.
    [7]Round, A. N.; Rigby, N. M.; MacDougall, A. J., et al. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy [J]. Carbohydrate Research,2010, 345(4):487-497.
    [8]Thibault, J.-F.; Renard, C. M. G C; Axelos, M. A. V., et al. Studies of the length of homogalacturonic regions in pectins by acid hydrolysis[J]. Carbohydrate Research,1993, 238:271-286.
    [9]Harrington, R. a. Z., B. Degradation of polymers by controlled hydrodynamic shear[J]. the Journal of Physical Chemistry,1965,69:161-175.
    [10]Tsai, M. L.; Tseng, L. Z.; Chen, R. H. Two-stage microfluidization combined with ultrafiltration treatment for chitosan mass production and molecular weight manipulation[J]. Carbohydrate Polymers,2009,77(4):767-772.
    [11]Kasaai, M. R.; Charlet, G; Paquin, P., et al. Fragmentation of chitosan by microfluidization process[J]. Innovative Food Science & Emerging Technologies,2003,4(4):403-413.
    [12]Yapo, B. M.; Robert, C.; Etienne, I., et al. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts[J]. Food Chemistry,2007, 100(4):1356-1364.
    [13]BeMiller, J. N.; Kumari, G. V. Beta-elimination in uronic acids:evidence for an ElcB mechanism[J]. Carbohydrate Research,1972,25(2):419-428.
    [14]FCC. Food chemical codex. National Academy of Sciences:Washington, DC,1981.
    [15]Barnes, H. A.; Hutton, J. F.; Walters, K., An introduction to rheology. Elsevier:New York, 1989.
    [16]Floury, J.; Desrumaux, A.; Axelos, M. A. V., et al. Degradation of methylcellulose during ultra-high pressure homogenisation[J]. Food Hydrocolloids,2002,16(l):47-53.
    [17]Miller, G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426-428.
    [18]Liu, C.-M.; Zhong, J.-Z.; Liu, W., et al. Relationship between functional properties and aggregation changes of whey protein induced by high pressure microfluidization[J]. Journal of Food Science,2011,76(4):E341-E347.
    [19]Xie, J.-H.; Xie, M.-Y.; Nie, S.-P., et al. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja[J]. Food Chemistry,2010,119(4):1626-1632.
    [20]Fraeye, I.; De Roeck, A.; Duvetter, T., et al. Influence of pectin properties and processing conditions on thermal pectin degradation[J]. Food Chemistry,2007,105(2):555-563.
    [21]Klavons, J. A.; Bennett, R. D. Determination of methanol using alcohol oxidase and its application to methyl-ester content of pectins[J]. Journal of Agricultural and Food Chemistry, 1986,34(4):597-599.
    [22]Iagher, F.; Reicher, F.; Ganter, J. L. M. S. Structural and rheological properties of polysaccharides from mango (Mangifera indica L.) pulp[J]. International Journal of Biological Macromolecules,2002,31(1-3):9-17.
    [23]Sengkhamparn, N.; Sagis, L. M. C.; de Vries, R., et al. Physicochemical properties of pectins from okra(Abelmoschus esculentus (L.) Moench)[J]. Food Hydrocolloids,2010, 24(1):35-41.
    [24]Tiwari, B. K.; Muthukumarappan, K.; O'Donnell, C. P., et al. Rheological properties of sonicated guar, xanthan and pectin dispersions[J]. International Journal of Food Properties,2010, 13(2):223-233.
    [25]Jiang, C.-M.; Lai, Y.-J.; Lee, B.-H., et al. Changes in physico-chemical properties of pectin from jelly fig (Ficus awkeotsang Makino) seeds during extraction and gelling[J]. Food Research International,2002,35(1):31-35.
    [26]Silvestri, S., & Gabrielson, G. Degradation of tragacanth by high shear and turbulent forces during microfluidization[J]. International Journal of Pharmaceutics,1991,73(2),163-169.
    [27]Lagoueyte, N.; Paquin, P. Effects of microfluidization on the functional properties of xanthan gum[J]. Food Hydrocolloids,1998,12(3):365-371.
    [28]Moissev, Y. V.; Khalturinskii, N. A.; Zaikov, G. E. The mechanism of the acid-catalysed hydrolysis of polysaccharides[J]. Carbohydrate Research,1976,51(1):39-54.
    [29]Marshall, W. L.; E.U.Franck. Ion product of water substance,0-1000℃,1-10000 Bars new international formulation and its background[J]. Journal of Physical and Chemical Reference Data,1981,10(2):295-304.
    [30]Diaz, J. V.; Anthon, G. E.; Barrett, D. M. Nonenzymatic degradation of citrus pectin and pectate during prolonged heating:Effects of pH, temperature, and degree of methyl esterification[J]. Journal of Agricultural and Food Chemistry,2007,55(13):5131-5136.
    [31]Chen, R. H.; Chen, W. Y.; Wang, S. T., et al. Changes in the Mark-Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths[J]. Carbohydrate Polymers,2009,78(4):902-907.
    [1]Rastall Robert, A.; Hotchkiss Arland, T., Potential for the development of prebiotic oligosaccharides from biomass. In Acs symposium series, American Chemical Society:2003; Vol. 849, pp 44-53.
    [2]Hernandez-Hernandez, O.; Cote, G. L.; Kolida, S., et al. In vitro fermentation of alternansucrase raffinose-derived oligosaccharides by human gut bacteria[J]. Journal of Agricultural and Food Chemistry,2011,59(20),10901-10906.
    [3]Hotchkiss, A. T.; Olano-Martin, E.; Grace, W. E., et al. Pectic oligosaccharides as prebiotics[J]. Acs Symposium Series,2003,849:54-62.
    [4]Meyer, A. S.; Holck, J.; Hjerno, K., et al. Tailored enzymatic production of oligosaccharides from sugar beet pectin and evidence of differential effects of a single DP chain length difference on human faecal microbiota composition after in vitro fermentation[J]. Process Biochemistry, 2011,46(5):1039-1049.
    [5]Martinez, M.; Yanez, R.; Alonso, J. L., et al. Chemical production of pectic oligosaccharides from orange peel wastes[J]. Industrial & Engineering Chemistry Research,2010, 49(18):8470-8476.
    [6]Lama-Mufloz, A.; Rodriguez-Gutierrez, G.; Rubio-Senent, F., et al. Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated[J]. Food Hydrocolloids,2012,28(1):92-104.
    [7]Ducasse, M.-A.; Williams, P.; Meudec, E., et al. Isolation of Carignan and Merlot red wine oligosaccharides and their characterization by ESI-MS[J]. Carbohydrate Polymers,2010, 79(3):747-754.
    [8]Nemati, N.; Karapetyan, G; Nolting, B., et al. Synthesis of rhamnogalacturonan I fragments by a modular design principle[J]. Carbohydrate Research,2008,343(10-11):1730-1742.
    [9]Courtois, J. Oligosaccharides from land plants and algae:production and applications in therapeutics and biotechnology [J]. Current Opinion in Microbiology,2009,12(3):261-273.
    [10]Byun, M. W.; Kang, H. J.; Jo, C., et al. Antioxidant and cancer cell proliferation inhibition effect of citrus pectin-oligosaccharide prepared by irradiation[J]. Journal of Medicinal Food, 2006,9(3):313-320.
    [11]Chen, R. H.; Huang, J. R.; Tsai, M. L., et al. Differences in degradation kinetics for sonolysis, microfluidization and shearing treatments of chitosan[J]. Polymer International,2011, 60(6):897-902.
    [12]Liu, W.; Liu, J.; Xie, M., et al. Characterization and high-pressure microfluidization-Induced activation of polyphenoloxidase from Chinese pear(Pyrus pyrifolia Nakai)[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5376-5380.
    [13]Urias-Orona, V.; Rasc6n-Chu, A.; Lizardi-Mendoza, J., et al. A novel pectin material: Extraction, characterization and gelling properties[J]. International Journal of Molecular Sciences,2010,11(10):3686-3695.
    [14]FCC. Food chemical codex. National Academy of Sciences:Washington, DC,1981.
    [15]Du, B.; Song, Y.; Hu, X., et al. Oligosaccharides prepared by acid hydrolysis of polysaccharides from pumpkin (Cucurbita moschata) pulp and their prebiotic activities[J]. International Journal of Food Science & Technology,2011,46(5):982-987.
    [16]Blumenkrantz, N.; Asboe-Hansen, G New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54(2):484-489.
    [17]Mandalari, G.; Nueno Palop, C.; Tuohy, K., et al. In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel[J]. Applied Microbiology and Biotechnology,2007,73(5):1173-1179.
    [18]Olano-Martin, E.; Mountzouris, K. C.; Gibson, G. R., et al. In vitro fermentability of dextran oligodextran and maltodextrin by human gut bacteria[J]. British Journal of Nutrition,2000, 83(3):247-255.
    [19]Shinohara, K.; Ohashi, Y.; Kawasumi, K., et al. Effect of apple intake on fecal microbiota and metabolites in humans[J]. Anaerobe,2010,16(5):510-515.
    [20]Rehman, H.; Hellweg, P.; Taras, D., et al. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis[J]. Poultry Science,2008,87(4):783-789.
    [21]Kasaai, M. R.; Charlet, G.; Paquin, P., et al. Fragmentation of chitosan by microfluidization process[J]. Innovative Food Science & Emerging Technologies,2003,4(4):403-413.
    [22]Tsai, M. L.; Tseng, L. Z.; Chang, H. W., et al. Facile method to manipulate the molecular weight and practical mass production of chitosan by mechanical shearing and concurrent ultrafiltration treatment[J]. Journal of Applied Polymer Science,2010,118(3):1442-1449.
    [23]Lagoueyte, N.; Paquin, P. Effects of microfluidization on the functional properties of xanthan gum[J]. Food Hydrocolloids,1998,12(3):365-371.
    [24]Lee, W. C.; Yusof, S.; Hamid, N. S. A., et al. Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM)[J]. Journal of Food Engineering,2006,73(l):55-63.
    [25]Atkinson, A. C.; Donev, A. N., Optimum experimental designs. In Oxford University Press: Oxford,1992; pp 132-189.
    [26]Martinez, M.; Gullon, B.; Yanez, R., et al. Direct enzymatic production of oligosaccharide mixtures from sugar beet pulp:Experimental evaluation and mathematical modeling[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5510-5517.
    [27]Thibault, J.-F.; Renard, C. M. G. C.; Axelos, M. A. V., et al. Studies of the length of homogalacturonic regions in pectins by acid hydrolysis[J]. Carbohydrate Research,1993, 238:271-286.
    [28]Cardelle-Cobas, A.; Olano, A.; Corzo, N., et al. In vitro fermentation of lactulose-derived oligosaccharides by mixed fecal microbiota[J]. Journal of Agricultural and Food Chemistry,2012, 60(8):2024-2032.
    [29]Dongowski, G.; Lorenz, A.; Anger, H. Degradation of pectins with different degrees of esterification by Bacteroides thetaiotaomicron isolated from human gut flora[J]. Applied and Environmental Microbiology,2000,66(4):1321-1327.
    [30]Hill, M. Diet and cancer:a review of scientific evidence[J]. European Journal of Cancer Prevention,1995,4:3.
    [31]Nakajima, N.; Ishihara, K.; Tanabe, M., et al. Degradation of pectic substances by two pectate lyases from a human intestinal bacterium, Clostridium butyricum-beijerinckii group[J]. Journal of Bioscience and Bioengineering,1999,88(3):331-333.
    [32]Hernandez-Hernandez, O.; Luz Sanz, M.; Kolida, S., et al. In vitro fermentation by human gut bacteria of proteolytically digested caseinomacropeptide nonenzymatically glycosylated with prebiotic carbohydrates[J]. Journal of Agricultural and Food Chemistry,2011, 59(22):11949-11955.
    [33]Lebet, V.; Arrigoni, E.; Amadn, R. Measurement of fermentation products and substrate disappearance during incubation of dietary fibre sources with human faecal flora[J]. Lebensmittel-Wissenschaft und-Technologie,1998,31(5):473-479.
    [34]Sanz, M. L.; Polemis, N.; Morales, V., et al. In vitro investigation into the potential prebiotic activity of honey oligosaccharides[J]. Journal of Agricultural and Food Chemistry,2005, 53(8):2914-2921.
    [35]Kedia, G.; Vazquez, J. A.; Charalampopoulos, D., et al. In vitro fermentation of oat bran obtained by debranning with a mixed culture of human fecal bacteria[J]. Current Microbiology, 2009,58(4):338-342.
    [36]Pryde, S. E.; Duncan, S. H.; Hold, G L., et al. The microbiology of butyrate formation in the human colon[J]. Ferns Microbiology Letters,2002,217(2):133-139.
    [37]Rastall, R. A.; Olano-Martin, E.; Mountzouris, K. C., et al. Continuous production of pectic oligosaccharides in an enzyme membrane reactor[J]. Journal of Food Science,2001, 66(7):966-971.
    [38]Olano-Martin, E.; Gibson, G R.; Rastall, R. A. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides[J]. Journal of Applied Microbiology,2002, 93(3):505-511

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700