模型动物斑马鱼对鳗弧菌减毒活疫苗的免疫应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由鳗弧菌等病原菌所导致的弧菌病是我国沿海一种常见的水产业传染病,本实验室前期通过基因无标记缺失技术,构建了鳗弧菌减毒活疫苗MVAV6203。在临床应用中,该减毒活疫苗能很好地保护经济鱼种免受鳗弧菌的感染,但其免疫保护的机理还不清楚。而斑马鱼是一种目前广泛应用于研究领域的模式生物,本课题以斑马鱼为动物模型,研究了鳗弧菌MVAV6203的免疫保护机理。
     首先完成了鳗弧菌减毒活疫苗MVAV6203注射免疫斑马鱼的免疫保护分析,疫苗免疫(剂量为105CFU/尾,5μl/尾)一个月之后的相对免疫保护力达到90%以上,与在牙鲆等经济鱼种上的结果类似,说明斑马鱼经疫苗免疫后有类似的保护作用,可作为疫苗免疫保护机理研究的动物模型。在免疫鱼体血清中特异性抗体的分析中发现,在疫苗注射接种后抗体会持续表达,至免疫后第14天时达到峰值,说明鱼体注射接种该疫苗能激发有效的体液免疫反应。另外,经过免疫的斑马鱼对哈维氏弧菌及创伤弧菌有一定的交叉保护作用,相对保护力都在40%左右,但对副溶血弧菌则没有保护作用。
     其次,进行了鳗弧菌减毒活疫苗的浸泡免疫效果和应答机理分析。浸泡免疫是鱼用减毒活疫苗常用的接种方式,鳗弧菌减毒活疫苗以1×108CFU/ml浸泡接种斑马鱼,免疫1个月后的攻毒试验发现,免疫组斑马鱼的累积死亡率低于10%,其相对免疫保护力为90%以上,说明该减毒活疫苗能很好地保护斑马鱼免受鳗弧菌的感染。通过对免疫后一个月内斑马鱼血清中鳗弧菌特异性抗体水平的观察发现,在免疫后的4周左右抗体水平明显上调,说明疫苗的免疫保护作用与抗体的产生密切相关。在免疫之后14天内,斑马鱼脾脏和肝脏中包括IL-1β、IL-8、MHCⅠ和MHCⅡ等在内的多种重要免疫相关基因的转录水平有不同程度的上调,说明该减毒活疫苗能有效激发斑马鱼体内的免疫反应,产生免疫记忆并使受免疫的鱼体具有良好的抗病性。进一步对鳗弧菌减毒活疫苗浸泡接种鱼体的进入途径和亲鱼接种免疫后胚胎及幼鱼内母源免疫成份进行了初步研究。以鳗弧菌toxR基因为特异性标记分子,通过PCR方法对浸泡免疫后斑马鱼的鳗弧菌减毒活疫苗存在情况进行了研究。在浸泡免疫后的0.5h内,发现在鳃、后肠和皮肤中均有鳗弧菌的存在,而免疫后0.5h至3h,仅皮肤中仍能检测出鳗弧菌的存在,而研究报道鱼体的皮肤是鳗弧菌感染定殖的主要部位。这一结果提示鳗弧菌减毒活疫苗进入鱼体的方式和激活免疫反应的途径与野生株相似。
     免疫和未免疫斑马鱼在攻毒后的免疫应答差异分析,是研究疫苗保护机理的重要方法之一。免疫和未免疫斑马鱼在人工攻毒(鳗弧菌强毒株浸泡攻毒,105CFU/ml,20min)后,72h内的抗体产生情况分析发现,免疫斑马鱼在攻毒后的抗体水平变化不明显,这说明相较于特异性抗体数量的变化,接种疫苗对抗体亲和力等性质影响更大。未免疫斑马鱼的抗体水平则在攻毒后的第72h开始上升,说明未免疫的斑马鱼需要一定时间激发特异性抗体。免疫相关基因的转录水平变化分析发现,未免疫斑马鱼中的促炎症类因子如IL-1β等表达明显上调,而免疫斑马鱼的促炎症类因子表达量没有明显增加,特异性免疫应答相关基因MHCⅠ和MHCⅡ等的表达上调。经过免疫的斑马鱼在受到病原感染后能较快地激发适应性免疫系统,同时产生特异性抗体以保护机体,在清除病原的同时能抑制因病原破坏机体组织而产生的炎症发生,而未免疫斑马鱼在清除病原时会产生明显的炎症反应,导致组织损伤甚至鱼体死亡。
     同时,进行了鳗弧菌减毒活疫苗加强免疫的保护力分析。加强免疫是延长疫苗保护时间,强化疫苗保护力的常用方法。在免疫后8周内的免疫保护效力分析中发现,未进行加免的免疫组相对免疫保护力33%,而单次加免或两次加免的免疫鱼的相对免疫保护力均较高,超过80%,说明加强免疫能延长疫苗对鱼体的保护作用。免疫斑马鱼血清中的特异性抗体水平分析发现,未加免组的斑马鱼抗体水平在疫苗免疫后的6和8周抗体水平明显高于加免组鱼体,即抗体水平与保护力之间未呈对应关系,说明疫苗加免所激发的有效保护与特异性IgM量的高低无直接关联。
     母源免疫是鱼类免疫的一个重要方面。鳗弧菌MVAV6203注射免疫斑马鱼雌性亲鱼交配后所产的胚胎胞质液中,鳗弧菌特异性IgM的水平相比对照没有明显上升,且胚胎胞质液对鳗弧菌的特异性杀菌活力没有明显变化,但对大肠杆菌的杀菌活性有所上升。SDS-PAGE电泳检测胚胎胞质总蛋白的结果显示免疫雌鱼所产生的胚胎与对照也没有明显变化,Western blotting实验表明免疫组与对照组的胚胎胞质中溶菌酶表达量也无明显差别。转录水平的实验则表明,IL-8与溶菌酶的基因转录启动较早,而在发育早期IgM的mRNA则主要依赖于母源免疫。免疫组和对照组间的比较则显示,接种疫苗与否对上述免疫相关因子的表达影响不大。用鳗弧菌浸泡攻毒免疫组和对照组所产幼鱼后发现,来自免疫组的幼鱼体内鳗弧菌消除速率较快,说明亲鱼免疫后所产生的幼鱼对鳗弧菌有较强的清除能力。对攻毒后幼鱼相关免疫基因的转录水平考察发现,免疫组的先天免疫基因转录水平较对照组的低。鳗弧菌MVAV6203免疫对斑马负母源免疫与发育早期幼鱼的免疫有一定的影响。
     综上所述,首次利用模式生物斑马鱼为实验动物,系统地研究了鳗弧菌减毒活疫苗的保护机理,对疫苗与鱼体免疫系统之间应答分析有助于鱼用疫苗的进一步开发和应用。
Vibrio anguillarum is a main aetiological agent of vibriosis, a common disease along coast of China. A live attenuated vaccine V. anguillarum strain MVAV6203was established in our previous work. This strain was proven to be protective of fish out of vibriosis in some farms. But the mechanism of the immuneprotection is still unclear. In this study, the zebrafish, a powerful model animal in science, was utilized to reveal the mechanism.
     Firstly, the zebrafish were injected with V. anguillarum MVAV6203(1×105CFU/fish). After4weeks, the zebrafish were challenged with wild-type V. anguillarum MVM425. The vaccinated groups significantly survived from the infection of wild-type V. anguillarum MVM425with about90%RPS, which was similar to the results on industrial fish such as flounder. It is indicated that zebrafish could be used as a model animal to investigate the mechanism of protection. Moreover, the serum specific antibody level was up-regulated following14days post vaccination, which suggested the responses of humoral immunity was triggered. In addition, the vaccination led to cross-protection to Vibrio harveyi and Vibrio vulnificus with about40%RPS, while no protection to Vibrio parahaemolyticus.
     Secondly, zebrafish were protected against the wild pathogenic strain with remarkable RPS of90%when bath-vaccinated with the live attenuated vaccine (1×108CFU/ml). The specific antibody response of vaccinated zebrafish against V. anguillarum was found to gradually increase during28days post-vaccination. Moreover, the expressions of several immune-related genes including IL-1β、IL-8、MHC and MHC Ⅱ were enhanced in the spleens and livers of zebrafish, which was a symbol of the immune-response from vaccination to emerge the specific protection. In addition, the entrance of the live attenuated V. anguillarum was detected with PCR using toxR gene as a molecule marker after bath-vaccination for the entrance is critical to the administration of the live attenuated vaccine. As shown in the results, the toxR gene was detected in the gills and intestines samples on0.5h post bath-vaccination, which stated the gill and intestine could be the tissues for entrance of V. anguillarum MVAV6203. The gene was also found in the skin samples on0.5-3h post vaccination, which was consistent to the reported founding that skin is vital for the wild-type V. anguillarum to infect fish. It was indicated the intaking with water or the colonization of shin could be the route for the live attenuated V. anguillarum to induce immune responses.
     Furthermore, the immune responses including specific antibody and immune-related genes expression were investigated to clarify the mechanism responsible for protection in bath-vaccinated and non-vaccinated zebrafish after challenge. As the results, specific antibody response of fish was stronger in non-vaccinated zebrafish than that in vaccinated group in3days post infection. On the aspect of gene transcription, genes encoding pro-inflammatory cytokine and chemokine were much more up-regulated in non-vaccinated group than in vaccinated group after infection. On the contrast, the expression levels of adaptive immune-related genes were enhanced in vaccinated group after challenge. These results suggested that zebrafish vaccinated with the live attenuated vaccine was triggered the protection to avoid hurt by repressing the inflammation and strengthen the adaptive immunity at the early stage of infection.
     Meanwhile, the effects of booster vaccination with live attenuated V. anguillarum were investigated using bath-vaccination in a zebrafish model. Zebrafish that received booster doses at2weeks or both2and4weeks after primary vaccination were better protected compared to those in the non-booster group in the8weeks post vaccination. In addition, the booster did not induce a stronger specific antibody response. No correlation between a weak specific antibody response and strong protection was observed, indicating the complicated role of IgM in fish immunity.
     The maternal transfer is also an important aspect of fish immunity. The level of specific IgM against V. anguillarum did not rise in the embryo cytosol at14days post vaccination from the female broodstock injection-vaccinated with V. anguillarum MVAV6203. Meanwhile the bacteriolytic activity to V. anguillarum of the embryo cytosol did not change, but was up-regulated of that to E. coli. With Western blotting, the bands of lysozyme were detected with anti-zebrafish lysozyme monoclonal antibody in both embryo cytosol samples from vaccinated and non-vaccinated broodstock, but there was no difference between the two groups. The transcriptions of IL-8and lysozyme were initiated early in the embryo development. To the contrast, the mRNA of IgM was relied on maternal transfer. The vaccination on broodstock did not impact on the mRNA level of immune-related genes in the embryo. The larvaes at6days post fertilization from vaccinated and non-vaccinated zebrafish broodstock were bath-challenged with V. anguillarum. The V. anguillarum in larvaes from vaccinated group was eliminated more quickly than in non-vaccinated group, which suggests stronger clearness in larvaes from vaccinated broodstock. Meanwhile, the transcriptional levels of genes of innate immune were lower in larvaes from vaccinated zebrafish than those from non-vaccinated zebrafish after challenge. The results on the maternal transfer and the immunity of larvaes indicated that injection-vaccination with V. anguillarum MVAV6203has impact on the zebrafish immunity maternal transfer at14days post vaccination.
     In conclusion, the mechanism of immuneprotection of live attenuated V. anguillarum was comprehensively investigated using the zebrafish as a model animal. The results will facilitate the further study on the relationship between vaccine and fish immunity.
引文
[1]Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M. Effect of aquaculture on world fish supplies. Nature. 2000,405:1017-1024
    [2]Tidwell JH, Allan GL. Fish as food:aquaculture's contribution. EMBO Reports.2001,2: 958-963
    [3]Sommerset I, Kross(?)y B, Biering E, Frost P. Vaccines for fish in aquaculture. Exp Rev Vacc.2005,4:89-101
    [4]黄艳平,杨先乐,湛嘉,吴小兰.水产动物疾病控制的研究和进展.上海水产大学学报.2004,13:60-66
    [5]Magnadottir B. Immunological control of fish diseases. Mar Biotechnol.2010,12: 361-379
    [6]Duff D. The oral immunization of trout against Bacterium salmonicida. J Immunol.1942, 44:87-94
    [7]杨先乐,曹海鹏.我国渔用疫苗的研制.水产学报.2006,30:265
    [8]杨先乐,杜森英,曾令兵,钱华鑫,左文功.草鱼出血病细胞培养灭活疫苗研究初步报告.淡水渔业.2005,:1-5.
    [9]Jiao X, Hu Y, Sun L. Dissection and localization of the immunostimulating domain of Edwardsiella tarda FliC. Vaccine.2010,28:5635-5640
    [10]Kuzyk MA, Burian J, Machander D, Dolhaine D, Cameron S, Thornton JC, William Wk. An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. Vaccine.2001,19:2337-2344
    [11]Zhang M, Wu H, Li X, Yang M, Chen T, Wang Q, Liu Q, Zhang Y. Edwardsiella tarda flagellar protein FlgD:A protective immunogen against edwardsiellosis. Vaccine.2012, 30:3849-3856
    [12]Ho LP, Han-You Lin J, Liu HC, Chen HE, Chen TY, Yang HL. Identification of antigens for the development of a subunit vaccine against Photobacterium damselae ssp. piscicida. Fish Shellfish Immunol.2011,30:412-419
    [13]Takano T, Iwahori A, Hirono I, Aoki T. Development of a DNA vaccine against hirame rhabdovirus and analysis of the expression of immune-related genes after vaccination. Fish Shellfish Immunol.2004,17:367-374
    [14]Hartmann JX, Noga EJ. Channel catfish virus disease vaccine and method of preparation thereof and method of immunization therewith. US Patent. US 4219543.1980.08.26
    [15]Daly JG, Griffiths SG, Kew AKK, Moore AR, Olivier G. Characterization of attenuated Renibacterium salmoninarum strains and their use as live vaccines. Dis Aquat Org.2001, 44:121-126
    [16]Itano T, Kawakami H, Kono T, Sakai M. Live vaccine trials against nocardiosis in yellowtail Seriola quinqueradiata. Aquaculture.2006,261:1175-1180
    [17]Griffiths S, Melville K, Salonius K. Reduction of Renibacterium salmoninarum culture activity in Atlantic salmon following vaccination with avirulent strains. Fish Shellfish Immunol.1998,8:607-619
    [18]Schurig GG, Roop Ⅱ RM, Bagchi T, Boyle S, Buhrman D, Sriranganathan N. Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol.1991,28: 171-188
    [19]Zhang Y, Arias CR, Shoemaker CA, Klesius PH. Comparison of lipopolysaccharide and protein profiles between Flavobacterium columnare strains from different genomovars. J Fish Dis.2006,29:657-663
    [20]Shoemaker CA, Klesius PH, Drennan JD, Evans JJ. Efficacy of a modified live Flavobacterium columnare vaccine in fish. Fish Shellfish Immunol.2011,30:304-308
    [21]Cooper Ⅱ RK, Shotts Jr EB, Nolan LK. Use of a mini-transposon to study chondroitinase activity associated with Edwardsiella ictaluri. J Aquat Anim Health.1996,8:319-324
    [22]Shoemaker CA, Klesius PH, Bricker JM. Efficacy of a modified live Edwardsiella ictaluri vaccine in channel catfish as young as seven days post hatch. Aquaculture.1999, 176:189-193
    [23]Locke JB, Vicknair MR, Ostland VE, Nizet V, Buchanan JT. Evaluation of Streptococcus iniae killed bacterin and live attenuated vaccines in hybrid striped bass through injection and bath immersion. Dis Aquat Org.2010,89:117-123
    [24]Martin SAM, Blaney SC, Houlihan DF, Secombes CJ. Transcriptome response following administration of a live bacterial vaccine in Atlantic salmon (Salmo salar). Mol Immunol. 2006,43:1900-1911
    [25]Majumdar T, Ghosh D, Datta S, Sahoo C, Pal J, Mazumder S. An attenuated plasmid-cured strain of Aeromonas hydrophila elicits protective immunity in Clarias batrachus L. Fish Shellfish Immunol.2007,23:222-230
    [26]Wang Q, Yang M, Xiao J, Wu H, Wang X, Lv Y, Xu L, Zheng H, Wang S, Zhao G, Liu Q, Zhang Y. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One.2009, 4:e7646
    [27]Xiao J, Chen T, Wang Q, Liu Q, Wang X, Lv Y, Wu H, Zhang Y. Search for live attenuated vaccine candidate against edwardsiellosis by mutating virulence-related genes of fish pathogen Edwardsiella tarda. Lett Appl Microbiol.2011,53:430-437
    [28]Nelson J. Fishes of the World.3rd. edn. J. Wiley, New York; 1994.
    [29]Tort L, Balasch J, Mackenzie S. Fish immune system. A crossroads between innate and adaptive responses. Inmunologia.2003,22:277-286
    [30]Skugor S, J(?)rgensen S, Gjerde B, Krasnov A. Hepatic gene expression profiling reveals protective responses in Atlantic salmon vaccinated against furunculosis. BMC Genomics. 2009,10:503-527
    [31]Josefsson S, Tatner MF. Histogenesis of the lymphoid organs in sea bream (Sparus aurata L.). Fish Shellfish Immunol.1993,3:35-49
    [32]Alvarez F, Razquin BE, Villena AJ, Zapata AG. Seasonal changes in the lymphoid organs of wild brown trout, Salmo trutta L:A morphometrical study. Vet Immunol Immunopathol.1998,64:267-278
    [33]Rombout JHWM, Taverne N, van de Kamp M, Taverne-Thiele AJ. Differences in mucus and serum immunoglobulin of carp (Cyprinus carpio L.). Dev Comp Immunol.1993,17: 309-317
    [34]Bromage ES, Ye J, Kaattari SL. Antibody structural variation in rainbow trout fluids. Comp Biochem Physiol Part B.2006,143:61-69
    [35]Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity.2009,30:180-192
    [36]Hetland DL, Jergensen SM, Skj(?)dt K, Dale OB, Falk K, Xu C, Mikalsen AB, Grimholt U, Gj(?)en T, Press CM. In situ localisation of major histocompatibility complex class I and class Ⅱ and CD8 positive cells in infectious salmon anaemia virus (ISAV)-infected Atlantic salmon. Fish Shellfish Immunol.2010,28:30-39
    [37]Toda H, Shibasaki Y, Koike T, Ohtani M, Takizawa F, Ototake M, Moritomo T, Nakanishi T. Alloantigen-specific killing is mediated by CD8-positive T cells in fish. Dev Comp Immunol.2009,33:646-652
    [38]Chen W, Jia Z, Zhang T, Zhang N, Lin C, Gao F, Wang L, Li X, Jiang Y, Li X, Gao GF, Xia Chun. MHC Class I presentation and regulation by IFN in bony fish determined by molecular analysis of the class I locus in grass carp. J Immunol.2010,185:2209-2221
    [39]Danilova N, Steiner LA. B cells develop in the zebrafish pancreas. Proc Natl Acad Sci USA.2002,99:13711-13716
    [40]Bromage ES, Kaattari IM, Zwollo P, Kaattari SL. Plasmablast and plasma cell production and distribution in trout immune tissues. J Immunol.2004,173:7317-7323
    [41]Li J, Barreda DR, Zhang YA, Boshra H, Gelman AE, LaPatra S, Tort L, Sunyer JO. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nat Immunol.2006,7:1116-1124
    [42]Lugo-Villarino G, Balla KM, Stachura DL, Banuelos K, Werneck MBF, Traver D. Identification of dendritic antigen-presenting cells in the zebrafish. Proc Natl Acad Sci USA.2010,107:15850-15855
    [43]Mourich DV, Hansen J, Leong JA. Natural killer cell enhancement factor-like gene in rainbow trout (Oncorhynchus mykiss). Immunogenetics.1995,42:438-439
    [44]Trinchieri G. Biology of natural killer cells. Adv Immunol.1989,47:376
    [45]Graves SS, Evans DL, Dawe DL. Mobilization and activation of nonspecific cytotoxic cells (ncc) in the channel catfish(Ictalurus punctatus) infected with Ichthyophthirius multifiliis. Comp Immunol, Microbiol Infect Dis.1985,8:43-51
    [46]McKinney EC, Schmale MC. Damselfish with neurofibromatosis exhibit cytotoxicity toward tumor targets. Dev Comp Immunol.1994,18:305-313
    [47]Greenlee AR, Brown RA, Ristow SS. Nonspecific cytotoxic cells of rainbow trout (Oncorhynchus mykiss) kill YAC-1 targets by both necrotic and apoptic mechanisms. Dev Comp Immunol.1991,15:153-164
    [48]Mulero I, Pilar Sepulcre M, Roca FJ, Meseguer J, Garcia-Ayala A, Mulero V. Characterization of macrophages from the bony fish gilthead seabream using an antibody against the macrophage colony-stimulating factor receptor. Dev Comp Immunol.2008, 32:1151-1159
    [49]Sarmento A, Marques F, Ellis AE, Afonso A. Modulation of the activity of sea bass (Dicentrarchus labrax) head-kidney macrophages by macrophage activating factor(s) and lipopolysaccharide. Fish Shellfish Immunol.2004,16:79-92
    [50]Li GF, Liu LB, Tan YL, Liu LZ, Deng HZ, Wan H, Zhong WZ, Chen SJ. In vitro effect of levamisole on the cell viability, phagocytosis and respiratory burst of Barbel chub (Squaliobarbus curriculus) macrophages. Aquae Nut.2011,17:e263-e270
    [51]Cuesta A, Esteban AM, Meseguer J. Cloning, distribution and up-regulation of the teleost fish MHC class Ⅱ alpha suggests a role for granulocytes as antigen-presenting cells. Mol Immunol.2006,43:1275-1285
    [52]Zou J, Grabowski PS, Cunningham C, Secombes CJ. Molecular cloning of interleukin 1β from rainbow trout Oncorhynchus mykiss reveals no evidence of an ICE cut site. Cytokine.1999,11:552-560
    [53]Fujiki K, Shin DH, Nakao M, Yano T. Molecular cloning and expression analysis of carp (Cyprinus carpio) interleukin-1β, high affinity immunoglobulin E Fc receptor γ subunit and serum amyloid A. Fish Shellfish Immunol.2000,10:229-242
    [54]dos Santos NMS, Romano N, de Sousa M, Ellis AE, Rombout JHWM. Ontogeny of B and T cells in sea bass (Dicentrarchus labrax, L.). Fish Shellfish Immunol.2000,10: 583-596
    [55]Hong S, Zou J, Collet B, Bols NC, Secombes CJ. Analysis and characterisation of IL-1β processing in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol.2004,16: 453-459.
    [56]Peddie S, Zou J, Secombes CJ. A biologically active IL-1β derived peptide stimulates phagocytosis and bactericidal activity in rainbow trout, Oncorhynchus mykiss (Walbaum), head kidney leucocytes in vitro. J Fish Dis.2002,25:351-360
    [57]Benedetti S, Randelli E, Buonocore F, Zou J, Secombes CJ, Scapigliati G. Evolution of cytokine responses:IL-1β directly affects intracellular Ca2+ concentration of teleost fish leukocytes through a receptor-mediated mechanism. Cytokine.2006,34:9-16
    [58]Hong S, Peddie S, Campos-Perez JJ, Zou J, Secombes CJ. The effect of intraperitoneally administered recombinant IL-1β on immune parameters and resistance to Aeromonas salmonicida in the rainbow trout(Oncorhynchus mykiss). Dev Comp Immunol.2003,27: 801-812
    [59]Holland JW, Pottinger TG, Secombes CJ. Recombinant interleukin-1β activates the hypothalamic-pituitary-interrenal axis in rainbow trout, Oncorhynchus mykiss. J Endoc. 2002,175:261-267
    [60]Wang T, Holland JW, Carrington A, Zou J, Secombes CJ. Molecular and functional characterization of IL-15 in rainbow trout Oncorhynchus mykiss:a potent inducer of IFN-y expression in spleen leukocytes. J Immunol.2007,179:1475-1488
    [61]Robertsen B, Bergan V, R(?)kenes T, Larsen R, Albuquerque A. Atlantic salmon interferon genes:cloning, sequence analysis, expression, and biological activity. J Inter Cytok Res. 2003,23:601-612
    [62]Long S, Wilson M, Bengten E, Bryan L, Clem LW, Miller NW, Chinchar VG. Identification of a cDNA encoding channel catfish interferon. Dev Comp Immunol.2004, 28:97-111
    [63]Savan R, Ravichandran S, Collins JR, Sakai M, Young HA. Structural conservation of interferon gamma among vertebrates. Cytok Grow Fac Rev.2009,20:115-124
    [64]Zou J, Carrington A, Collet B, Dijkstra JM, Yoshiura Y, Bols N, Secombes C. Identification and bioactivities of IFN-γ in rainbow trout Oncorhynchus mykiss:the first Thl-type cytokine characterized functionally in fish. J Immunol.2005,175:2484-2494
    [65]Zou J, Yoshiura Y, Dijkstra JM, Sakai M, Ototake M, Secombes C. Identification of an interferon gamma homologue in Fugu, Takifugu rubripes. Fish Shellfish Immunol.2004, 17:403-409
    [66]Milev-Milovanovic I, Long S, Wilson M, Bengten E, Miller NW, Chinchar VG. Identification and expression analysis of interferon gamma genes in channel catfish. Immunogenetics.2006,58:70-80
    [67]Martin SAM, Mohanty BP, Cash P, Houlihan DF, Secombes CJ. Proteome analysis of the Atlantic salmon (Salmo salar) cell line SHK-1 following recombinant IFN-y stimulation. Proteomics.2007,7:2275-2286
    [68]Martin SAM, Zou J, Houlihan DF, Secombes CJ. Directional responses following recombinant cytokine stimulation of rainbow trout(Oncorhynchus mykiss) RTS-11 macrophage cells as revealed by transcriptome profiling. BMC Genomics.2007,8: 150-167
    [69]Lee EY, Park HH, Kim YT, Chung JK., Choi TJ. Cloning and sequence analysis of the interleukin-8 gene from flounder (Paralichthys olivaceous). Gene.2001,274:237-243
    [70]Huising MO, Stolte E, Flik G, Savelkoul HFJ, Verburg-van Kemenade B. CXC chemokines and leukocyte chemotaxis in common carp (Cyprinus carpio L.). Dev Comp Immunol.2003,27:875-888
    [71]Chen L, He C, Baoprasertkul P, Xu P, Li P, Serapion J, Waldbieser G, Wolters W, Liu Z. Analysis of a catfish gene resembling interleukin-8:cDNA cloning, gene structure, and expression after infection with Edwardsiella ictaluri. Dev Comp Immunol.2005,29: 135-142
    [72]Jimenez N, Coll J, Salguero FJ, Tafalla C. Co-injection of interleukin 8 with the glycoprotein gene from viral haemorrhagic septicemia virus (VHSV) modulates the cytokine response in rainbow trout (Oncorhynchus mykiss). Vaccine.2006,24: 5615-5626
    [73]Montero J, Coll J, Sevilla N, Cuesta A, Bols NC, Tafalla C. Interleukin 8 and CK-6 chemokines specifically attract rainbow trout (Oncorhynchus mykiss) RTS11 monocyte-macrophage cells and have variable effects on their immune functions. Dev Comp Immunol.2008,32:1374-1384
    [74]Hirono I, Nam BH, Kurobe T, Aoki T. Molecular cloning, characterization, and expression of TNF cDNA and gene from Japanese flounder Paralychthys olivaceus. J Immunol.2000,165:4423-4427
    [75]Laing KJ, Wang T, Zou J, Holland J, Hong S, Bols N, Hirono I, Aoki T, Secombes CJ. Cloning and expression analysis of rainbow trout Oncorhynchus mykiss tumour necrosis factor-α. Eur J Biochem.2001,268:1315-1322
    [76]Garcia-Castillo J, Pelegrin P, Mulero V, Meseguer J. Molecular cloning and expression analysis of tumor necrosis factor a from a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics.2002,54:200-207
    [77]Zou J, Peddie S, Scapigliati G. Zhang Y, Bols NC, Ellis AE, Secombes CJ. Functional characterisation of the recombinant tumor necrosis factors in rainbow trout, Oncorhynchus mykiss. Dev Comp Immunol.2003,27:813-822
    [78]Qin QW, Ototake M, Noguchi K, Soma GI. Yokomizo Y, Nakanishi T. Tumor necrosis factor alpha (TNFa)-like factor produced by macrophages in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol.2001,11:245-256
    [79]Wang T, Hanington PC, Belosevic M, Secombes CJ. Two macrophage colony-stimulating factor genes exist in fish that differ in gene organization and are differentially expressed. J Immunol.2008,181:3310-3322.
    [80]Hanington PC, Hitchen SJ, Beamish LA, Belosevic M. Macrophage colony stimulating factor (CSF-1) is a central growth factor of goldfish macrophages. Fish Shellfish Immunol.2009,26:1-9
    [81]Grayfer L, Hanington PC, Belosevic M. Macrophage colony-stimulating factor (CSF-1) induces pro-inflammatory gene expression and enhances antimicrobial responses of goldfish(Carassius auratus L.) macrophages. Fish Shellfish Immunol.2009,26: 406-413
    [82]Pilstrom L, Warr GW, Stromberg S. Why is the antibody response of Atlantic cod so poor? The search for a genetic explanation. Fisher Sci.2005,71:961-971
    [83]Zhang YA, Salinas I, Li J, Parra D, Bjork S, Xu Z, LaPatra SE, Bartholomew J, Sunyer JO. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol.2010,11:827-836
    [84]Lorenzen N, Lapatra SE. Immunity to rhabdoviruses in rainbow trout:the antibody response. Fish Shellfish Immunol.1999,9:345-360
    [85]Boshra H, Li J, Sunyer JO. Recent advances on the complement system of teleost fish. Fish Shellfish Immunol.2006,20:239-262
    [86]Streisinger G. Walker C, Dower N, Knauber D, Singer F. Production of clones of homozygous diploid zebra fish(Brachydanio rerio). Nature.1981,291:293-296
    [87]Berman J, Hsu K, Look AT. Zebrafish as a model organism for blood diseases. Brit J Haematol.2003,123:568-576
    [88]Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity.2006,25:963-975
    [89]Schorpp M, Bialecki M, Diekhoff D, Walderich B, Odenthal J, Maischein HM, Zapata AG, Boehm T. Conserved functions of Ikaros in vertebrate lymphocyte development: genetic evidence for distinct larval and adult phases of T cell development and two lineages of B cells in zebrafish. J Immunol.2006,177:2463-2476
    [90]Willett CE, Zapata AG. Hopkins N, Steiner LA. Expression of zebrafish rag genes during early development identifies the thymus. Dev Biol.1997,182:331-341
    [91]Weinstein JA, Jiang N, White III RA, Fisher DS, Quake SR. High-throughput sequencing of the zebrafish antibody repertoire. Science.2009,324:807-810
    [92]Marianes AE, Zimmerman AM. Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish. Immunology.2010,132:240-255
    [93]Yoder JA, Nielsen ME, Amemiya CT, Litman GW. Zebrafish as an immunological model system. Microb Infect.2002,4:1469-1478
    [94]Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA, Litman GW, Catic A, Amemiya CT, Zon LI, Trede NS. The zebrafish as a model organism to study development of the immune system. Adv Immunol.2003,81:253-329
    [95]Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development.1999,126:3735-3745
    [96]Le Guyader D, Redd MJ, Colucci-Guyon E, Murayama E, Kissa K, Briolat V, Mordelet E, Zapata A, Shinomiya H, Herbomel P. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood.2008,111:132-141
    [97]Colucci-Guyon E, Tinevez JY, Renshaw SA, Herbomel P. Strategies of professional phagocytes in vivo:unlike macrophages, neutrophils engulf only surface-associated microbes. J Cell Sci.2011,124:3053-3059
    [98]Niethammer P, Grabher C, Look AT, Mitchison TJ. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature.2009,459:996-999
    [99]Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y, Banuelos K, Romo-Fewell O, Aroian RV, Traver D. Eosinophils in the zebrafish:prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood.2010,116: 3944-3954
    [100]Trede NS, Langenau DM, Traver D, Look AT, Zon LI. The use of zebrafish to understand immunity. Immunity.2004,20:367-379
    [101]Rebl A, Goldammer T, Seyfert HM. Toll-like receptor signaling in bony fish. Vet Immunol Immunopathol.2010,134:139-150
    [102]Prouty MG, Correa NE, Barker LP, Jagadeeswaran P, Klose KE. Zebrafish-Mycobacterium marinum model for mycobacterial pathogenesis. FEMS Microbiol Lett.2003,225:177-182
    [103]Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell.2009,136:37-49
    [104]Clay H, Davis J, Beery D, Huttenlocher A, Lyons SE, Ramakrishnan L. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe.2007,2:29-39
    [105]Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect and Immun.2007,74: 6108-6117
    [106]Clay H, Volkman HE, Ramakrishnan L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity.2008,29:283-294
    [107]van der Sar AM, Spaink HP, Zakrzewska A, Bitter W, Meijer AH. Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Mol Immunol.2009,46: 2317-2332
    [108]Pressley ME, Phelan III PE, Witten PE, Mellon MT, Kim CH. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol.2005,29:501-513
    [109]Miller JD, Neely MN. Large-scale screen highlights the importance of capsule for virulence in the zoonotic pathogen Streptococcus iniae. Infect Immun.2005,73: 921-934
    [110]Lowe BA, Miller JD, Neely MN. Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect Immun. 2007,75:1255-1264.
    [111]O'Toole R, von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H. Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathogen.2004,37: 41-46
    [112]Rojo I, de Ilarduya OM, Estonba A, Pardo MA. Innate immune gene expression in individual zebrafish after Listonella anguillarum inoculation. Fish Shellfish Immunol. 2007,23:1285-1293
    [113]Brannon MK, Davis JM, Mathias JR, Hall CJ, Emerson JC, Crosier PS, Huttenlocher A, Ramakrishnan L, Moskowitz SM. Pseudomonas aeruginosa Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cellul Microbiol.2009,11:755-768
    [114]Phennicie RT, Sullivan MJ, Singer JT, Yoder JA, Kim CH. Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator. Infect Immun.2010,78:4542-4550
    [115]Vojtech LN, Sanders GE, Conway C, Ostland V, Hansen JD. Host immune response and acute disease in a zebrafish model of Francisella pathogenesis. Infect Immun.2009,77: 914-925
    [116]Ordas A, Hegedus Z, Henkel CV, Stockhammer OW, Butler D, Jansen HJ, Racz P, Mink M, Spaink HP, Meijer AH. Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Fish Shellfish Immunol.2010, 32:716-724
    [117]Xiang Z, Dong C, Qi L, Chen W, Huang L, Li Z, Xia Q, Liu D, Huang M, Weng S, He J. Characteristics of the interferon regulatory factor pairs zflRF5/7 and their stimulation expression by ISKNV Infection in zebrafish(Danio rerio). Dev Comp Immunol.2010, 34:1263-1273
    [118]Li Z, Xu X, Huang L, Wu J, Lu Q, Xiang Z, Liao J, Weng S, Yu X, He J. Administration of recombinant IFN1 protects zebrafish(Danio rerio) from ISKNV infection. Fish Shellfish Immunol.2010,29:399-406
    [119]He BL, Yuan JM, Yang LY, Xie JF, Weng SP, Yu XQ, He JG. The viral TRAF protein (ORF111L) from infectious spleen and kidney necrosis virus interacts with TRADD and induces caspase 8-mediated apoptosis. PLoS One.2012,7:e37001
    [120]Novoa B, Romero A, Mulero V, Rodriguez I, Fernandez I, Figueras A. Zebrafish(Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine.2006,24:5806-5816
    [121]LaPatra SE, Barone L, Jones GR, Zon LI. Effects of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus infection on hematopoietic precursors of the zebrafish. Blood Cells Mol Dis.2000,26:445-452
    [122]Ludwig M, Palha N, Torhy C, Briolat V, Colucci-Guyon E, Bremont M, Herbomel P, Boudinot P, Levraud JP. Whole-body analysis of a viral infection:vascular endothelium is a primary target of infectious hematopoietic necrosis virus in zebrafish larvae. PLoS Pathog.2011,7:e1001269
    [123]Lopez-Munoz A, Roca FJ, Sepulcre MP, Meseguer J, Mulero V. Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus. Dev Comp Immunol.2010,34:546-552
    [124]Lu MW, Chao YM, Guo TC, Santi N, Evensen 0, Kasani SK, Hong JR, Wu JL. The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol Immunol.2008,45:1146-1152
    [125]Chao CC, Hsu PC, Jen CF, Chen IH, Wang CH, Chan HC, Tsai PW, Tung KC, Wang CH, Lan CY, Chuang YJ. Zebrafish as a model host for Candida albicans infection. Infect Immun.2010,78:2512-2521
    [126]Ma Y, Zhang Y, Zhao D. Polyvalent attenated live vaccine for preventing and curing vibriosis of cultivated fish. US Patent. US 7794730 B2.2010.09.14
    [127]Wei W, Xu H, Wang Q, Zhang X, Chang K, Wu C, Zhang Y. Identification of differentially expressed genes in large yellow croaker(Pseudosciaena croces) induced by attenuated live Vibrio anguillarum. Aquaculture.2009,291:124-129
    [128]Neely MN, Pfeifer JD, Caparon M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun.2002,70:3904-3914
    [129]van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter W. A star with stripes:zebrafish as an infection model. Tren Microbiol.2004,12:451-457
    [130]Happer C, Lawrence C. The laboratory zebrafish. Recherche. New York:CRC Press, 2010
    [131]Panangala VS, Shoemaker CA, Klesius PH, Mitra A, Russo R. Cross-protection elicited in channel catfish (Ictalurus punctatus Rafinesque) immunized with a low dose of virulent Edwardsiella ictaluri strains. Aquac Res.2009,40:915-926
    [132]Crisafi F, Denaro R, Genovese M, Cappello S, Mancuso M, Genovese L. Comparison of 16SrDNA and toxR genes as targets for detection of Vibrio anguillarum in Dicentrarchus labrax kidney and liver. Res Microbiol.2011,162:223-230
    [133]B gwald J, Stensvag K, Hoffman J, J rgensen T. Antibody specificities in Atlantic salmon, Salmo salar L., against the fish pathogens Vibrio salmonicida and Vibrio anguillarum. J Fish Dis.1991,14:79-87
    [134]Cui Z, Samuel-Shaker D, Watral V, Kent ML. Attenuated Mycobacterium marinum protects zebrafish against mycobacteriosis. J Fish Dis.2010,33:371-375
    [135]Raida MK, Buchmann K. Bath vaccination of rainbow trout (Oncorhynchus mykiss Walbaum) against Yersinia ruckeri:Effects of temperature on protection and gene expression. Vaccine.2008,26:1050-1062
    [136]Pleguezuelos O, Zou J, Cunningham C, Secombes CJ. Cloning, sequencing, and analysis of expression of a second IL-1β gene in rainbow trout(Oncorhynchus mykiss). Immunogenetics.2000,51:1002-1011
    [137]Lindenstrom T, Secombes CJ, Buchmann K. Expression of immune response genes in rainbow trout skin induced by Gyrodactylus derjavini infections. Vet Immunol Immunopathol.2004,97:137-148
    [138]Oehlers SHB, Flores MV, Hall CJ, O'Toole R, Swift S, Crosier KE, Crosier PS. Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Dev Comp Immunol.2010,34:352-359
    [139]Raida MK, Buchmann K. Development of adaptive immunity in rainbow trout, Oncorhynchus mykiss (Walbaum) surviving an infection with Yersinia ruckeri. Fish Shellfish Immunol.2008,25:533-541
    [140]Koppang EO, Lundin M, Press CML, R(?)nningen K, Lie 0. Differing levels of Mhc class Ⅱ β chain expression in a range of tissues from vaccinated and non-vaccinated Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol.1998,8:183-196
    [141]Weber B, Chen C, Milton DL. Colonization of fish skin is vital for Vibrio anguillarum to cause disease. Envir Microbiol Rep.2010,2:133-139
    [142]Cuesta A, Tafalla C. Transcription of immune genes upon challenge with viral hemorrhagic septicemia virus (VHSV) in DNA vaccinated rainbow trout (Oncorhynchus mykiss). Vaccine.2009,27:280-289
    [143]Harun NO, Wang T, Secombes CJ. Gene expression profiling in naive and vaccinated rainbow trout after Yersinia ruckeri infection:Insights into the mechanisms of protection seen in vaccinated fish. Vaccine.2011,29:4388-4399.
    [144]Costa G, Danz H, Kataria P, Bromage E. A holistic view of the dynamisms of teleost IgM:A case study of Streptococcus iniae vaccinated rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol.2011,36:298-305
    [145]Saha NR, Usami T, Suzuki Y. In vitro effects of steroid hormones on IgM-secreting cells and IgM secretion in common carp (Cyprinus carpio). Fish Shellfish Immunol. 2004,17:149-158
    [146]Larsen J, Pedersen K. Vaccination strategies in freshwater salmonid aquaculture. Dev Biol Standar.1997,90:391
    [147]Raida MK, Nylen J, Holten-Andersen L, Buchmann K. Association between plasma antibody response and protection in rainbow trout Oncorhynchus mykiss immersion vaccinated against Yersinia ruckeri. PLoS One.2011,6:e18832
    [148]Picchietti S, Abelli L, Buonocore F, Randelli E, Fausto AM, Scapigliati G, Mazzini M. Immunoglobulin protein and gene transcripts in sea bream (Sparus aurata L.) oocytes. Fish Shellfish Immunol.2006,20:398-404
    [149]Zapata A, Diez B, Cejalvo T, Gutierrez-de Frias C, Cortes A. Ontogeny of the immune system of fish. Fish Shellfish Immunol.2006,20:126-136
    [150]Zhang S, Wang Z, Wang H. Maternal immunity in fish. Dev Comp Immunol.2012.
    [151]Wang Z, Zhang S, Wang G, An Y. Complement activity in the egg cytosol of zebrafish Danio rerio:evidence for the defense role of maternal complement components. PLoS One.2008,3:el463
    [152]Wang ZP, Zhang SC. The role of lysozyme and complement in the antibacterial activity of zebrafish (Danio rerio) egg cytosol. Fish Shellfish Immunol.2010,29:773-777
    [153]van Soest JJ, Stockhammer OW, Ordas A, Bloemberg GV, Spaink HP, Meijer AH. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardisella tarda. BMC Immunol.2011, 12:58-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700