棉织物中非纤维素杂质的酶法去除工艺及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原棉纤维中含有较多的伴生杂质(“棉蜡”、果胶质、含氮物质、灰分、天然色素及棉籽壳等),这些杂质影响织物色泽、手感,还会影响织物的吸湿和渗透性能,造成织物着色不均匀、染色牢度差等。因此一般都要进行练漂加工(这里特指精练和漂白,以下同),将其去除,为染色、印花、后整理提供合格的半制品。所以,整个练漂的过程其实就是一个对纤维除杂的过程。生物酶催化具有高效、专一、条件温和的特点,这就使生物酶练漂具有节能、轻污染等鲜明的绿色环保特色。本文主要通过三个方面来研究生物酶法除杂的策略及相应工艺。第一,果胶和“棉蜡”的去除。果胶和“棉蜡”是影响棉纤维润湿效果的主要原因,协同的去除二者,可以在很大程度上提高棉织物的润湿性。由于等离子体具有刻蚀和接枝等良好的表面改性特点,可以通过等离子体对纤维表面的“棉蜡”进行刻蚀及亲水性改性,再用果胶酶精练,则能较为彻底的去除果胶和“棉蜡”,提高棉织物润湿效果;第二,棉色素的去除。传统氧漂工艺需要高温,强碱和长时间的处理,能量消耗大而且环境污染严重。鉴于此,纺织工业亟需研发绿色的漂白工艺,用以取代传统氧漂。漆酶-介体体系能够激活棉织物色素,降低色素分子与双氧水反应的活化能,使得氧漂能在温和的条件下进行。第三,关于棉籽壳的去除。本论文分别从如下两个方面进行深入研究:①通过对比木聚糖酶对棉籽壳以及从棉籽壳中所提半纤维素的降解效果,探讨了木聚糖酶降解棉籽壳的可行性。②棉籽壳对木聚糖酶的吸附特性。该研究为酶法去除棉籽壳工艺的研发提供理论基础。
     采用He/02常压等离子体射流(APPJ)对棉针织坯布和脱蜡后的坯布进行处理,经96s处理后,得到的样品分别为AP和AEP。接触角显示AP仍然疏水;AEP瞬间润湿。相对于坯布而言,X-射线光电子能谱(XPS)结果显示,两类样品表面的O/C, C-O均增加,C-C含量均下降,但AP改变较小,而AEP改变显著;红外光谱(FTIR-ATR)显示,AP的表面基团变化不明显,而AEP有明显的羰基峰出现;X-射线衍射(XRD)结果显示二者结晶度无较大改变,说明等离子体刻蚀不会伤及纤维本体。综上分析,棉坯布He/O2APPJ的改性效果远不及经脱蜡/APPJ改性的效果,说明He/O2APPJ去除棉纤维表面疏水杂质的能力有限。
     研究常压等离子体预处理结合果胶酶精练工艺(APPJ/酶工艺)。首先考察了APPJ/酶工艺中助剂的用量对润湿效果的影响,发现即使没有助剂润湿效果也很好,然后在不添加助剂的条件下对APPJ/酶工艺的各影响因素进行优化,得到最适APPJ/酶工艺如下:He/O2APPJ预处理:He/O2流速20/0.2L/min,功率40W,喷嘴与织物距离2mm,处理时间60s;果胶酶处理:酶量300U/g(织物),pH8.0,温度50℃,处理时间60min。经此工艺处理,织物的润湿时间小于2s,强力保留率大于90%,CIE白度约为63。
     探讨棉纤维中果胶与“棉蜡”的附生关系。首先,对比脱蜡前后样品的扫描电镜照片和油红O染色的色深值,证实通过正己烷1h抽提,“棉蜡”已基本去除。其次,脱蜡前后样品红外光谱分析和铜盐染色结果显示果胶物质分布在“棉蜡”的下方,可能含有果胶酸、果胶酸盐和果胶酸甲酯。针对果胶和“棉蜡”可能的附生关系,构建了果胶和“棉蜡”的四种附生模型,分别命名为层层式、层层-分散式、树状-分散式和树状式。通过浓盐酸蒸气处理和草酸铵抽提对样品中的果胶含量进行测定,结果显示脱蜡前后单位质量棉纤维中的果胶含量基本不变,说明“棉蜡”中不存在游离果胶,否定了模型层层-分散式、树状-分散式。分析脱蜡前后织物的水滴润湿结果和接触角变化程度,否认了果胶分布的不连续性,表明纤维中的果胶呈层状连续分布,证实了模型层层式符合“棉蜡”与果胶的附生关系。
     对木聚糖酶Pulpzyme HC去除棉籽壳进行研究。(1)用木聚糖酶Pulpzyme HC对从棉籽壳中提取的4.0mg半纤维素进行降解,通过优化,得到最适酶反应条件为:0.24mL Pulpzyme HC原酶液,60℃, pH5.5,70min。此条件下半纤维素固体的水解率达到57.5%。(2)研究棉籽壳对木聚糖酶的吸附特性。吸附等温线方面,通过拟合表明Freundlich模型适宜解释该吸附过程,该吸附为不均匀立体表面的多分子层吸附。另外,发现Dubinin-Radushkevich模型也能较好的解释该吸附过程,从E值3.24~3.66kJ mol-1低于8kJ mol-1中可以看出,吸附过程是物理吸附。吸附动力学方面,伪二级反应动力学模型拟合效果最佳。参数k2和初始吸附速率h均随温度的升高而变小,说明低温有利于木聚糖酶的吸附。吸附热力学方面,焓变ΔH°小于零表明该吸附反应为放热反应,温度的降低有利于吸附行为的发生。吉布斯自由能变ΔG°小于零,说明该吸附过程是自发的。(3)采用(1)的条件对棉籽壳进行降解,发现:该工艺对含有4.0mg半纤维素的棉籽壳的降解率仅为8.7%,相比(1)的结果,说明木聚糖酶水解棉籽壳效果较差,原因可能是棉籽壳复杂的层次结构及表面疏水组分阻碍了木聚糖酶的渗透。
     研究漆酶-介体体系(LMS)预处理增效棉织物双氧水漂白的工艺。研究发现,LMS预处理结合传统氧漂处理,织物白度显著提高,说明该工艺可用于有特殊白度要求的织物。另外,通过LMS预处理可以实现清洁化氧漂,即①短时氧漂工艺:通过LMS预处理能够缩短1/3传统氧漂时间;②双氧水减量氧漂:通过LMS预处理可以节省传统氧漂工艺50%的双氧水用量;③低温氧漂:通过LMS预处理,可以实现70℃时氧漂。用两种活性染料对上述三种清洁化氧漂工艺处理的样品进行染色,结果显示,三种工艺处理的织物与传统氧漂织物的染色效果基本相同。为了得到最佳的低温氧漂效果,用响应面设计法对LMS预处理条件进行优化,得到的最适工艺为:①预处理:Denilit Ⅱ S/HBT用量,2.57%(o.w.f);处理温度,58.41℃;pH,5.07;处理时间,30min;浴比,1:40。②漂白:H202(30wt.%)用量,4%(o.w.f);Na2C03用量,2%(o.w.f); TF-122B用量,1g/L;处理温度,70℃;浴比,1:40;处理时间,60min。在此工艺下,白度预测值为78.74。
     对漆酶-介体体系增效氧漂机理进行初步探讨。将芦丁和槲皮素作为棉纤维中的“模型色素”,对其进行LMS酶促氧化反应,通过液相色谱-质谱(LC-MS).氢谱(1H NMR).紫外-可见光谱(UV-VIS)和红外光谱(FTIR-ATR)分析,推测芦丁氧化产物分别为芦丁三聚体和二聚体,并且聚合物中有一分子芦丁单体的B环生成邻苯醌,芦丁单体间是通过C-O相连。另外,槲皮素氧化产物为槲皮素二聚体,其结构中并无醌基生成,在氧化过程中一分子槲皮素单体C环的共轭双键可能被打开,两分子槲皮素单体通过一个二氧己环相连。对芦丁、槲皮素及其氧化产物进行电子自旋共振(ESR)检测,发现两类单体均无自旋共振信号出现,而其氧化产物均出现自由基单峰信号(g=1.984),证实了LMS酶促氧化是以自由基为中间体的氧化聚合反应。通过以上研究,拟提出如下LMS增效氧漂的机理:LMS酶促氧化棉织物色素的过程中,色素分子先转变为自由基中间体,从而降低了色素与双氧水的反应活化能,提高了色素分子氧化褪色的效率。
Raw cotton fibre contains various non-cellulosic impurities including pectins,"cotton waxes", proteins, ashes, natural pigments and cottonseed coat, etc. The impurities affect colour, lustre and handle of the cotton fabric. They weaken the hygroscopicity and the penetrability of cotton fabric, causing nonuniform color and poor color fastness. This is why scouring and bleaching are necessary for the removal of the impurities, rendering qualified semifinished products for dyeing, printing and finishing. Enzyme catalysis has the characteristics of high efficiency, substrate specificity and mild conditions, which make enzyme scouring and bleaching environmentally friendly as they save energy and cause less pollution. This paper mainly studied strategies and the corresponding process of enzymic removal of non-cellulosic impurities in three aspects. Firstly, the removal of pectin and "cotton waxes":Cotton knitted fabric shows a hydrophobic character mainly due to the presence of "cotton waxes" and pectins on the outmost layer of the cotton fiber-the cuticle layer. So, Removing pectin and "cotton waxes" can greatly improve the wettability of the fabric. Since plasma techniques have excellent surface modification by the etching effect, deposition and the graft. We used plasma to etch the "cotton waxes" and modify the hydrophobicity on the surface of the fibre. Then we scoured the fabric with pectinase in order to remove "cotton waxes" and pectins more thoroughly. In this way, the wettability of the fabric could be improved significantly. Secondly, the removal of cotton pigments: Conventional hydrogen peroxide bleaching process (CHPBP) requires an alkaline medium, high temperature and long incubation periods, which consumes a lot of energy and deteriorates the environment. So, new green bleaching processes need to be developed to replace the CHPBP in the textile industry. Laccase-mediated systems (LMS) could activate the natural pigments in cotton fabric and reduce the activation energy between the pigment molecules and hydrogen peroxide. Therefore, hydrogen peroxide bleaching would carry out under the mild reaction conditions after LMS pretreatment. Thirdly, the removal of cottonseed coat:Instead of using common formulation technic of different enzyme, we studied the degradation of hemicellulose extracted from cottonseed coat with xylanase, the adsorption characteristics of xylanase on cottonseed coat and the degradation of cottonseed coat with xyianase. The effect of removing the cottonseed coat with single enzyme treatment could facilitate the research on how to formulate co-enzyme preparations and how to combine certain physical or chemical methods with enzyme to remove the cottonseed coat to the deepest extent.
     In this study, grey cotton fabric and dewaxed cotton fabric were treated by He/O2APPJ (we called them AP and AEP respectively). The variation of the surface contact angle of specimens A and AE were investigated at different APPJ treatment durations. The results obtained were as follows:with the increase of treatment duration, the contact angle of specimen AP and AEP both decreased. But after96s, specimen AP was still hydrophobic, while specimen AEP got wet instantly. XPS analysis showed that with specimen AP the O/C ratio and the content of C-O band on the fibre surface increased slightly, whereas the content of C-C band decreased gently as the treatment time increases. For the AEP sample, the O/C ratio and the content of C-O band rose significantly and C-C band reduced sharply. The FTIR-ATR result showed that specimen AP displayed the same spectra with the grey cotton fabric, whereas specimen AEP showed a strong absorbance at1640cm-1which means a relatively large amount of C=O band appear on the fibre surface. The XRD result indicated no significant changes in the crystallinity of the specimens, which means He/O2APPJ treatment does not hurt the bulk fibre. In summary, the results implied that He/O2APPJ treatment could etch and modify the surface of fibre to a certain extent, but improves its wettability little. This indicates that direct removal of hydrophobic impurities in the fibre with He/O2APPJ treatment is infeasible. On the contrary, combining dewaxing processes with He/O2APPJ treatment was found to tremendously improve the hydrophilicity of the grey cotton fabric, which could remove impurities more thoroughly.
     We evaluated the wetting effect of alkaline pectinase scouring of cotton knitted fabric combined with He/O2APPJ pretreatment. First, the wetting effect achieved by different scouring auxiliary (TF-125D) dosages in the APPJ/enzyme process was measured. We found that the wetting effect was good even without auxiliaries. Then each factor in the APPJ/enzyme treatment was investigated without adding auxiliary. The optimized APPJ/enzyme process was as follows:APPJ pretreatment conditions:He/O220/0.2L/min,40W, jet-to substrate distance2mm,60s; Pectinase treatment:300U/g (fabric), pH8.0,50℃,60min. Cotton samples treated this way achieved a wetting time of less than2s, retained tensile strength of more than90%and CIE whiteness of around63. The advantage of the APPJ/enzyme process is saving the auxiliary and enhancing the treatment effectiveness of enzyme alone.
     Assuming different possibilities of the epiphytic relationship between the pectin and the "cotton waxes", we built four models, namely layer style, layer-dispersion style, arborescence style and arborescence-dispersion style. SEM images and K/S value of oil red staining showed the "cotton waxes" were removed completely with the extraction of n-hexane. FTIR-ATR analysis and copper salt staining showed the pectic substances, which might comprise pectic acid, pectate and esterified pectin, existed beneath the "cotton waxes". FTIR-ATR ananlysis after hydrochloric acid vapor treatment and ammonium oxalate extraction showed the pectin content in the fibre stayed basically unchanged before and after dewaxing, which indicated the "cotton waxes" did not contain unbonded pectin. The results of the contact angle value and drop tests before and after dewaxing showed the pectin was distributed continuously. In summary, the layer-style model best explains the epiphytic relationship between the pectin and the "cotton waxes".
     Preliminary research on removing cottonseed coat with xylanase was carried out. Firstly, the hemicellulose extracted from cottonseed coat was degraded by xylanase pulpzyme HC. We got the optimum condition for enzyme reaction by optimizing the factors:4.0mg hemicellulose,0.24mL Pulpzyme HC (original enzyme),60℃, pH5.5,70min. Hemicellulose degradation rate reached57.5%in this condition. The mechanisms of the cottonseed coat adsorbing xylanase were described by the adoption of adsorption isotherm model, adsorption kinetics model, and adsorption thermodynamic model. The linear fit of Freundlich model is relatively appropriate indicating that the adsorption type is a3-dimensional structure of multi-molecular layer adsorption model. We also found that D-R equation could explain the adsorption process. The E value of3.24~3.66kJ mol-1, which was lower than8~16kJ mol-1, indicated that the adsorption is physical. On adsorption kinetics, it was found that the pseudo-second-order kinetic model explained the adsorption behaviour better. In this model,k2and h value decreased with the increase of temperature, which indicated that low temperature was helpful for adsorbing xylanase. On absorption thermodynamics, the fact that△H0value was below zero indicated that the adsorption process was an exothermic reaction. Reducing temperature was in favour of adsorption. The fact that△G0value was less than zero proved the adsorption behaviour was spontaneous. The result of xylanase degrading cottonseed coat showed that the degradation rate was only8.7%, which indicated that the effect of xylanase alone hydrolyzing the cottonseed coat was poor. This was maybe related to the complex structure of cottonseed coat and the hydrophobic component on its surface.
     We evaluated the bleaching efficiency of the hydrogen peroxide bleaching process combined with laccase-mediated system pretreatment (LMS-HPBP) in the treatment of scoured cotton fabric. By changing the factors of LMS pretreatment and the HPBP, whiteness value and retained tensile strength of the samples were examined. Three LMS-HPBPs are found to be more environment friendly than the conventional hydrogen peroxide bleaching process (CHPBP):①Bleaching with lower dosage of hydrogen peroxide;②Bleaching at reduced temperature;③Bleaching for shortened duration. Two kinds of reactive dyes was used to examine the dyeing effect of the LMS-HPBPs, and the results showed that K/S values of cotton fabric samples treated by①-③processes were close to or higher than those by CHPBP. The LMS pretreatment was optimized by response surface methodology in order to achieve the best response value (whiteness index). The optimized process, which gave a WI value of78.74, was:①LMS pretreatment:Denilite ⅡS/HBT dosage,2.57%(o.w.f),58.41℃; pH,5.07;30min;②Bleaching:H2O2(30wt.%),4%(o.w.f); Na2CO3,2%(o.w.f); TF-122B,1g/L; Temp.,70℃; LR,1:40; time,60min.
     Preliminary study of LMS-HPBP mechanism was carried out. Rutin and quercetin were taken as the "model pigments" of cotton fibre and made to react with LMS. LC-MS,1H NMR, UV-VIS and FTIR-ATR showed rutin oxidation product was a mixture of dimer and trimer, which possibly contained o-quinone structure in a B-ring of one monomer. Monomer molecules were possibly linked by C-O band. In addition, quercetin oxidation product only contained dimer and did not have quinone structure. The conjugate structure of C-ring in one quercetin molecule was probably opened during the LMS oxidation process. Quercetin dimer was formed through a dioxane linkage. ESR results showed there was no spin resonance signal in both rutin and quercetin, while radical singlet signal (g=1.984) was detected in both oligorutin and oligoquercetin. This confirmed that enzymatic oxidation process was an oxidation polymerization reaction with free radicals as intermediates. Depending on all above studies and experiments, a proposed mechanism was put forward:Cotton pigments are oxidized to generate free radicals intermediates by LMS oxidation. The radicals intermediates can reduce the activation energy between the "model pigments" molecules and hydrogen peroxide, which can improve the reaction efficiency of natural pigments in cotton fibre and hydrogen peroxide.
引文
[1]杨佑明,徐楚年.棉纤维发育的分子生理机制.植物学能报,2003,20(01):1-9.
    [2]Gamble GR. Variation in surface chemical constituents of cotton (gossypium hirsutum) fiber as a function of maturity. J Agric Food Chem, 2003,51(27):7995-7998.
    [3]Gokani SJ, Thaker VS. Physiological and biochemical changes associated with cotton fiber development. VIII. Wall components. Acta Physiol Plant, 2000,22(4):403-408.
    [4]Tripp VW, Rollins ML. Morphology and chemical composition of certain components of cotton fiber cell wall. Anal Chem,1952,24:1721-1728.
    [5]Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW. Evaluating cell wall structure and composition of developing cotton fibers using fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci,2008,107(1):476-486.
    [6]Chung C, Lee M, Choe EK. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym,2004,58(4):417-420.
    [7]Csiszar E, Fekete E. Microstructure and surface properties of fibrous and ground cellulosic substrates. Langmuir,2011,27(13):8444-8450.
    [8]Hartzell-Lawson MM, Hsieh YL. Characterizing the noncellulosics in developing cotton fibers. Text Res J,2000,70(9):810-819.
    [9]Agrawal PB.The performance of cutinase and pectinase in cotton scouring. Ph.D dissertation. Netherlands:University of Twente. ISBN 90-365-2243-9.
    [10]Reina-Pinto JJ, Yephremov A. Surface lipids and plant defenses. Plant Physiol Biochem (Issy-les-Moulineaux, Fr),2009,47(6):540-549.
    [11]Riederer M, Schreiber L. Protecting against water loss:Analysis of the barrier properties of plant cuticles. J Exp Bot,2001,52(363):2023-2032.
    [12]Koch K, Ensikat HJ. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron,2008,39(7):759-772.
    [13]Koch K, Bhushan B, Barthlott W. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter,2008,4(10):1943-1963.
    [14]Chatterjee S, Sarkar S, Oktawiec J, Mao Z, Niitsoo O, Stark RE. Isolation and biophysical study of fruit cuticles. J Visualized Exp,2012,61: 3527-3529.
    [15]Beisson F, Ohlrogge J. Plants knitting a polyester skin. Nat Chem Biol, 2012,8(7):603-604.
    [16]Yeats TH, Martin LBB, Viart HMF, Isaacson T, He Y, Zhao L, Matas AJ, Buda GJ, Domozych DS, Clausen MH, Rose JKC. The identification of cutin synthase:formation of the plant polyester cutin. Nat Chem Biol,2012, 8(7):609-611.
    [17]Chen G, Komatsuda T, Ma JF, Li C, Yamaji N, Nevo E. A functional cutin matrix is required for plant protection against water loss. Plant Signaling Behav,2011,6(9):1297-1299.
    [18]Rjiba N, Nardin M, Drean JY, Frydrych R. A study of the surface properties of cotton fibers by inverse gas chromatography. J Colloid Interface Sci,2007,314(2):373-380.
    [19]Church JS, Woodhead AL. Spectroscopic assessment of Australian cotton waxes. Appl Spectrosc,2006,60(11):1334-1340.
    [20]Cui XL, Price JB, Calamari TA, Jr., Hemstreet JM, Meredith W. Cotton wax and its relationship with fiber and yarn properties part I:wax content and fiber properties. Text Res J,2002,72(7):399-404.
    [21]Price JB, Cui X, Calamari TA, Meredith WR, Jr. Cotton wax and its relationship with fiber and yarn properties part Ⅱ:Wax content and yarn properties. Text Res J,2002,72(7):631-637.
    [22]Thakur BR, Singh RK, Handa AK. Chemistry and uses of pectin-a review. Crit Rev Food Sci Nutr,1997,37(1):47-73.
    [23]Markman AL, Gorokhovskaya AS. Polarographic determination of pectic substances in cotton plant tissue. Uzb Khim Zh,1961, (1):30-34.
    [24]Ridley BL, O'Neill MA, Mohnen D. Pectins:Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry,2001,57(6): 929-967.
    [25]Willats WGT, Knox JP, Mikkelsen JD. Pectin:new insights into an old polymer are starting to gel. Trends Food Sci Tech,2006,17(3):97-104.
    [26]Stark SM. Determination of pectic substances in cotton. Anal Chem,1950, 22:1158-1160.
    [27]王强,范雪荣,王平,高卫东.棉织物酶练后的果胶质含量测定.印染,2003,29(01):24-26.
    [28]Kartel MT, Kupchik LA, Veisov BK. Evaluation of pectin binding of heavy metal ions in aqueous solutions. Chemosphere,1999,38(11): 2591-2596.
    [29]Calafell M, Klug-Santner B, Guebitz G, Garriga P. Dyeing behaviour of cotton fabric bioscoured with pectate lyase and polygalacturonase. Color Technol,2005,121(6):291-297.
    [30]Sangwatanaroj U, Choonukulpong K, Ueda M. Cotton scouring with pectinase and lipase/protease/cellulase. AATCC Rev,2003,3(5):17-20.
    [31]Preston RD. Polysaccharide conformation and cell wall function. Annu Rev Plant Physiol,1979,30:55-78.
    [32]Asunmaa S, Lange PW. The distribution of the components in the plant-cell wall. Ⅶ. The distribution of "cellulose" and "hemicellulose" in the cell wall of spruce, birch, and cotton. Sven Papperstidn,1954,57: 501-516.
    [33]Imamaliev AI, Popova PY, Lavygina IE. Alteration of structural polysaccharide contents in cell walls of cotton fiber and formation of its physical and mechanical properties. Dokl Vses Akad S-kh Nauk im V I Lenina,1986,(4):18-20.
    [34]Zykwinska A, Thibault JF, Ralet MC. Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr Polym,2008, 74(4):957-961.
    [35]Rose JKC, Bennett AB. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls:parallels between cell expansion and fruit ripening. Trends Plant Sci,1999,4(5):176-183.
    [36]Fry SC. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol,1986,37:165-186.
    [37]Hu Y, Nie H, White CB, Zhao Z, Zhu L. Isolation and characterization of hemicelluloses from cottonseed coat waste. J Biobased Mater Bioenergy, 2010,4(4):446-451.
    [38]Khashimova ZS. Isolation and general properties of cotton extensin-like proteins. Chem Nat Compd,2005,41:79-81.
    [39]Khashimova ZS, Kuznetsova NN, Saitmuratova OK, Sadykov AA. The structure and function of the cotton extensin-like proteins. Biopolim Klitina,2002,18:57-61.
    [40]Vaughn KC, Turley RB. The primary walls of cotton fibers contain an ensheathing pectin layer. Protoplasma,1999,209(3-4):226-237.
    [41]Qi X, Behrens BX, West PR, Mort AJ. Solubilization and partial characterization of extensin fragments from cell walls of cotton suspension cultures. Evidence for a covalent cross-link between extensin and pectin. Plant Physiol,1995,108(4):1691-1701.
    [42]Jeong JY, Babayan SE, Tu VJ, Park J, Henins I, Hicks RF, Selwyn GS. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Sci T,1998,7(3):282-285.
    [43]赵向前,王学德.天然彩色棉纤维色素成分的研究.作物学报,2005,31(04):456-462.
    [44]华水金,王学德,赵向前,倪密,袁淑娜,蒋立希.棕色棉纤维发育过程中碳水化合物和色素的变化特征.棉花学报,2008,20(03):239-封三.
    [45]张镁,胡伯陶,赵向前.天然彩色棉的基础和应用.北京:中国纺织出版社,2005:100-112.
    [46]Halloin JM. Localization and changes in catechin and tannins during development and ripening of cottonseed. New Phytologist,1982,90(4): 651-657.
    [47]詹少华,林毅,蔡永萍,李正鹏.缩合单宁与天然棕色棉纤维色素合成的关系.棉花学报,2007,19(03):183-188.
    [48]陈庭春,赵政,朱泉,朱利民.天然白棉棉籽壳色素提取及性能研究.染群与染色,2010,47(01):31-35.
    [49]Himmelsbach DS, Akin DE, Kim J, Hardin IR. Chemical structural investigation of the cotton fiber base and associated seed coat: Fourier-transform infrared mapping and histochemistry. Text Res J,2003, 73(4):281-288.
    [50]Yan H, Hua Z, Qian G, Wang M, Du G, Chen J. Analysis of the chemical composition of cotton seed coat by Fourier-transform infrared (FT-IR) microspectroscopy. Cellulose (Dordrecht, Neth),2009,16(6):1099-1107.
    [51]Dhandapani R, Hardin IR. Microwave irradiation to assist enzymatic degradation of cotton seed coat fragments. AATCC Rev,2012,12(4): 57-63.
    [52]Kim J, Kim SH, Hardin IR. Physical structure and chemical composition of cotton seed coat. J Korean Fiber Soc,2001,38(12):615-619.
    [53]李忠正.可再生生物质资源—木质素的研究.南京林业大学学报(自然科学版),2012,36(01):1-7.
    [54]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展.精细化工2005,22(04):249-252.
    [55]王菊生,孙铠.染整工艺原理(第二册).北京:纺织工业出版社,1984.
    [56]赵酒泉.棉织物生物酶前处理的分析.染料与染色,2006,43(3):31-33.
    [57]朱宁,施霞.棉织物的酶前处理工艺探讨.染整技术,2000,22(1):1-2.
    [58]万清余,范雪荣,王强,袁霞,王平,高卫东.纯棉织物生物酶前处理工艺的研究.纺织学报,2004,25(03):91-93.
    [59]赵酒泉.去除棉籽壳的研究.印染,1994,20(3):9-11.
    [60]王强,范雪荣,高卫东,陈坚.棉针织物复合生物酶精练加工.纺织学报,2006,27(07):27-30.
    [61]刘旭峰.染整前处理绿色助剂及新型前处理工艺.日用化学品科学,2007,30(08):21-24.
    [62]周燕.低泡环保精练剂在涤棉针织物前处理上的应用.丝绸,2011,48(02):16-18.
    [63]Franz Gruener. Fiber blends with elastane-recommendations for pre-treatment and dyeing. The 28th Aachen Textile Conference. Aachen, Germany, November,2001:28-29.
    [64]徐谷仓.含氨纶弹力织物的染整工艺.纺织导报,2003,(1):54-58.
    [65]章杰.关于环保染料的几个热点问题.印染,2000,26(8):43-45.
    [66]邢凤兰,徐群,贾丽华.印染助剂.北京:化学工业出版社,2002.
    [67]杨栋,王焕祥.活化双氧水漂白体系新技术的近况.印染,2007,33(2):44-48.
    [68]Boidin A, Effront J. US Patent 1,227,374,1917.
    [69]Bach E, Schollmeyer E. Untersuchungen zur quellungskinetik durch cellulasen in der vorbehandlung von baumwolle. Textilveredlung,1994, 29(10):284-288.
    [70]Rossner U. Enzymatic degradation of impurities in cotton. Melliand Textilberichte,1993,74(2):144-148.
    [71]Stohr R. Enzyme-biokatalysatoren in der textilveredlung. Melliand Textilberichte,1995,76(11):1010-1013.
    [72]Tyndall RM. Improving the softness and surface appearance of cotton fabrics and garments by treatment with cellulase enzymes. Text Chem Color,1992,24(6):23-26.
    [73]Buschle-Diller G, Zeronian SH. Enhancing the reactivity and strength of cotton fibers. JAppl Polym Sci,1992,45(6):967-979.
    [74]Buschle-Diller G, Zeronian SH, Pan N, Yoon MY. Enzymatic hydrolysis of cotton, linen, ramie, and viscose rayon fabrics. Text Res J,1994,64(5): 270-279.
    [75]Buschle-Diller G, Zeronian SH. Enzymatic and acid-hydrolysis of cotton cellulose after slack and tension mercerization. Text Chem Color,1994, 26(4):17-24.
    [76]Li YH, Hardin IR. Enzymatic scouring of cotton:Effects on structure and properties. Text Chem Color,1997,29(8):71-76.
    [77]Li YH, Hardin IR. Enzymatic scouring of cotton-surfactants, agitation, and selection of enzymes. Text Chem Color,1998,30(9):23-29.
    [78]Li YH, Hardin IR. Treating cotton with cellulases and pectinases:Effects on cuticle and fiber properties. Text Res J,1998,68(9):671-679.
    [79]Hartzell MM, Hsieh YL. Enzymatic scouring to improve cotton fabric wettability. Text Res J,1998,68(4):233-241.
    [80]Buchert J, Pere J, Puolakka A, Nousiainen P. Scouring of cotton with pectinases, proteases, and lipases. Text Chem Color Am D,2000,32(5): 48-52.
    [81]Tzanov T, Calafell M, Guebitz GM, Cavaco-Paulo A. Bio-preparation of cotton fabrics. Enzyme Microb Technol,2001,29(6-7):357-362.
    [82]Lin CH, Hsieh YL. Direct scouring of greige cotton fabrics with proteases. Text Res J,2001,71(5):425-434.
    [83]Csiszar E, Urbanszki K, Szakacs G. Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B-Enzym, 2001,11(4-6):1065-1072.
    [84]Csiszar E, Losonczi A, Szakacs G, Rusznak I, Bezur L, Reicher J. Enzymes and chelating agent in cotton pretreatment. J Biotechnol,2001, 89(2-3):271-279.
    [85]Degani O, Gepstein S, Dosoretz CG. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl Biochem Biotech,2002,102: 277-289.
    [86]Losonczi A, Csiszar E, Szakacs G, Bezur L. Role of the EDTA chelating agent in bioscouring of cotton. Text Res J,2005,75(5):411-417.
    [87]Del Valle LJ, Onos M, Garriga P, Calafell M, Schnitzhofer W, Guebit GM. Bioscouring of cotton fiber with polygalacturonase induced in sclerotium rolfsii using cellulose and glucose-pectin. Text Res J,2006,76(5): 400-405.
    [88]Klug-Santner BG, Schnitzhofer W, Vrsanska M, Weber J, Agrawal PB. Nierstrasz VA. Guebitz GM. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J Biotechnol,2006, 121(3):390-401.
    [89]Kalantzi S, Mamma D, Kalogeris E, Kekos D. Properties of cotton Fabrics treated by protease and its multienzyme combinations. J Appl Polym Sci, 2009,114(3):1567-1573.
    [90]Kalantzi S, Mamma D, Kalogeris E, Kekos D. Improved properties of cotton fabrics treated with lipase and its combination with pectinase. Fibres Text East Eur,2010,18(5):86-92.
    [91]Traore MK, Buschle-Diller G. Environmentally friendly scouring processes. Text Chem Color Am D,2000,32(12):40-43
    [92]Csiszar E, Szakacs G, Rusznak I. Combining traditional cotton scouring with cellulase enzymic treatment. Text Res J,1998,68(3):163-167.
    [93]Csiszar E, Losonczi A, Koczka B, Szakacs G, Pomlenyi A. Degradation of lignin-containing materials by xylanase in biopreparation of cotton. Biotechnol Lett,2006,28(10):749-753.
    [94]Csiszar E, Szakacs G, Koczka B. Biopreparation of cotton fabric with enzymes produced by solid-state fermentation. Enzyme Microb Technol, 2007,40(7):1765-1771.
    [95]阎贺静,华兆哲,堵国成,陈坚.降解棉籽壳用精练酶的选择.印染,2009,35(12):6-13.
    [96]Ardon O, Kerem Z, Hadar Y. Enhancement of laccase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by cotton stalk extract. JBiotechnol,1996,51(3):201-207.
    [97]Hedin PA, Jenkins JN, Parrott WL. Evaluation of flavonoids in Gossypium arboreum (L.) cottons as potential source of resistance to tobacco budworm.J Chem Ecol,1992,18(2):105-114.
    [98]Brooks RE, Moore SB. Alkaline hydrogen peroxide bleaching of cellulose. Cellulose,2000,7(3):263-286.
    [99]Dannacher J, Schlenker W. The mechanism of hydrogen peroxide bleaching. Text Chem Color,1996,28(11):24-28.
    [100]Spiro M, Griffith WP. The mechanism of hydrogen peroxide bleaching. Text Chem Color,1997,29(11):12-13.
    [101]Zeronian SH, Inglesby MK. Bleaching of cellulose by hydrogen peroxide. Cellulose,1995,2(4):265-272.
    [102]覃程荣,杨丽,陈元,李春燕.生物酶对废纸浆过氧化氢漂白的影响.中华纸业,2008,(12):26-28.
    [103]王燕蓬,秦梦华.木素降解酶在制浆漂白中的应用.上海造纸2008,39(01):14-17.
    [104]谢慧芳,李忠正.与锰过氧化物酶相关的硫酸盐浆的生物漂白.中国 造纸,2003,22(06):46-50.
    [105]Katagiri N, Tsutsumi Y, Nishida T. Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Appl and Environ Microb (AEM),1995,61(2):617-622.
    [106]Morita M, Ito R, Kamidate T, Watanabe H. Kinetics of peroxidase catalyzed decoloration of orange II with hydrogen peroxide. Text Res J, 1996,66(7):470-473.
    [107]Opwis K, Knittel D, Schollmeyer E, Hoferichter P, Cordes A. Simultaneous application of glucose oxidases and peroxidases in bleaching processes. Eng Life Sci,2008,8(2):175-178.
    [108]Buschle-Diller G, Yang XD, Yamamoto R. Enzymatic bleaching of cotton fabric with glucose oxidase. Text Res J,2001,71(5):388-394.
    [109]Tzanov T, Costa SA, Gtibitz GM. Cavaco-Paulo A. Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J Biotechnol,2002,93(1):87-94.
    [110]Eren HA, Anis P, Davulcu A. Enzymatic one-bath desizing-bleaching-dyeing process for cotton fabrics. Text Res J,2009,79(12):1091-1098.
    [111]Gianfreda L, Xu F, Bollag JM. Laccases:A useful group of oxidoreductive enzymes. Bioremediat J,1999,3(1):1-25.
    [112]Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chemical Reviews,1996,96(7):2563-2605.
    [113]Yaropolov AI, Skorobogat OV, Vartanov SS, Varfolomeyev SD. Laccase-properties, catalytic mechanism, and applicability. Appl Biochem Biotech, 1994,49(3):257-280.
    [114]Yachmenev VG, Bertoniere NR, Blanchard EJ. Effect of sonication on cotton preparation with alkaline pectinase. Text Res J,2001,71(6): 527-533.
    [115]Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. An expended role for laccase in lignin biodegradation. FEBS Letters,1990, 267(1):99-102.
    [116]Call HP, Mucke I. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym(?)-process). JBiotechnol,1997,53(2-3):163-202.
    [117]Couto SR, Herrera JLT. Industrial and biotechnological applications of laccases:A review. Biotechnol Adv,2006,24(5):500-513.
    [118]刘晓波,闫世梁,李宗伟,李培睿,李宗义.漆酶/HBT介质系统对靛蓝染料及废水脱色的初步研究.环境污染与防治,2008,30(06):27-30.
    [119]Claus H, Faber G, Konig H. Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol,2002,59(6):672-678.
    [120]Hartzell MM, Hsieh YL. Enzymatic scouring to improve cotton fabric wettability. Text Res J,1998,68(4):233-241.
    [121]Wang Q, Fan X, Yuan J, Wang P, Cui L, Chen J. Optimization of two-step cotton scouring with β-cyclodextrin and alkaline pectinase. Eng Life Sci, 2008,8(3):339-343.
    [122]Takagishi T, Yamamoto R, Kikuyama K, Arakawa H. Design and application of continuous bio-scouring machine. AATCC Rev,2001,1(8): 32-34.
    [123]Sawada K, Tokino S, Ueda M. Bioscouring of cotton with pectinase enzyme in a non-aqueous system. J Soc Dyers Colour,1998,114(12): 355-359.
    [124]Mondal K, Roy I, Gupta MN. Enhancement of catalytic efficiencies of xylanase, pectinase and cellulase by microwave pretreatment of their substrates. Biocatal Biotransform,2004,22(1):9-16.
    [125]Agrawal PB, Nierstrasz VA, Warmoeskerken M. Role of mechanical action in low-temperature cotton scouring with F. solani pisi cutinase and pectate lyase. Enzyme Microb Technol,2008,42(6):473-482.
    [126]Yachmenev VG, Bertoniere NR, Blanchard EJ. Effect of sonication on cotton preparation with alkaline pectinase. Text Res J,2001,71(6): 527-533.
    [127]Krizman P, Kovac F, Tavcer PF. Bleaching of cotton fabric with peracetic acid in the presence of different activators. Color Technol,2005,121(6): 304-309.
    [128]Lim SH, Lee JJ, Hinks D, Hauser P. Bleaching of cotton with activated peroxide systems. Color Technol,2005,121(2):89-95.
    [129]El Shafie A, Fouda MMG, Hashem M. One-step process for bio-scouring and peracetic acid bleaching of cotton fabric. Carbohyd Polym,2009, 78(2):302-308.
    [130]Hebeish A, Hashem M, Shaker N, Ramadan M, El-Sadek B, Hady MA. New development for combined bioscouring and bleaching of cotton-based fabrics. Carbohyd Polym,2009,78(4):961-972.
    [131]杨栋樑,王焕祥.活化双氧水漂白体系新技术的近况(一).印染,2007,(02):44-48.
    [132]杨栋樑,王焕祥.活化双氧水漂白体系新技术的近况(二).印染,2007,(03):46-49.
    [133]杨栋樑,王焕祥.活化双氧水漂白体系新技术的近况(三).印染,2007,(04):46-47.
    [134]吴军玲,张占柱.活化剂在织物漂白中的应用研究.印染助剂,2006,(01):33-35.
    [135]Lee JJ, Hinks D, Lim S-H, Hauser P. Hydrolytic stability of a series of lactam-based cationic bleach activators and their impact on cellulose peroxide bleaching. Cellulose,2010,17(3):671-678.
    [136]Xu C, Hinks D, Shamey R. Bleaching cellulosic fibers via pre-sorption of N-4-(triethylammoniomethyl)-benzoyl-butyrolactam chloride. Cellulose, 2010,17(4):849-857.
    [137]Kurisawa M, Chung JE, Uyama H, Kobayashi S. Enzymatic synthesis and antioxidant properties of poly(rutin). Biomacromolecules,2003,4(5): 1394-1399.
    [138]Riva S. Laccases:blue enzymes for green chemistry. Trends Biotechnol, 2006,24(5):219-226.
    [139]马艳芬,吕生华,刘岗,董凌霄,李芳,王飞,郑新建.生物酶催化聚合的研究进展.生物技术通报,2010,(04):50-54+62.
    [140]Aly AS, Moustafa AB, Hebeish A. Bio-technological treatment of cellulosic textiles. J Clean Prod,2004,12(7):697-705.
    [141]季立才,胡培植.漆酶催化氧化反应研究进展.林产化学与工业,1997,17(1):79-85.
    [142]黄伟,洪枫.精练酶的酶学特性和复配及降解棉籽壳的效果.印染,2012,(04):1-5.
    [143]唐绿蓉,洪枫.复配精练酶对棉籽壳的降解作用.印染,2011,(13):1-4.
    [1]Cruickshank RH. The influences of epicuticular wax disruption and cutinase resistance on penetration of tomatoes by colletotrichum gloeosporioides. JPhytopathol,1995,143(9):519-524.
    [2]Himmelsbach DS, Akin DE, Kim J, Hardin IR. Chemical structural investigation of the cotton fiber base and associated seed coat: fourier-transform infrared mapping and histochemistry. Text Res J,2003, 73(4):281-288.
    [3]Koch K, Bhushan B, Barthlott W. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter,2008,4(10):1943-1963.
    [4]Koch K, Ensikat H-J. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron,2008,39(7):759-772.
    [5]Li YH, Hardin IR. Treating cotton with cellulases and pectinases:effects on cuticle and fiber properties. Text Res J,1998,68(9):671-679.
    [6]Ridley BL, O'Neill MA, Mohnen D. Pectins:structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry,2001,57(6): 929-967.
    [7]Hartzell MM, Hsieh YL. Enzymatic scouring to improve cotton fabric wettability. Text Res J,1998,68(4):233-241.
    [8]Wang Q, Fan X, Yuan J, Wang P, Cui L, Chen J. Optimization of two-step cotton scouring with β-cyclodextrin and alkaline pectinase. Eng Life Sci, 2008,8(3):339-343.
    [9]Takagishi T, Yamamoto R, Kikuyama K, Arakawa H. Design and application of continuous bio-scouring machine. AATCC Rev,2001,1(8): 32-34.
    [10]Sawada K, Tokino S, Ueda M. Bioscouring of cotton with pectinase enzyme in a non-aqueous system. J Soc Dyers Colour,1998,114(12): 355-359.
    [11]Mondal K, Roy I, Gupta MN. Enhancement of catalytic efficiencies of xylanase, pectinase and cellulase by microwave pretreatment of their substrates. Biocatal Biotransform,2004,22(1):9-16
    [12]Agrawal PB, Nierstrasz VA, Warmoeskerken M. Role of mechanical action in low-temperature cotton scouring with F. solani pisi cutinase and pectate lyase. Enzyme Microb Technol,2008,42(6):473-482.
    [13]Mitchell R, Carr CM, Parfitt M, Vickerman JC, Jones C. Surface chemical analysis of raw cotton fibres and associated materials. Cellulose,2005, 12(6):629-639.
    [14]Pandiyaraj KN, Selvarajan V. Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. J Mater Process Tech, 2008,199(1-3):130-139.
    [15]Peng S, Gao Z, Sun J, Yao L, Qiu Y. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Appl Surf Sci,2009,255(23): 9458-9462.
    [16]Samanta KK, Jassal M, Agrawal AK. Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment. Surf Coat Tech,2009,203(10-11):1336-1342.
    [17]Jeong JY, Babayan SE, Tu VJ, Park J, Henins I, Hicks RF, Selwyn GS. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Sci T,1998,7(3):282-285.
    [18]Park J, Henins I, Herrmann HW, Selwyn GS, Jeong JY, Hicks RF, Shim D, Chang CS. An atmospheric pressure plasma source. Appl Phys Lett,2000, 76(3):288-290.
    [19]Cai Z, Qiu Y. Dyeing properties of wool fabrics treated with atmospheric pressure plasmas. JAppl Polym Sci,2008,109(2):1257-1261.
    [20]Cai Z, Qiu Y. Effect on the anti-felt properties of atmospheric pressure plasma treated wool. JAppl Polym Sci,2008,107(2):1142-1146.
    [21]Ren Y, Wang C, Qiu Y. Aging of surface properties of ultra high modulus polyethylene fibers treated with He/O2 atmospheric pressure plasma jet. Surf Coat Tech,2008,202(12):2670-2676.
    [22]Peng S, Liu X, Sun J, Gao Z, Yao L, Qiu Y. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment. Appl Surf Sci,2010,256(13):4103-4108.
    [23]Tian LQ, Nie HL, Zhu LM. Pure helium and helium/oxygen atmospheric pressure plasma jet treatments on improving wettability of grey cotton fabric. Textile Bioengineering and Informatics Symposium, Proceedings, May 27-29,2011, Beijing, China, page(s):725-731.
    [24]Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J,1959,29(10):786-794.
    [25]Krakhmalev VA, Paiziev AA. Spiral structures of cotton fiber. Cellulose, 2006,13(1):45-52.
    [26]Gao Z, Peng S, Sun J, Yao L, Qiu Y. Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films. Appl Surf Sci, 2009,255(17):7683-7688.
    [27]王平,王强,范雪荣,钱国坻,高卫东.棉织物生物酶前处理润湿性评价.印染,2002,28(12):28-31+52.
    [28]郝艳捧,关志成,王黎明,王新新,李成榕.大气压空气辉光放电.电工电能新技术,2005,24(02):69-72.
    [29]李成榕,王新新.大气压下的辉光放电.高电压技术,2002,28(120):41-43.
    [30]Kim JJ, Park HH, Hyun SH. The effects of plasma treatment on SiO2 aerogel film using various reactive (O2, H2, N2) and non-reactive (He, Ar) gases. Thin Solid Films,2000,377:525-529.
    [31]Kim BK, Kim KS, Cho K, Park CE. Retardation of the surface rearrangement of O2 plasma-treated LDPE by a two-step temperature control. J Adhes Sci Technol,2001,15(14):1805-1816.
    [32]Yun YI, Kim KS, Uhm SJ, Khatua BB, Cho K, Kim JK, Park CE. Aging behavior of oxygen plasma-treated polypropylene with different crystallinities. J Adhes Sci Technol,2004,18(11):1279-1291.
    [1]Reina-Pinto JJ, Yephremov A. Surface lipids and plant defenses. Plant Physiol Biochem,2009,47(6):540-549.
    [2]Tian LQ, Nie HL, Chatterton NP, Branford-White CJ, Qiu YP, Zhu LM. Helium/oxygen atmospheric pressure plasma jet treatment for hydrophilicity improvement of grey cotton knitted fabric. Appl Surf Sci, 2011,257(16):7113-7118.
    [3]Wang Q, Fan XR, Cui L, Wang P, Wu J, Chen J. Plasma-aided cotton bioscouring:dielectric barrier discharge versus low-pressure oxygen plasma. Plasma Chem Plasma Process,2009,29(5):399-409.
    [4]Ismal OE. Influence of wax and pectin removal on cotton absorbency. AATCC Rev,2008,8(6):37-42.
    [5]Kalantzi S, Mamma D, Christakopoulos P, Kekos D. Effect of pectate lyase bioscouring on physical, chemical and low-stress mechanical properties of cotton fabrics. Bioresource Technol,2008,99(17): 8185-8192.
    [6]Li YH, Hardin IR. Enzymatic scouring of cotton:Effects on structure and properties. Text Chem Color,1997,29(8):71-76.
    [7]Agrawal PB, Nierstrasz VA, Warmoeskerken M. Role of mechanical action in low-temperature cotton scouring with F. solani pisi cutinase and pectate lyase. Enzyme Microb Technol,2008,42(6):473-482.
    [8]Ahlawat S, Dhiman SS, Battan B, Mandhan RP, Sharma J. Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem,2009, 44(5):521-526.
    [9]Calafell M, Garriga P. Effect of some process parameters in the enzymatic scouring of cotton using an acid pectinase. Enzyme Microb Technol,2004, 34(3-4):326-331.
    [10]Vaughn KC, Turley RB. The primary walls of cotton fibers contain an ensheathing pectin layer. Protoplasma,1999,209(3-4):226-237.
    [11]Koch K, Bhushan B, Barthlott W. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter,2008,4(10):1943-1963.
    [12]Agrawal PB, Nierstrasz VA, Klug-Santner BG, Gubitz GM, Lenting HBM. Wax removal for accelerated cotton scouring with alkaline pectinase. Biotech J,2007,2(3):306-315.
    [13]Jin CH, Maekawa M. Evaluating an enzyme treatment of ramie fabrics. Text Res J,2001,71(9):779-782.
    [14]Krakhmalev VA, Paiziev AA. Spiral structures of cotton fiber. Cellulose, 2006,13(1):45-52.
    [15]Chung C, Lee M, Choe EK. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym,2004,58(4):417-420.
    [1]Himmelsbach DS, Akin DE, Kim J, Hardin IR. Chemical structural investigation of the cotton fiber base and associated seed coat: Fourier-transform infrared mapping and histochemistry. Text Res J,2003, 73(4):281-288.
    [2]Ryser U, Schorderet M, Jauch U, Meier H. Ultrastructure of the "fringe-layer", the innermost epidermis of cotton seed coats. Protoplasma, 1988,147(2):81-90.
    [3]阎贺静,华兆哲,堵国成,陈坚.降解棉籽壳用精练酶的选择.印染,2009,(12):6-13.
    [4]Hu Y, Nie H, White CB, Zhao Z, Zhu L. Isolation and characterization of hemicelluloses from cottonseed coat waste. J Biobased Mater Bio,2010, 4(4):446-451.
    [5]刘振宇,郑经堂.多孔炭的纳米结构及其解析.化学进展,2001,(13):10-18.
    [6]Langmuir I. The constitution and fundamental properties of solids and liquids.part I. solids. J Am Chem Soc,1916,38(11):2221-2295.
    [7]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc,1918,40(9):1361-1403.
    [8]Giles CH, MacEwan TH, Nakhwa SN, Smith D. Studies in adsorption. Part Ⅺ. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Am Chem Soc,1960:3973-3993.
    [9]Zhai Y, Wei X, Zeng G, Zhang D, Chu K. Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions. Sep Purif Technol,2004,38(2):191-196.
    [10]Gupta VK, Mittal A, Krishnan L, Gajbe V. Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom as. Sep Purif Technol,2004,40(1):87-96.
    [11]Ho YS, Ng JCY, McKay G. Kinetics of pollutant sorption by biosorbents: Review. Sep Purif Methods,2000,29(2):189-232.
    [12]Chen C, Zhuang Y, Liu F, Yang MA, Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res,2000, 34(3):735-742.
    [13]Chen C, Zhuang Y, Liu F, Yang M. Adsorption equilibrium and kinetics of dyes on dried activated sludge. Anquan Yu Huanjing Xuebao,2003, 3(3):46-50.
    [14]Cheung CW, Porter JF, McKay G. Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep Purif Technol,2000, 19(1-2):55-64.
    [15]Tutem E, Apak R, Unal CF. Adsorptive removal of chlorophenols from water by bituminous shale. Water Res,1998,32(8):2315-2324.
    [16]Ritchie AG. Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J Chem Soc,1977,73(10):1650-1653.
    [17]赵振国.吸附作用应用.北京:化学工业出版社,2005.
    [18]王诗生.凹凸棒石吸附水溶性染料的性能及机理研究.合肥工业大学,硕士学位论文,2005.
    [19]Wu J, Yu HQ. Biosorption of 2,4-dichlorophenol from aqueous solution by phanerochaete chrysosporium biomass:isotherms, kinetics and thermodynamics. J Hazard Mater,2006,137(1):498-508.
    [20]Boonamnuayvitaya V, Chaiya C, Tanthapanichakoon W, Jarudilokkul S. Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep Purif Technol,2004,35(1):11-22.
    [21]赵冰,刘海顺,王静,张可,孙宝国,曹雁平.金属离子对木聚糖酶制备阿魏酸糖酯的影响.食品科学,2011,32(03):19-22.
    [22]管国强,何林富,张志才,王文兵,黄达明,崔凤杰.金属离子对灵芝纤维素酶和木聚糖酶活性的作用.江西农业学报,2008,20(06):27-30.
    [23]Riemam W, Walton H. Ion exchange in analytical chemistr. International series of monographs in analytical chemistry. Pergamon Press, Oxford, 1970.
    [24]Gupta VK, Mittal A, Krishnan L, Gajb V. Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Sep. Purif. Technol,2004,40(1):87-96.
    [25]Alkan M, Demirbas O, Celikcapa S, Dogan M. Sorption of acid red 57 from aqueous solution onto sepiolite. J Hazard Mater,2004,116(1-2): 135-145.
    [26]Koh M, Nakajima T. Adsorption of aromatic compounds on CxN-coated activated carbon. Carbon,2000,38(14):1947-1954.
    [27]Chiang HL, Huang CP, Chiang PC. The adsorption of benzene and methylethylketone onto activated carbon:thermodynamic aspects. Chemosphere,2001,46(1):143-152.
    [28]Qi S, Hay KJ, Rood MJ, Cal MP. Carbon fiber adsorption using quantitative structure-activity relationship. J Environ Eng,2000,126(9): 865-868.
    [29]罗刚,张全兴,李爱民,刘福强,邵莉,陈金龙.吸附树脂对山梨酸的吸附作用及其热力学性质.应用化学,2003,20(12):1139-1142.
    [30]余颖,庄源益,漆新华.NKY树脂吸附水溶性染料的研究.上海环境科学,2000,(9):421-424.
    [31]余颖,庄源益,谷文新,漆新华.树脂NKY对活性艳蓝KN-R的吸附特性.离子交换和吸附,2000,(5):432-440.
    [32]Yu Y, Zhuang YY, Wang ZH, Qiu MQ. Adsorption of water-soluble dyes onto modified resin. Chemosphere,2003,54(3):425-430.
    [33]Yu Y, Zhuang YY, Wang ZH. Adsorption of Water-Soluble Dye onto Functionalized Resin. J Colloid Interface Sci,2001,242(2):288-293.
    [34]Ren Y, Wei X, Zhang M. Adsorption character for removal Cu (Ⅱ) by magnetic Cu (Ⅱ) ion imprinted composite adsorbent. J Hazard Mater, 2008,158(1):14-22.
    [35]Jaycok MJ, Parfitt GD, Chemistry of Interfaces, New York:Ellis Horwood Limited,1981.
    [36]阎贺静,华兆哲,堵国成,陈坚.碱性木聚糖酶降解棉籽壳的热动力学.印染,2009,(19):1-3.
    [37]黄伟,洪枫.精练酶的酶学特性和复配及降解棉籽壳的效果.印染,2012,(04):1-5.
    [38]Yan H, Hua Z, Qian G, Wang M, Du G, Chen J. Effect of cutinase on the degradation of cotton seed coat in bio-scouring. Biotechnol Bioprocess Eng,2009,14(3):354-360.
    [1]Ardon O, Kerem Z, Hadar Y. Enhancement of laccase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by cotton stalk extract. J Biotechnol,1996,51(3):201-207.
    [2]Hedin PA, Jenkins JN, Parrott WL. Evaluation of flavonoids in Gossypium arboreum (L.) cottons as potential source of resistance to tobacco budworm. J Chem Ecol,1992,18(2):105-114.
    [3]Brooks RE, Moore SB. Alkaline hydrogen peroxide bleaching of cellulose. Cellulose,2000,7(3):263-286.
    [4]Dannacher J, Schlenker W. The mechanism of hydrogen peroxide bleaching. Text Chem Color,1996,28(11):24-28.
    [5]Spiro M, Griffith WP. The mechanism of hydrogen peroxide bleaching. Text Chem Color,1997,29(11):12-13.
    [6]Zeronian SH, Inglesby MK. Bleaching of cellulose by hydrogen peroxide. Cellulose,1995,2(4):265-272.
    [7]Gianfreda L, Xu F, Bollag JM. Laccases:A useful group of oxidoreductive enzymes. Bioremediat J,1999,3(1):1-25.
    [8]Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev,1996,96(7):2563-2605.
    [9]Yaropolov AI, Skorobogat OV, Vartanov SS, Varfolomeyev SD. Laccase-Properties, catalytic mechanism, and applicability. Appl Biochem Biotech, 1994,49(3):257-280.
    [10]Yachmenev VG, Bertoniere NR, Blanchard EJ. Effect of sonication on cotton preparation with alkaline pectinase. Text Res J,2001,71(6): 527-533.
    [11]季立才,胡培植.漆酶催化氧化反应研究进展.林产化学与工业,1997,17(1):79-85.
    [12]Couto SR, Herrera JLT. Industrial and biotechnological applications of laccases:A review. Biotechnol Adv,2006,24(5):500-513.
    [13]Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. An expended role for laccase in lignin biodegradation. FEBS Lett,1990, 267(1):99-102.
    [14]Call HP, Mucke I. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym(?)-process). J Biotechnol,1997,53(2-3):163-202.
    [15]Fillat A, Colom JF, Vidal T. A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresource Technol,2010, 101(11):4104-4110.
    [16]Collins PJ, Kotterman MJJ, Field JA, Dobson ADW. Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microb (AEM),1996,62(12):4563-4567.
    [17]Claus H, Faber G, Konig H. Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol,2002,59(6):672-678.
    [18]Kim S, Moldes D, Cavaco-Paulo A. Laccases for enzymatic colouration of unbleached cotton. Enzyme Microb Technol,2007,40(7):1788-1793.
    [19]Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J,1959,29(10):786-794.
    [20]Hashem M, El-Bisi M, Sharaf S, Refaie R. Pre-cationization of cotton fabrics:An effective alterntive tool for activation of hydrogen peroxide bleaching process. Carbohyd Polym,2010,79(3):533-540.
    [21]Ozer A, Gurbuz G, Calimli A, Korbahti, B.K. Investigation of nickel (II) biosorption on Enteromorpha prolifera:Optimization using response surface analysis. J Hazard Mater,2008,152(2):778-788.
    [22]Wang Q, Fan XR, Hua ZZ, Chen J. Optimizing bioscouring condition of cotton knitted fabrics with an alkaline pectinase from Bacillus subtilis WSHB04-02 by using response surface methodology. Biochem Eng J, 2007,34(2):107-113.
    [23]Sharma S, Malik A, Satya S. Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (Ⅵ) removal by Aspergillus lentulus AML05. J Hazard Mater,2009,164(2-3): 1198-1204.
    [24]王银银.纯棉织物漂白技术.纺织科技进展,2009,(04):12-15.
    [1]阎克路.染整工艺教程(第一分册).北京:中国纺织出版社,2005:71-72.
    [2]赵向前,王学德.天然彩色棉纤维色素成分的研究.作物学报,2005,(04):456-462.
    [3]包德隆,马蕙兰.染整工艺学(第一册).北京:中国纺织出版社,1985:99-101.
    [4]张镁,胡伯陶,赵向前.天然彩色棉的基础和应用.北京:中国纺织出版社,2005:100-112.
    [5]Halloin JM. Localization and changes in catechin and tannins during development and ripening of cottonseed. New Phytol,1982,90(4): 651-657.
    [6]Ryser U, Holloway PJ. Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibres of Gossypium species. Planta,1985,163(2):151-163.
    [7]詹少华,林毅,蔡永萍,李正鹏.缩合单宁与天然棕色棉纤维色素合成的关系.棉花学报,2007,19(03):183-188.
    [8]Pereira L, Bastos C, Tzanov T, Cavaco-Paulo A, Guebitz GM. Environmentally friendly bleaching of cotton using laccases. Environ Chem Lett,2005,3(2):66-69.
    [9]Hedin PA, Jenkins JN, Parrott WL. Evaluation of flavonoids in Gossypium arboreum (L.) cottons as potential source of resistance to tobacco budworm. J Chem Ecol,1992,18(2):105-114.
    [10]田新惠,李艳军,张新宇,孙杰.棕色棉纤维四种类黄酮化合物HPLC测定方法的研究.棉花学报,2010,22(06):597-602.
    [11]Krishnamachari V, Levine LH, Zhou C. In Vitro Flavon-3-ol Oxidation Mediated by a B Ring Hydroxylation Pattern. Chem Res Toxicol,2004, 17(6):795-804.
    [12]Uzan E, Portet B, Lubrano C,. Pycnoporus laccase-mediated bioconversion of rutin to oligomers suitable for biotechnology applications. Appl Microbiol Biotechnol,2011,90(1):97-105.
    [13]李会平,王立新,金雪铃.芦丁在酸碱溶液中的紫外光谱研究与应用.分析试验室,2007,26(10):104-106.
    [14]古练权,汪波,黄志纾,吴云东.有机化学.北京.高等教育出版社,2008.
    [15]Cherviakovsky EM, Bolibrukh DA, Baranovsky AV, Vlasova TM, Kurchenko VP, Gilep AA, Usanov SA. Oxidative modification of quercetin by hemeproteins. Biochem Biophy Res Co,2006,342(2): 459-464.
    [16]Miller E, Schreier P. Studies on flavonol degradation by peroxidase (donor: H2O2-oxidoreductase, EC 1.11.1.7). Kaempferol. Food Chem,1985,17(2): 143-154.
    [17]邓芹英,刘岚,邓慧敏.波谱分析教程.北京:科学出版社,2003:58-59.
    [18]Mejias L, Reihmann MH, Sepulveda-Boza S, Ritter H. New polymers from natural phenols using horseradish or soybean peroxidase. Macromol biosci,2002,2(1):24-32
    [19]Desentis-Mendoza RM, Hernandez-Sanchez H, Moreno A. Enzymatic Polymerization of Phenolic Compounds Using Laccase and Tyrosinase from Ustilago maydis. Biomacromolecules,2006,7(6):1845-1854.
    [20]Hirose Y, Fujita T, Nakayama M. Structure of doubly-linked oxidative product of quercetin in lipid peroxidation. Chem Lett,1999, (8):775-776.
    [21]Jonas U, Hammer E, Schauer F. Transformation of 2-hydroxydibenzofuran by laccases of the white rot fungi Trametes versicolor and Pycnoporus cinnabarinus and characterization of oligomerization products. Biodegradation,1997,8(5):321-328.
    [22]Shimizu N, Naoe T, Kawazoe Y, Sakagami H, Nakashima H, Murakami T, Yamamoto N. Lignified materials as medicinal resources.6. Anti-HIV activity of dehydrogenation polymer of p-coumaric acid, a synthetic lignin, in a quasi-in vivo assay system as an intermediary step to clinical-trials. Biol Pharm Bull,1993,16(4):434-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700