植物内生细菌GFP标记及两个基因与定殖的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生菌是一个多样性十分丰富的微生物类群,分布于没有外在感染症状的健康植物组织内,并与宿主植物协同进化。近年来,随着研究领域的不断拓宽和研究方法的不断深入,植物内生菌的生态和生理作用及其作为潜在的生防资源和外源基因载体,在农业和医药领域中的巨大应用潜力,已逐渐成为国内外研究的热点,内生细菌生物制剂成为未来的一个研究发展方向。
     本实验室分离鉴定的植物内生枯草芽孢杆菌BS2和解淀粉芽孢杆菌TB2菌株是对多种植物具有促生和防病作用的植物内生细菌,具有广阔的应用前景。为了了解内生细菌在植物体内的定殖、活动能力及作用方式,本研究利用编码绿色荧光蛋白的gfp基因对内生细菌菌株BS2和TB2进行荧光标记。通过标记菌表达的绿色荧光来监测内生细菌在植物组织的定殖活动,并对标记菌株的生物学特性及菌株标记前后的生防功能和定殖能力进行比较研究。
     利用枯草芽孢杆菌168菌株rpsD基因的启动子替换质粒pGFP4412中蜡状芽孢杆菌4412启动子,从而构建了能表达绿色荧光蛋白基因的穿梭载体pS4GFP,将其导入内生细菌BS2和TB2菌株中,利用gfp基因表达后菌落在荧光显微镜下发出的绿色荧光,得到高效表达GFP的标记菌,分别命名为BS2-gfp和TB2-gfp。标记菌生理生化研究结果表明,与出发菌BS2和TB2比较,两个标记菌株均出现了生长滞后的现象;出发菌和标记菌对真菌的抑菌效果比较分析发现,菌株标记前后拮抗活性无显著变化;菌株标记前后在植物体内定殖数量的比较分析结果表明,标记菌株在植物体内定殖菌量稍低于出发菌株。经过对以上几个方面的测定分析显示,本实验构建的标记系统对目标菌株的生长代谢、拮抗能力等方面的影响不是很大,可以满足进一步实验的要求。
     为了研究内生细菌的侵染定殖机制,我们克隆了来自内生细菌BS2和TB2的纤维素酶基因和果胶酶基因,并对这两个基因是否在内生细菌进入植物体内这一过程中起作用进行了探讨。首先,我们分别从内生细菌BS2和TB2中克隆到了β-1,4-内切葡聚糖酶基因的ORF。对这两个β-1,4-内切葡聚糖酶基因的ORF及其氨基酸序列进行分析,结果表明:两基因的ORF全长均为1500 bp,编码499个氨基酸,分子量都约为55 kDa,菌株BS2等电点为7.49,TB2等电点为7.83。Blast同源性分析结果表明,两个β-1,4-内切葡聚糖酶基因的核苷酸序列同源性和氨基酸序列同源性都为99%。两基因的核苷酸序列只有一个碱基差异,即BS2中1015位是A ,TB2中是G。相应位置的氨基酸由BS2中的组氨酸变成了TB2中的精氨酸。另外,两基因的序列与枯草芽孢杆菌标准菌株BS168的β-1,4-内切葡聚糖酶基因比对结果表明,核苷酸序列同源性与氨基酸序列同源性均为93%。使用pET-29a(+)载体,我们成功地表达了这两个β-1,4-内切葡聚糖酶,SDS-PAGE电泳在59 kDa左右有融合蛋白带,与推算的结果一致。同时研究了该酶的生物学特性,实验结果表明:两个β-1,4-内切葡聚糖酶的最适反应pH均为6.4,属于中性纤维素酶,且酶的pH稳定范围较宽,pH 5.4~9都较稳定。酶的最适反应温度为50℃左右,当温度高于55℃后酶活急剧下降,65℃时酶活仅为50℃时的31%。
     为了探明来自内生细菌的β-1,4-内切葡聚糖酶基因与内生细菌进入植物之间的关系,我们使用穿梭载体构建了组成型表达β-1,4-内切葡聚糖酶基因的载体,转入野生菌中,得到过表达突变体。同时使用具有单交换功能的整合载体pMUTIN-GFP+构建敲除载体,转入野生菌中,得到低量表达突变体。进一步将过表达载体转入低量表达突变体中获得β-1,4-内切葡聚糖酶基因互补突变体。将不同突变体的菌液对小白菜进行灌根接种,然后对小白菜不同组织内的内生细菌菌量进行不同时间的分离,观察分离情况。分离结果表明:过表达突变体在植物体内的定殖数量明显高于低量表达突变体和标记菌株。其中低量表达突变体在植物体内的定殖数量最低,而互补突变体的定殖数量与过表达突变体基本一致,且明显高于标记菌株。以上结果表明内生细菌产生的β-1,4-内切葡聚糖酶在内生细菌进入植物的过程中起着重要作用。
     其次,我们还分别克隆了来自内生细菌BS2和TB2的果胶酶基因。对两个果胶酶基因的核苷酸序列及其推测的氨基酸序列进行分析,结果表明:克隆到的果胶酶基因由启动子区域和1266 bp的ORF区域构成,对两个果胶酶基因的ORF同源性分析结果表明,两个果胶酶基因的核苷酸序列同源性和氨基酸序列同源性都为99%,与枯草芽孢杆菌标准菌株BS168的核苷酸序列同源性与氨基酸序列同源性均为72%。与其他已报道的枯草芽孢杆菌及地衣芽孢杆菌的果胶酶基因同源性均低于72%。使用pET-30a(+)载体,我们成功地表达了这两个果胶酶,SDS-PAGE电泳在50 kDa左右有融合蛋白带,与推算的结果一致。
     为了探明来自内生细菌的果胶酶基因与内生细菌进入植物之间的关系,我们将带启动子的全长果胶酶基因与穿梭载体连接构建了过表达载体,转入野生菌中,筛选得到果胶酶过表达突变体。将过表达突变体与标记菌株的菌液对小白菜进行灌根接种,然后于不同时间对小白菜不同组织内的内生细菌菌量进行分离统计。分离结果表明:在侵入小白菜体内的初期,过表达突变体在小白菜体内的定殖菌量明显高于标记菌株,随着时间的推移,两者之间的定殖数量逐渐变得不明显。要想更明确地弄清果胶酶的功能,还需要进一步的研究。
     综合全部实验结果,我们得出结论:β-1,4-内切葡聚糖酶在内生细菌中是保守的,是帮助内生细菌定殖植物体内的重要因素之一。同时,对于内生细菌产生的果胶酶,初步分析表明它在内生细菌进入植物体内初期起着关键性的作用。
Endophyte is one of microorganism communities with abundant biodiversity. They have been living in healthy plant tissues without causing any disease symptoms and coevolving in their hosts. In recent years,with the study on the endophytic populations broadened and deepened,it has become one of the most popular research topics,because of its ecological and physiological functions and the great application potentiality in the fields of agriculture and medicine as biocontrol agents and foreign gene carrier. Therefore using endophytic bacteria as biological agents will become one of the future trend of development.
     In previous work , endophytic Bacillus subtilis strain BS2 and B. amyloliquefaciens strain TB2 have been proved to be promoting plant growth and inhibiting growth of plant pathogens,so that it has a promising prospect of application. To understand the infection mechanism of these potential biocontrol agents and their ecological characteristics in plant,this research was used gfp as a fluorescent biomarker to label endophytic bacteria BS2 and TB2. Based on the green fluorescence produced by gfp-tagged endophytic bacteria in the plant tissue,it could monitor the colonization pattern and investigate the biological characteristics,biocontrol function and colonization ability.
     Promoter 4412 of plasmid pGFP4412 was replaced by rpsD promoter of strain 168 (B. subtilis) to obtain a new vector pS4GFP in which the gfp gene could strongly express under the control of rpsD promoter. The plasmid pS4GFP was transformed into the endophytic bacteria strains BS2 and TB2. Two transformants,designated as BS2-gfp and TB2-gfp respectively,exhibited strong green fluorescence under fluorescence microscope,and were chosen for further study. The growth rates of two wild strains and two gfp-tagged strains were evaluated,and the gfp-tagged strains showed slightly slower growth rates than that of the wild strains. Results of bacteriostatic tests in vitro showed that the bacteriostatic ability had no significant change between wild strains and gfp-tagged strains. Moreover , for statistical evaluation,colonized population of gfp-tagged strains were not lower than that of the wild strains. The above test results showed that there were no large influence on the growth and antagonistic effect of endophytic bacteria,and it can meet the need for further experimental study.
     To clarify the mechanism of infection and colonization of endophytic bacteria, we clonedβ-1,4-endoglucanase genes and pectate lyase genes from strains BS2 and TB2,and discussed whether the two genes played a role in endophytic colonization. First,ORF ofβ-1,4-endoglucanase gene has been cloned from the two strains respectively,and we analyzed the gene and amino acid sequences. The result suggestes that theβ-1,4-endoglucanase gene contained 1500 bp nucleotides,which encodes 499 amino acids. The molecular weights of the two enzymes both are 55 kDa,their isoelectric points (pI) were calculated to be 7.49 and 7.83 respectively. BLAST search results showed that the nucleotide and amino acid sequences of theβ-1,4-endoglucanase gene coming from BS2 shared high homology with that of theβ-1,4-endoglucanase gene coming from TB2,and the both of similarities are 99%. Only one base was changed in the nucleotide sequences,the base A1015 in strain BS2 substitutes for G1015 in strain TB2,amino acid at the corresponding position changed from His to Arg. In addition,the nucleotide and amino acid sequences homology between the twoβ-1,4-endoglucanase genes and B. subtilis type strain 168 both were 93%. The twoβ-1 , 4-endoglucanases were successfully expressed in vector pET-29a(+) , consistent with the calculating result. SDS-PAGE electrophoresis analysis showed that the fusion protein molecular masses were about 59 kDa. Study on the biological characteristics of the two enzymes showed that the optimum pH for reaction of the enzyme were found at 6.4,showing that the two fusion enzymes belonged to neutral enzymes. The stable pH ranges were all 5.4~9.0. The optimum temperatures were all at 50℃,When the temperature was higher than 55℃,they were unstable. The enzyme activity at 65℃was only 31% of that at 50℃.
     In order to discuss the relationship betweenβ-1,4-endoglucanase gene from endophytic bacteria with endophytic colonization characteristic , two vectors containingβ-1,4-endoglucanase gene ORF or part ofβ-1,4-endoglucanase gene sequence were constructed and transformed to strain BS2 and TB2 respectively,resulting overproducing mutants and underproducing mutants. Furthermore ,overexpression vector was transformed into underproducing mutant , yielding complementation mutant. These different bacterial strains liquids were used to inoculate into Brassica chinensis roots respectively,then they were isolated at different time and in different tissue. According to the statistical data,it showed that the population of overproducing mutant had been maintained the largest quantity than underproducing mutant and gfp labeled strain. Whereas the number of underproducing mutants were the least. However , the bacterial numbers of complementation mutant were close to that of the overproducing mutant,and slightly higher than those labeled strains. All above results demonstratedβ-1,4-endoglucanase was one of the important factors that was involved in endophytic bacteria colonization process.
     Secondly,we cloned the pectate lyase genes from strain BS2 and TB2 respectivly. Analysed the nucleotide sequences and their deduced amino acid sequences of the two genes,we found that both of the two pectate lyase genes composed of promoter region and 1266 bp ORF region. Homologous analysis on two pectate lyase genes showed that the homologies of their nucleotide and amino acid sequences were 99%. Compared the nucleotide and amino acid sequences from two genes with B. subtilis type strain 168,the homology was 72%,but below 72% with other reported pectate lyases came from B. subtilis and B. licheniformis. The two pectate lyases were successfully expressed in vector pET-30a(+),SDS-PAGE electrophoresis analysis showed that the fusion protein molecular masses were about 50 kDa,which were agree with our prediction.
     In order to discuss the relationship between pectate lyase gene from endophytic bacteria with endophytic colonization characteristic,overexpression vector was constructed which obtained through connecting the shuttle vector and the whole length pectate lyase gene. After transforming overexpression vector to wild type strain,we screened the overproducing mutants,named BS2-pex and TB2-pex respectively. Using the bacterial liquid from mutants and labeled strains to inoculate into B. chinensis root respectivly,the number of endophytic bacteria from different tissue in B. chinensis during different time was observed. The result showed that in the initial period of invading,the number of endophytic bacteria from overproducing mutants were obviously more than that of labeled strains,and the difference became not obvious during the passage of time. Further research was necessary in determined the exact function of pectate lyase.
     In conclusion,β-1,4-endoglucanase is conserved in endophytic bacteria,and is the one of the important factors that are involved in endophytic bacteria colonization process. At the same time,the analysis shows that the pectate lyase produced by endophytic bacteria plays a key role in entering into plant at the initial stage.
引文
1. Alghisi P and Favaron F. Pectin degrading enzymes and plant-parasite interactions. Eur J Plant Pathol, 1995, 101: 365-375
    2. Araujo W L, Maccheroni W, Jr Aguilar-Vildoso C I, Barroso P A V, Saridakis H O, and Azevedo J L. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol, 2001, 47: 229-236
    3. Araujo W L, Marcon J, Maccheroni W, Jr Van Elsas J D, Van Vuurde J W L, and Azevedo J L Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol, 2002, 68: 4906-4914
    4. Asis C A, and Adachi K. Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweet potato stem in Japan. Lett Appl Microbiol, 2003, 38: 19-23
    5. Baillieul F, Genetet I, Kopp M, Saindrenan P, Friting B, and Kauffmann S. A new elicitor of the hypersensitive response in tobacco: a fungal glycoprotein elicits cell death, expression of defense genes, production of salicylic acid, and induction of systemic acquired resistance. Plant J, 1995, 8: 551-560
    6. Baldani J I, Pot B, Kirchhof G, Falsen E, Baldani V L, Olivares F L, Hoste B, Kersters K, Hartmann A, Gillis M, and D?bereiner J. Emended description of Herbaspirillum; inclusion of Pseudomonas rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species. Int J Syst Bacteriol, 1996, 46: 802-810
    7. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert J V, Vangronsveld J, and van der Lelie D. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol, 2004, 22: 583-588
    8. Boddey R M, de Oliveira O C, Urquiaga S, Reis V M, Olivares F L, Baldani V L D, Dbereiner J. Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil, 1995, 174: 195-209
    9. Boudart G, Lafitte C, Barthe J P, Frasez D, Esquerr-Tugay M T. Differential elicitation of defense responses by pectic fragments in bean seedlings. Planta, 1998,206: 86-94
    10. Carroll G C. The biology of endophytism in plants with particular reference to woody perennials. In Fokkema N J, and van den Heuvel J eds. Microbiology of the phyllosphere. Cambridge: Cambridge University Press, 1986, 205-222
    11. Cavalcante V A, and D?bereiner J. A new acid-tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil, 1988, 108: 23-31
    12. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P, and Dreyfus B. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol, 2000, 66: 5437-5447
    13. Chelius M K, and Triplett E W. Diazotrophic endophytes associated with maize. Pages 779-791 in: Prokaryotic Nitrogen Fixation; A Model System for Analysis of a Biological Process. 2000a, Horizon Scientific Press, Wymondham, U K
    14. Chen C E, Bauske M, Musson G, Rodríguez-Kábana R, and Kloepper J W. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 1995, 5: 83-91
    15. Clémence C, Eric G, Yves P, Jean L, Amadou B, Monique G, Philippe de L, and Bernard D. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol, 2000, 66(12): 5437-5447
    16. Compant S, Reiter B, Sessitsch A, et al. Nowak J, Clément C, and Ait Barka E. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol, 2005, 71:1685-1693
    17. Conn V M, and Franco C M M. Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol, 2004, 70: 1787-1794
    18. Cooley M B, Miller W G, and Mandrell R E. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol, 2003, 69: 4915-4926
    19. Coombs J T, and Franco C M M. Isolation and identification of actinobacteria isolated from surface-sterilized wheat roots. Appl Environ Microbiol, 2003a, 69: 5303-5308.
    20. Crotti L B, Terenzi H F, Jorge1 J A, Polizeli M L T M. Characterization of galactose-induced extracellular and intracellular pectolytic activities from theexo-1 mutant strain of Neurospora crassa. Ind Microbio1 Biotechnol, 1998, 20:238-243
    21. Dalton D A, Kramer S, Azios N, Fusaro S, Cahill E, and Kennedy C. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol Ecol, 2004, 49: 469-479
    22. Danhorn T and Fuqua C. Biofilm formation by plant-associated bacteria. Ann Rev Microbiol, 2007, 61:401-422
    23. De Bary A. Morphologie und physiologie der pilze, Flechten und Myxomyceten. Engelmann. Leipzig. 1866:1-316
    24. De Boer S H, Copeman R J. Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot diagnosis. Can J Plant Sci, 1974, 54: 115-122
    25. Diem G, Rougier M, Hamad-Fares I, Balandreu J P, Dommergues Y R. Colonization of rice roots by diazotroph bacteria. Ecol Bull, 1978, 26: 305-311
    26. Dimock M B, Beach R M, and Carlson P S. Endophytic bacteria for the delivery of crop protection agents. In: Biotechnology, Biological Plant Pesticides and Novel Plant-pest Resistance for Insect Pest Management, Roberts, D. W. and Grandos, R. R., Eds., Boyce Thompson Institute for Plant Research, Ithaca, NY, 1989, pp:88-92
    27. Dong Y, Iniguez A L, and Triplett E W. Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil, 2003, 257: 49-59
    28. D?rr J, Hurek T, and Reinhold-Hurek B. Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol, 1998, 30: 7-17
    29. Downing K J, Leslie G, Thomson J A. Biocontrol of the Sugarcane Borer Eldana saccharina by Expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA Genesin Sugarcane-Associated Bacteria. Appl Environ Microb, 2000a, 66 (7): 2804-2810
    30. Downing K J, Thomson J A. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can J Microbiol, 2000b, 46(4): 363-369
    31. Eberl L, Schulze R, Ammendola A, Geisenberger O, Erhart R, Sternberg C, Molin S, Amann R. Use of green fluorescent protein as a marker for ecological studies actived sludge communities. FEMS Microbiol Lett, 1997, 149: 77-83
    32. Elvira-Recuenco M, van Vuurde J W. Natural incidence of endophytic bacteria inpea cultivars under field conditions. Can J Microbiol, 2000, 46(11):1036-1041
    33. Engelhard M, Hurek T, and Reinhold-Hurek B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol, 2000, 2: 131-41.
    34. Errampalli D, Okamura H, Lee H, Trevors J T, Elsas J D van. Green fluorescent protein as a marker to monitor survival of phenanthrene-mineralizing Pseudomonas sp. UG14Gr in creosote-contaminated soil. FEMS Microbiol Ecol, 1998, 26: 181-191
    35. Fahey J W, Dimock M B, Tomasino S F, Taylor J M, and Carlson P S. Genetically engineered endophytes as biocontorl agents: a case study from industry. In: Microbial Ecology of Leaves. Andrews, J. H. and Hirano, S. S., Eds., Springer-Verlag, London, UK, 1991, p401-411
    36. Fahey J W. Endophytic bacteria for the delivery of agrochemicals to plants. ACS Symposium series American Chemical Society (USA). 1988, 380, p120-128
    37. Fisher P J, Petrini O, Scott H M. The distribution of some fungal and bacterial endophytes in maize. New Phytol, 1992, 122(3): 249-305
    38. Fujitani Y, Yamamoto K and Kobayashi I. Dependence of frequency of homologous recombination on the homology length. Genetics, 1995, 140: 797-809
    39. Gagne S, Richard C, Rousseau H, and Antoun H. Xylem-residing bacteria in alfafa root. Can J Microbiol, 1987, 33(7): 996-1000
    40. Gainvors A, Nedjaoum N, Gognies S, Muzart M, Nedjma M, Belarbi A. Purification and characterization of acidic endo-polygalacturonase encoded by the PGLl-gene from Saccharomyces cerevisiae. FEMS Microbiol Lett, 2000, 183: 131-135
    41. Gognies S, Gainvors A, Aigle M, et al. Cloning,sequence analysis and overexpression of a Saccharomyces cerevisiae endopolygalacturonase encoding gene(PGL1). Yeast, 1999, 15(1): 11-22
    42. Guo X, van Iersel M W, Chen J, Brackett R E, and Beuchat L R. Evidence of association of salmonellae with tomato plants grown hydroponically in inoculated nutrient solution. Appl Environ Microbiol, 2002, 68: 3639-3643
    43. Gyaneshwar P, James E K, Mathan N, Reddy P M, Reinhold-Hurek B, and Ladha J K. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol, 2001, 183: 2634-2645
    44. Haapalainen M L, Kobets N, Piruzian E, and Metzler M C. Integrative vector for stable transformation and expression of aβ-1,3-glucanase gene in Clavibacter xyli subsp. Cynodontis. FEMS Microbiol Lett, 1998, 162: 1-7
    45. Hallmann J, Quadt-Hallmann A, Mahaffee W F, and Kloepper J W. Bacterial endophytes in agricultural crops. Can J Microbiol, 1997b, 43(10): 895-914
    46. Hallmann J, Rodr guez-kobana R, Kloepper J W. Plant growth-promoting rhizobacteria-present status and future prospects. Sapporo: Nakanishi Printing, 1997, 243-245
    47. Hallmann J, Rodríguez-Kábana R, Kloepper J W. Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem, 1999, 31: 551-560
    48. Hartmman A. Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp. Plant Soil, 1988, 110 (4) :225-238
    49. Huang J S. Ultrastructure of bacterial penetration in plants. Anna Rev Phytopathol, 1986, 24 (2):141-157
    50. Ingham S C, Fanslau M A, Engel R A, Breuer J R, Breuer J E, Wright T H, Reith-Rozelle J K, Zhu J. Evaluation of fertilization-to-planting and fertilization-to-harvest intervals for safe use ofnoncomposted bovine manure in Wisconsin vegetable production. J Food Prot, 2005, 68: 1134-1142
    51. Iniguez A L, Dong Y, and Triplett E W. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact, 2004, 17: 1078-1085
    52. Islam M, Morgan J, Doyle M P, Phatak S C, Millner P, and Jiang X. Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Appl Environ Microbiol, 2004, 70: 2497-2502
    53. James E K, and Olivares F B. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci, 1997, 17:77-119
    54. Jester B C, Levengood J D, Roy H, Ibba M, and Devine K M. Nonorthologous replacement of lysyl-tRNA synthetase prevents addition of lysine analogues to the genetic code. Proc Natl Acad Sci, USA, 2003, 100(24):14351-14356
    55. Junwei C, Weihua S, Yong P, Shuyun C. High-producers of polygalacturonase selected from mutants resistant to rifampin in alkalophilic Bacillus sp. NTT33. Enzyme and Microb Technol, 2000, 27: 545-548
    56. Kapoor M, Beg Q K, Bhushan B, Dadhich K S, Hoondal G S. Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem, 2000, 36: 467-473
    57. Kleopper J W, Beaucham P C J. A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol, 1992, (38): 1219-1232
    58. Klug-Santner Barbara G, Schnitzhofer Wolfgang, Vrsanska M, Weber J, Agrawal Pramod B, Nierstrasz Vincent A, Guebitz Georg M. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J biotechnol, 2006, 121(3): 390-401
    59. Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, and Kozyrovska N. Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil, 1999, 215:1-6
    60. Kuklinsky-Sobral J, Araujo W L, Mendes R, Geraldi I O, Pizzirani-Kleiner A A, and Azevedo J L. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol, 2004, 6: 1244-1251
    61. Lamb T G, Tonkyn D W and Kluepfel D A. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol, 1996, 42: 1112-1120
    62. Lampel J S, Canter G L, Dimock M B, Kelly J L, Anderson J J, Uratani B B, Foulke Jr J S, Turner J T. Integrative cloning, expression, and stability of the cryIA(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol, 1994, 60(2): 501-508
    63. Lee S C, West C A. Polygalacturonase from Rhizopus stolonifer, an elicitor of casbene synthetase activity in castor bean (Ricinus communis L.)seedlings. Plant Physiol, 1981, 67: 633-639
    64. Liskay R M, Letsou A, Stachelek J L. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics, 1987, 115(1):161–167
    65. Mahaffee W F, Moar W J, Kloepper J W. Bacterial endophytes genetically engineering to express the CryIIAδ-endotoxin from Bacillus thuringiensis subsp. Kurstaki. In: Improving Plant Productivity with Rhizosphere bacteria. Eds. RyderM H, Stevens P M &Bowen G D, East Melbourne, CSIRO Publications, Victoria, 1994, 245-246
    66. Martínez L, Caballero J, Orozco J, and Martínez-Romero E. Diazotrophicbacteria associated with banana (Musa spp.). Plant Soil, 2003, 257: 35-47.
    67. McInroy J A and Kleopper J W. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can J Microbiol, 1995a, 41: 895-901
    68. McInroy J A, and Kloepper J W. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil, 1995, 173: 337-342.
    69. Misaghi I J and Donndelinger C R. Endophytic bacteria in symptom free cotton plants. Pyhtopathol, 1990, 80: 808-811
    70. Msadek T. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends in microbiol, 1999,7 (5): 201-202
    71. Nowak J, Asiedu S K, Bensalim S, Richards J, Stewart A, Smith C. From laboratory to applications: challenges and progress with in vitro dal cultures of potato and beneficial bacteria. Plant Cell Tissue Organ Cult, 1998, 52: 97-103
    72. O’Callaghan K J, Stone P J, Hu X, Griffiths D W, Davey M R, and Cocking E C. Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol, 2000, 66: 2185-2191
    73. Olivares F L, Baldani V L D, Reis V M, Baldani J I, and Dobereiner J. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils, 1996, 21: 197-200
    74. Perotti R. On the limits of biological enquiry in soil science. Pro Intern Soc Soil, 1926, 2: 146-161
    75. Perret X, Freiberg C, Rosenthal A, Broughton W J, and Fellay R. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol, 1999, 32:415-425
    76. Petrini O. Fungal endophytes of tree leaves. In: Andrews J H. Hirano S S.eds. Microbial ecology of the leaves. New York, Springer-Verlag, 1991,179-197
    77. Phillips D A, Martínez-Romero E, Yang G P, and Joseph C M. Release of nitrogen: A key trait in selecting bacterial endophytes for agronomically useful nitrogen fixation. Pages 205-217 in: The Quest for Nitrogen Fixation in Rice. Ladha J K and Reddy P M(eds.). 2000, International Rice Research Institute, Manila, The Philippines
    78. Pirttil? A M, Joensuu P, Pospiech H, Jalonen J, and Hohtola A. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plantarum, 2004, 121: 305-312
    79. Potter S M, Wang C M, Garrity P A and Fraser S E. Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy. Gene, 1996, 173: 25-31
    80. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pest and diseases. Crop prot, 2001, 20 (1):1-11
    81. Reinhold B, Hurek T, Niemann E G, Fendrik I. Close association of Azospirillum and diazotrophic rods with different root zones of kallar grass. Appl Environ Microbiol, 1986, 52(3): 520–526
    82. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, and De-Ley J. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol, 1993, 43: 574-584
    83. Reinhold-Hurek B, Maes T, Gemmer S, Van Montagu M, Hurek T. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact, 2006, 19:181-188
    84. Reiter B, Bürgmann H, Burg K, and Sessitsch A. Endophytic nifH gene diversity in African sweet potato. Can J Microbiol, 2003, 49: 549-555.
    85. Reuhs B L, Relic B, Forsberg L S, Marie C, Ojanen-Reuhs T, Stephens S B, Wong C-H, Jabbouri S. Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa a-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules. J Bacteriol, 2005, 187: 6479-6487
    86. Rosenblueth M, and Martinez Romero E. Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol, 2004, 181: 337-344
    87. Rouet-Mayer M A, Mathieu Y, Cazal A C, Guern J, LaurièC. Extracellular alkalinization and oxidative burst induced by fungal pectin lyase in tobacco cells are not due to the perception of oligogalacturonide fragments. Plant PhysiolBiochem, 1997, 35: 321-330
    88. Sandhiya G S, Sugitha T C K, Balachandar D, and Kumar K. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. Indian J Exp Biol, 2005, 43: 802-807
    89. Sharrock K R, Parkes S L, Jack H K, Rees-George J, and Haw-thorneВT. Involvement of bacterial endophytes in storage rots of buttercup squash (Cucurbita maxima D. hybrid“Delica”). New Zealand J Crop Horticultural Sci, 1991,157-165
    90. Solomon E B, and Matthews K R. Use of fluorescent microspheres as tool to investigate bacterial interactions with growing plants. J Food Prot, 2005, 68:870-873
    91. Sturz A V, Christie B R, Matheson B G, and Nowak J. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils, 1997, 25(1): 13-19
    92. Sturz A V, Christie B R, Nowak J. Baterial endophytes: Potential role in developing sustainable systems of crop production. Crit Rev Plant Sci, 2000, 19(1): 1-30
    93. Sturz A, and Kimpinski J. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of rootlesion nematodes in the potato root zone. Plant Soil, 2004, 262: 241-249
    94. Surette M A, Sturz A V, Lada R R, and Nowak J. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil, 2003, 253: 381-390
    95. Tervet I W and Hollis J P. Bacteria in the storage organs of healthy plants. Phytopathol. 1948, 38: 960-967
    96. Tomasino S F, Leister R T, Dimock M B, Beach R M, Kelly J L. Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene cryIA(c) of Bacillus thuringiensis against European corn borer in field corn. Biol control, 1995, 5 (3): 442-448
    97. Tombolini R, Unge A, Davey M E, Bruijn F J, Jansson J K. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol, 1997, 22:17-28
    98. Tresse O, Errampalli D, Kostrzynska M, Leung K T, Lee H, Trevors J T, and vanElsas J D. Green fluorescent protein as a visual marker in a p-nitrophenol degrading Moraxella sp. FEMS Microbiol Lett, 1998, 164: 187-193
    99. Turner J T, Lampel J S, Stearman R S, Sundin G W, Gunyuzlu P, Anderson J J. Stability of the delta-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol, 1991, 57(12): 3522-3528
    100. Uratani B B, Alcorn S C, Tsang B H, Kelly J L. Construction of secretion vectors and use of heterologous signal sequences for protein secretion in Clavibacter xyli subsp. cynodontis. Mol Plant Microbe Interac, 1995, 8(6): 892-898
    101. Verma S C, Singh A, Chowdhury S P, and Tripathi A K. Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett, 2004, 26: 425-429
    102. Viprey V, Del Greco A, Golinowski W, Broughton W J, Perret X. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol, 1998, 28: 1381-1389
    103. Weber O B, Baldani V L D, Teixeira K R S, Kirchhof G, Baldani J I, and Dobereiner J. Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil, 1999, 210: 103-113
    104.Webster G, Jain V, Davey M R, Gough C, Vasse J, Denarie J, Cocking E C. The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ, 1998, 21: 373-383
    105. Whittle D J, Kilburn D G, Warren R A J, and Miller R C Jr. Molecular cloning of a Cellulomonas fimi cellulase gene in Escherichia coli. Gene, 1982, 17(2): 139-145
    106. Wilon D. Endophyte-the evolution of a term, and clarification of its use and definition. Plant Soil, 1995, 73 (8): 103-104
    107. Wilson C R, Tang M R, Christianson T. Expression systems for commercial production of cellulose and sylanase in Bacillus licheniformis. 1999, United States patent 5888800.
    108. Wubben J P, Mulder W, ten Have A, van Kan J A L, Visser J. Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl Envir Microbiol, 1999, 65(4):1596-1602
    109. Yanni Y G, Rizk R Y, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt T M., Mateos P F,Ladha J K, and Dazzo F B. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of potential to promote rice growth. Plant Soil, 1997, 194: 99-114
    110. Yasbin R E, Wilson G A, Young F E. Transformation and transfection in lysogenic strains of Bacillus subtilis: Evidence for selection induction of prophage in competent cells. Bacteriol, 1975, 121: 296-304
    111. Zinniel D K, Lambrecht P, Harris N B, Feng Z, Kuczmarski D, Higley P, Ishimaru C A, Arunakumari, A., Barletta, R. G, and Vidaver, A. K. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol, 2002, 68: 2198-2208
    112.安千里,杨学健,董越梅,冯丽洁,匡柏健,李久蒂.用共聚焦激光扫描显微镜观测GFP标记的内生固氮菌Klebsiella oxytoca SA2侵染水稻根.植物学报, 2001, 43(6):558-564
    113.蔡学清,何红,胡方平.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态.福建农林大学学报, 2003, 32(1):41-45
    114.陈丽梅,樊妙姬,李玲.甘蔗固氮内生菌──重氮营养醋杆菌的研究进展.微生物学通报, 2000, 27(1):63-66
    115.陈永辉,史贤明.利用转座子Tn917构建单核细胞增生李斯特菌菌膜形成突变株.微生物学报, 2005, 45(6):952-954
    116.丁国春,付鹏,李红梅,郭坚华.枯草芽孢杆菌AR11菌株对南方根结线虫的生物防治.南京农业大学学报, 2005, 28(2):46-49
    117.冯永君,宋未.水稻内生优势成团泛菌GFP标记菌株的性质与标记丢失动力学.中国生物化学与分子生物学报, 2002, 18(1):85-91
    118.傅正擎,夏正俊,吴蔼民,杨永宾,郑勤,顾本康.内生菌防治棉花黄萎病机理.江苏农业科学, 1999, 15(4):211-215
    119.郭爱莲,张红莲,冯琛.某些物质对细菌Xg-02果胶酶活性的影响.西北轻工业学院学报, 2001, 19(2):18-21
    120.郭红,边国慧,周钦.小鼠Pkd2基因条件性敲除打靶载体的构建.现代预防医学, 2008, 35(5):921-923
    121.何红,蔡学清,陈玉森,沈兆昌,关雄,胡方平.辣椒内生枯草芽孢杆菌BS-2和BS-1防治香蕉炭疽病研究.福建农林大学学报, 2002a, 31(4):441-443
    122.何红,蔡学清,洪永聪,兰成忠,关雄,胡方平.辣椒内生细菌的分离及拮抗菌的筛选.中国生物防治, 2002, 18(5):171-175
    123.何晶,李强,金晓东. 12C6+离子辐照诱发人类肝L02细胞hprt基因突变的研究.核技术, 2008, 31(3):188-192
    124.胡利勇,钟卫鸿.纤维素酶基因克隆及其功能性氨基酸研究进展.生物技术, 2003, 13(2):43-45
    125.孔庆科,丁爱云.内生细菌作为生防因子的研究进展.山东农业大学学报(自然科学版), 2001, 32(2):256-260
    126.李春华,廖贵芹,张桂敏,马立新.β-1,4 -内切葡聚糖酶基因的克隆及其在大肠杆菌中的表达.湖北大学学报, 2005, 27(3):275-279
    127.李培睿,闫世梁,张东辉,李宗义,秦广雍,霍裕平.氮离子注入生物絮凝剂产生菌的诱变效应研究.核技术, 2008, 31(3):193-196
    128.刘纯强高培基.生孢噬纤维粘菌M22内切葡聚糖酶基因的克隆与表达.微生物学通报, 1993, 20(1):16-18
    129.刘云霞,张青文周明牂.电镜免疫胶体金定位水稻内生细菌的研究.农业生物技术学报, 1996, 4(4):354-358
    130.刘云霞,张青文,周明牂. Bt杀虫基因向水稻内生细菌的转化研究.农业生物技术学报, 1997, 5(2):188-193
    131.刘忠梅,王霞,赵金焕,王琦,梅汝鸿.有益内生细菌B946在小麦体内的定殖规律.中国生物防治, 2005, 21(2):113-116
    132.吕文平,许梓荣,李卫芬,孙建义,韩晋辉.淀粉液化芽孢杆菌β-1,3-1,4葡聚糖酶基因的克隆和表达.中国兽医学报, 2005, 25(3):263-265
    133.罗明,芦云,张祥林.棉花内生细菌的分离及生防益菌的筛选.新疆农业科学, 2004, 41(5):277-282
    134. Coughlan M P著,吴克谦摘译.细菌和真菌降解纤维素的机理(上).国外畜牧科学, 1991, 18(6):28-31
    135.彭霞薇,张洪勋,自志辉.草酸青霉菌果胶酶诱导黄瓜抗黑性病研究.植物病理学报, 2004, 34(1):69-74
    136.乔宏萍,黄丽丽,康振生.小麦内生细菌及其对根茎部主要病原真菌的抑制作用.应用生态学报, 2006, 17(4):690-694
    137.邱思鑫,何红,阮宏椿,关雄,胡方平.内生芽抱杆菌TB2防治辣椒疫病效果及其机理初探.植物病理学报, 2004, 34(2):173-179
    138.萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验室指南.北京:科学出版社, 1996, 345-350
    139.沈德龙,冯永君,宋未.内生成团泛菌YS19对水稻乳熟期光合产物在旗叶、穗分配中的影响.自然科学进展, 2002, 12(8):863-865
    140.沈雪亮,夏黎明,刘景晶.纤维素酶E5基因在E.coli中的克隆与表达.浙江大学学报(自然科学版), 2001, 35(6):640-644
    141.生秀杰.基因打靶的策略及其发展.国外医学(遗传学分册), 2001, 24(1):80-82
    142.田涛,亓雪晨,王琦,梅汝鸿.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探.植物病理学报, 2004, 34(4):346-351
    143.王维兰,孙立军,陈喜文,刘健,只达石,陈德富. MIBP1基因敲除载体的构建.天津医药, 2007, 35(10):755-757
    144.王晓芳.产纤维素酶的真菌筛选与纤维素酶的诱导及其理化性质研究.南京师范大学硕士学位论文.江苏南京:南京师范大学
    145.王忠厚,刑军主编.制浆造纸工艺.轻工业出版社,1995
    146.吴蔼民,顾本康,傅正擎,蒋正峰.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究.植物病理学报, 2001, 31(4):289-294
    147.吴蔼民,顾本康,付正擎,胡波.内生菌对棉花黄萎病的田间防效及增产作用.江苏农业科学, 2000,(5):38-39
    148.肖邡明,张义正.枯草杆菌内切葡聚糖酶基因的克隆及表达.生物工程学报(增刊), 1996, 12:87-91
    149.徐静,寻广新,张青文,周明牂.抗虫工程菌在棉株内的动态变化和抗虫基因分化率研究.农业生物技术学报, 2001, 9(4):378-382
    150.徐静,张青文,丁军,周明牂. Bt-cryIA(c)杀虫基因向棉内生细菌Bacillus cereus染色体中整合的研究.农业生物技术学报, 2002, 10(2):189-193
    151.阎伯旭,齐飞,张颖舒,高培基.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展, 1999, 26(3):233-240
    152.阎孟红,蔡正求,韩继刚.植物内生细菌在防治植物病害中应用的研究.生物技术通报, 2004(3):9-12
    153.杨海莲,孙晓璐,宋未.植物内生细菌的研究.微生物学通报, 1998, 25(4):224-227
    154.张晓霞,王平,冯新梅,胡正嘉.外源基因标记的紫云英根瘤菌在水稻根部的定殖研究.生态学报, 2003, 23(4):771-776
    155.赵新刚.洗涤用碱性纤维素酶及其产生菌的分离方法.微生物学通报, 1999, 26(1):63-65
    156.郑国香,任南琪,林海龙,李永峰.诱变育种选育高效产氢细菌.太阳能学报, 2007, 28(6):632-637
    157.郑淑霞,沈志扬,刘树滔.黑曲霉发酵粉中一种β-葡萄糖苷酶的分离纯化与表征.福州大学学报(自然科学版), 2004, 32(1):101-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700