轿车稳定性控制系统的状态参数估算及控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轿车电子稳定性控制系统(ESC, Electronic Stability Control System)能够通过对汽车横摆力矩的有效控制保持车辆在极端行驶状况下的行驶稳定性,是一种新兴的主动安全技术。该技术在国外已经产品化,但国内对ESC的研究还处于初级阶段,因此开展ESC研究对我国汽车行业自主研发能力的提升和相关产业的发展都具有重要的意义。
     论文结合科技部863专项、国际科技合作专项以及省市科技支撑计划重大专项的项目研究内容,与中国第一汽车集团公司技术中心密切合作,针对一汽奔腾轿车的技术需求,开展了奔腾轿车稳定性控制系统的关键状态参数估算及其控制算法研究,并进行了多工况、多路况的台架测试和实车道路测试。测试结果表明所开发的ESC控制算法不但确保了实时性和准确性而且具有较高的鲁棒性。全文内容包括:
     1、ESC算法总体结构设计
     针对奔腾轿车的技术需求,应用模块化编程的分层设计思想,设计了轿车稳定性控制系统的总体算法结构,为文中后续研究工作的开展提供了依据。
     2、关键状态参数估算
     准确、实时地获取汽车行驶状态参数是实现汽车稳定性控制的前提。针对ESC关键状态参数估算的需要,以实时性和准确性为目标,提出了能同时满足实时性和准确性要求的轮胎力估算方法、ESC纵向车速估算方法和质心侧偏角非线性鲁棒估算方法。应用所设计的关键状态参数估算方法进行了仿真与实车研究,结果表明所设计的估算方法精度高、运行可靠、实时性强,同时具有较好的鲁棒性。
     3、控制算法研究
     控制算法是ESC控制系统的核心。针对轮胎进入非线性区后二自由度单轨模型出现估算精度不足的问题,应用自校正滤波理论提出了自适应二自由度单轨模型,提高了二自由度单轨模型在轮胎进入非线性区的精度;利用非线性轮胎模型建立了二自由度四轮非线性车辆模型,以此为基础应用最优和模糊理论设计了轿车稳定性控制算法,提出了ESC与ABS协调控制算法,并给出了算法实用化方法。
     4、硬件在环试验研究
     为了验证所开发算法的有效性与可靠性,在ESC综合试验台上进行了多工况的硬件在环测试,测试结果表明所开发的ESC算法控制效果远优于一般PID控制效果,且适应性强。
     5、实车道路测试研究
     为了验证算法的实际控制效果,利用自主开发的车载平台进行了ESC控制系统的实车测试,并与国外成熟产品进行了对比分析,结果表明:所开发的ESC控制算法对各种路况和不同的测试条件都具有很好的控制效果。
     通过以上研究本文得到如下结论:
     1)本文提出的ESC控制系统算法的模块化分层结构,可避免层与层之间交叉调用,节省微处理器的内存,而且便于软件后期维护与功能扩展。
     2)所设计的纵向车速观测器和质心侧偏角非线性鲁棒观测器,均能同时满足实时性和准确性要求。实车测试证明了所设计的观测器不但精度高而且实用性好。
     3)应用自校正滤波理论设计的自适应非线性二自由度单轨模型,显著提高了模型在轮胎非线性区的精度;应用最优与模糊理论所设计的轿车ESC实用化控制算法,提高了汽车在不同路面上的行驶稳定性;提出的ESC与ABS的协调控制算法,解决了协调控制问题。
     4)多工况的硬件在环试验和实车道路测试表明所开发的ESC控制算法与状态参数估算算法能够及时地将汽车的横摆角速度和质心侧偏角控制在合理范围内,显著提高轿车的稳定性,同时该算法对各种路况和不同的测试试验都具有很好的控制效果,说明本算法具有很好的适应性。与国外成熟ESC产品的对比测试结果表明所开发的ESC控制性能接近国外产品水平。
As a new active safety technology, Electronic Stability Control(ESC)system can maintain the vehicle stability by dominating the yaw moment effectively under extreme driving conditions. The technology has matured in foreign countries, but the research on which is still in the initial stage in China. Therefore, research on the theories and key technologies in developing ESC can have a great realistic significance in improving the ability of developing domestic automobile industry and related industries.
     Based on the technology needs of the BESTURN, this paper gives the research of estimation of vehicle State Parameters and the control algorithm of ESC in close cooperation with FAW Group Corporation R&D Center, which is associated with the 863 ministry of science and technology, international cooperation project and province and major projects technology support program. Meanwhile, the proposed algorithm is evaluated by hardware-in-the-loop test and the real test under various emergency maneuvers and road conditions. The test results show that the ESC algorithm developed is not only suitable for practical application, but also has high accuracy and robustness.
     1 Design of ESC software architecture
     Based on the technology needs of the BESTURN, the overall structure of ESC algorithms has been accomplished by the application of modular design, which provides the basis for follow-up research work.
     2 Estimation of key state parameters
     Accuracy and real time of vehicle state parameters are the prerequisite in the ESC control system. Based on the needs of the ESC critical state parameters estimation and the target of accuracy and real time, this paper proposes the on-line estimation method of tire force, vertical speed estimation method and nonlinear robust estimation of slip angle. The ESC simulation and test results show that this method isn‘t only suitable for practical application, but also has high accuracy and robustness.
     3 The research of control algorithm
     Control algorithm is the core of ESC control system. When the tire is in the nonlinear regions, the estimation accuracy of the traditional linear 2DOF single-track model has the serious shortage. For that an adaptive 2DOF single-track model is proposed by the application of self-tuning filtering theory in this paper. On this basis, the accuracy of 2DOF single-track model is improved. A 2DOF two-track model is established, based on which this paper gives the ESC algorithm using optimal control theory. Meanwhile, the coordinated control of ESC and ABS and practical method for the algorithm are proposed.
     4 The research of the hardware in the loop
     For verifying the developed control algorithms, the hardware in the loop test is carried out using the ESC test bed in discussion group. The results show that the developed ESC control algorithm has a better performance and adaptability than normal PID control algorithm.
     5 The research of the road test
     The real test is fulfilled using self-developed vehicle platform for verifying the actual control effects of the developed control algorithms. The test results show that the developed ESC algorithm in this paper has a good control effect and high robustness under different road conditions and various maneuvers.
     Through the research of the control algorithm of ESC, we can achieve the following conclusion:
     1) The overall structure of ESC algorithms accomplished in this paper can avoid cross-calls between layers, save the microprocessor memory, and be convenient for software maintenance and later extensions.
     2) The vertical speed observer and nonlinear robust estimation of slip angle proposed in this paper can satisfy the requirements of real time and accuracy. The ESC test results show that the observer isn‘t only suitable for practical application, but also has high accuracy and robustness.
     3) The adaptive 2DOF single-track model proposed by the application of self-tuning filtering theory significantly improves the accuracy of nonlinear zone. The ESC practical algorithm using optimal and fuzzy control theory improves the driving stability in different roads. The coordinated control of ESC and ABS is proposed, which solves the problem of coordinated control.
     4) The hardware in the loop and real test results show that the ESC control algorithm and estimation algorithm of state parameters in this paper can timely and accurately control the yaw rate and side-slip angle, and significantly improve the vehicle stability. Meanwhile the algorithm has a good control effect and high robustness under different road conditions.
引文
[1] http://www.tranbbs.com/news/cnnews/parking/news_70044.shtml.
    [2] Glaser H. Electronic Stability Program ESP[M].Sweden:Audi Press Presentation,1996.
    [3] Sugiyam M, Inoue H. Development of Vehicle Stability Control System[J].TOYOTA Technical Review,1997, 46(2):61-68.
    [4]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [5] Bosch Fahrzeugtechnick. Fahrstabilisierungssysteme[M].Robert Bosch GmbH,2004
    [6] National Highway Traffic Safety Administration.FMVSS No.126 Electronic Stability Control Systems[Z]. USA, 2007.
    [7]黄炳华,陈祯福. ESC的最新动向和发展趋势[J].汽车工程, 2008, 30(1): 1-9.
    [8]马钧,章靖萍.我国ESP电子稳定系统推广关键影响因素分析.农业装备与车辆工程,2010,224(3):7-11.
    [9] A.T. Van Zanten. Bosch ESP System:5 Years of Experience[C] SAE 2000-01-1633.
    [10] Uwe Kiencke, Lars Nielsen. Automotive Control system[M]. Gemany, Springer, 2ed, 2004.
    [11] H.-J. Sch?pf. J. Paul., ASR Acceleration Skid Control– A Further Contribution Towards Increasing The Active Safety of Daimler-Benz Vehicles[C] SAE 885050
    [12] H. Demel., H. Hemming., ABS and ASR for Passenger Cars– Goals and Limits[C]. SAE 890834.
    [13] Michael A. Kremer, Ford-Werke AG, K?ln,―The Electronic Stability Program (ESP) On The Ford Focus‖. Vehicle Electronic Systems 2000 European Conference and Exhibition, StratFord Manor, StratFord-upon-Avon, UK, 2000
    [14]余卓平,高晓杰.车辆行驶过程中的状态估计问题综述[J].机械工程学报, 2009, 45(05):20-33.
    [15] Ray L. Nonlinear state and tire force estimation for advanced vehicle control[J]. IEEE Transaction on Control System Technology, 1995 3(1):117-125.
    [16] Imsland L, Johansen T, et al. Vehicle velocity estiamtion using nonlinear observer[J]. Automatica, 2006,42(6):2091-2103.
    [17] Zimmer C, Masset M, Leon G. Fuzzy approach for real time longitudinal velocity estimation of a road vehicle in critical situation[C]. AVEC, 1996: 393-400.
    [18] Hideaki Sasaki, Takatoshi Nishimaki. A Side-slip Angle Estimation Using Neural Network for a Wheeled Vehicle[C].SAE 2000-01-0695.
    [19] Byunghak Kwak,Youngjin Park.Robust Vehicle Stability Controller Based on Multiple Sliding Mode Control[C].SAE 2001-01-1060
    [20] Liang Li, Jian Song, Cai Yang, Yanxia Zhou and Liangyao Yu. Tire Force Fast Estimation Method for VehicleDynamics Stability Real-Time Control[C]//SAE 2007-01-4244.
    [21] L. LI, J. SONG, Q. HUANG Vehicle Velocity Estimation for Real-time Dynamic Stability Control[J]. International Journal of Automative Technology, 2009,10(6):675-685.
    [22] Liang Li, Jian Song, Cai Yang and Liangyao Yu. Predictive Control Algorithm Based on Dynamic Stability Matrix Method for DSC[C]. SAE: 2007-01-0848.
    [23]贾豫东,宋健,孙群.用于电子稳定性程序的汽车模型和控制策略[J].公路交通科技, 2004,21(5).
    [24]郭孔辉,付皓,丁海涛.基于扩展卡尔曼滤波的汽车质心侧偏角估计[J].汽车技术, 2009, (04): 1-3.
    [25]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].吉林大学博士学位论文,2003.
    [26]付皓.汽车电子稳定性系统质心侧偏角估计与控制策略研究[D].吉林大学博士论文, 2008.
    [27]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].吉林大学博士学位论文,2007.
    [28]郭建华.双轴汽车电子稳定性协调控制系统研究[D].吉林大学博士学位论文,2008.
    [29]玄圣夷.面向主动安全的汽车底盘行驶稳定性控制策略研究[D].吉林大学博士论文, 2010.
    [30]徐颖.基于信息融合技术的线控汽车状态和路面参数的仿真估算与实验研究[D].吉林大学博士论文, 2009.
    [31]宗长富,胡丹,杨肖,潘钊,徐颖.基于扩展Kalman滤波的汽车行驶状态估计[J].吉林大学学报(工学版), 2009, 39(01) :7-11.
    [32]高振海,郑南宁,程洪.基于车辆动力学和Kalman滤波的汽车状态软测量[J].系统仿真学报, 2004, 16(01) .22-24.
    [33]刘伟.车辆电子稳定性控制系统质心侧偏角非线性状态估计的研究[D].吉林大学硕士论文, 2009.
    [34]陈箭. ABS&TCS控制系统的控制算法研究与仿真分析[D].吉林大学硕士论文, 2005 .
    [35]侯召鹏.汽车电子稳定性控制系统控制算法研究与仿真分析[D].吉林大学硕士论文, 2006 .
    [36]盛勇鑫.轿车侧向稳定性控制算法[D].吉林大学硕士论文, 2008
    [37] Bin Li,Daofei Li,and Fan Yu.Vehicle Yaw Stability Control Using the Fuzzy-Logic Controller[C].Vehicular Electronics and Safety,IEEE International Conference.2007:1-5.
    [38]李道飞,喻凡.基于最优轮胎力分配的车辆动力学集成控制[J].上海交通大学学报,2008, 42(6):887-891.
    [39] Li Jun,Feng Jinzhi,Yu Fan and Zhang Jianwu.The rapid development of vehicle electronic control system by hardware-in-the-loop simulation[C].SAE 2002-01-0568.
    [40]余卓平,左建令,张立军.路面附着系数估算技术发展现状综述[J].汽车工程,2001,28(6).
    [41]余卓平,左建令,陈慧.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程, 2007,29(2):141-145.
    [42]余卓平,高晓杰.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程,2006,28(9):844-848.
    [43] Xiaojie Gao, Zhuoping Yu, Tifan Xu. Longitudinal Velocity Estimation of Electric Vehicle With 4 In-Wheel Motors[C]. SAE 2008-01-0605.
    [44] Xiaojie Gao, Zhuoping Yu. Nonlinear Estimation of Vehicle Sideslip Angle Based on Adaptive Extended Kalman Filter[C]. SAE 2010-01-0117.
    [45]齐志权,刘昭度,时开斌,马岳峰,张景波.基于汽车ABS/ASR/ACC集成化系统的ABS参考车速确定方法的研究[J].汽车工程, 2003,(06):617-620.
    [46]王仁广,刘昭度,齐志权,马岳峰.基于自适应卡尔曼滤波算法确定汽车参考车速[J].农业机械学报, 2006,37(04):9-11.
    [47]赵又群.汽车动力学中若干关键状态和参数估计研究的现状与发展[J].中国机械工程, 2010, 21(10): 1250-1253.
    [48] Mangfred Mitschke, Henning Wallentowitz.汽车动力学[M]. 4版北京:清华大学出版社,2009.
    [49]余志生.汽车理论[M]. 3版北京:机械工业出版社,2002
    [50] Wanki Cho, Jangyeol Yoon., Seongjin Yim, Bongyeong Koo. Estimation of Tire Forces forApplication to Vehicle Stability Control[J]. IEEE Transaction on Vehicle Technology, 2010, 59(2):638-649.
    [51]郭洪燕,陈虹,柳致海.基于EKF的汽车轮胎力估计研究[C] PCC2009—第20届中国过程控制会议论文, 2009.
    [52] Gustafsson F. Slip-based Tire-road Friciton Estimation[J].Automatica,1997,33(6):1087-1099.
    [53] Wlilkin M.A., Manning W.j.,et al. Estimation of non-linear friction force between tyre and road applied to a performance vehicle[C]. AVEC04, 2004, 387-394.
    [54]苏海涛.汽车非线性轮胎力的估计方法研究[D]吉林大学硕士学位论文,2007.
    [55] Matusko J., Petrovic I.,et al. Neural network based tire/road friction force estimation[J]. Engineering Applications of Artificial Intelligence,2008,21:442-456.
    [56]于长官.现代控制理论及其应用[M]哈尔滨:哈尔滨工业大学出版社,2007.
    [57] Wanki Cho, Jangyeol Yoon and Kyongsu Yi. An Investigation into Unified Chassis Control based on Correlation with Longitudinal Lateral Tire Force Behavior[C]. SAE: 2009-01-0438.
    [58]宋健,杨财,李红志,李亮. AYC系统基于多传感器数据融合的路面附着系数估计[J].清华大学学报(自然科学版), 2009,(05):101-105.
    [59]郑智忠,李亮,杨财,宋健.基于卡尔曼滤波的汽车质心侧向速度观测器.农业机械学报,2008,39(5):1-5.
    [60] Van Zanten, Rainer Erhardt, and Georg Pfaff. VDC the Vehicle Dynamics Control System of Bosch[C]. SAE 950759.
    [61]耿聪,堀洋一,青木良文.电动汽车稳定性控制中的车体侧偏角观测器研究.河北工业大学学报,2007,36(1):13-18
    [62] Breuer B, Eichhorn U, Roth J. Measurement of tyre /road friction ahead of the car and inside the tyre[C]. Proceedings of AVEC, 1992:347-353.
    [63] Eichhorn U, Roth J. Prediction and Monitoring of Tyre / road Friction[C]. FISITA,1992.
    [64] Yoshiyuki Yasui and Wataru Tanaka. et. al. Estimation of lateral grip margin based on self-aligning torque for vehicle dynamics enhancement[C]. SAE 2004-01-1070.
    [65] Ono E, A sano K, Koibuchi k. Estimation of lateral tire grip margin using electric power steering system[C]. IAVSD, 2003:141-143.
    [66]刘力,罗禹贡,李克强.基于归一化轮胎模型的路面附着系数观测[J].清华大学学报(自然科学版), 2009,49(05):116-120.
    [67] Tanelli,M., Piroddi,L., Savaresi,S.M., Real-time identification of tire-road friction conditions[J]. Control Theory&Application, 2009, 3(2):891-906.
    [68] Chankyu Lee, K.Hedrick, Kyongsu Yi. Real-time slip-based estimation of maximum tire-road friction coefficient[J]. IEEE/ASME Transactions on MECHATRONICS,2004,9(2):454-458.
    [69] Jiapeng Han, Yongli Sun, Chen Meng. Estimating the tire-road friction for tire pressure monitoring using the result of a nonlinear[C]. Intelligent Control and Automation,2008.
    [70] Gustafsson,F. Estimation and change detection of tire-road friction using the wheel slip[C].Computer-Aided Control System Design,1996.
    [71]杨福广,李贻斌,阮久宏,荣学文,宋锐.基于扩张状态观测器的路面附着系数实时估计[J].农业机械学报,2010,41(8):6-9.
    [72] Rabhi,A. M‘Sirdi,N.K. Elhajjaji,A. Estimation of contact and tire road friction[C], Control & Automation, 2007.
    [73] Erdogan,G. Alexander,L. Rajamani,R. Adaptive Vibration Canllation for Tire-road Friction Coefficient Estimation on Winter Maintence Vehicles[J], Control Systems Technology, 2010, 18(5): 1023-1032.
    [74] Holzmann,F. Bellino,M. Siegwart,R. Bubb,H. Predictive estiamtion of the road-tire friction coefficient[C],Computer Aided Control System Design,2006.
    [75] Tanelli,M. Savaresi,S.M. Friction-curve peak detection by swheel-deceleration measurements[C], Intelligent Transportation Systems Conference,2006.
    [76] Canudas-de-Wit, C. Petersen, M.L. Shiriaev, A. A new nonlinear observer for tire/road distuted contact friction[C], Decision and Control,2003.
    [77] Sun Zhen-jun. Zhu Tian-jun. Zheng Hong-yan. Research on Road Friction Coefficient Estimation Algorithm Based on Extend Kalman Filter[C], Intelligent Computation Technology and Automation, 2008.
    [78] Ghandour Raymond, Victorino Alessandro, Doumiati Moustapha, Charara Ali, Tire/road friction coefficient estimation applied to road safety[C],Control & Automation,2010.
    [79] Baffet G., Charara A. Dherbomez G., An Observer of tire-road Forces and Friction for Active Security Vehicle Systems[J], IEEE/ASME Transactions on MECHATRONICS,2007,12(6):651-661.
    [80] Lee Chankyu,Hedrick Karl,Yi Kyongsu. Real-Time Slip-BasedEstimation of Maximum Tire Road Friction Coefficient[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9 (2).
    [81]李松龄,裴玉龙,雷同飞.基于神经网络系统的附着系数计算模型[J].东北林业大学学报,2008,36(2):56-58.
    [82] Yoichi Hori,Yasushi Toyoda,Yoshimasa Tsuruoka. Traction Con-trol of Electric Vehicle Based on the Estimation of Road SurfaceCondition-Basic Experimental Results Using the Test EV―UOTE-lectric March‖[C] .Proceedings of the Power Conversion Confer-ence. 1997.
    [83] Yukio Nakao,Hiroaki Kawasaki,Douglas J Major. Estimation ofFriction Levels Between Tire and Road[C]. SAE 2002-01-1198.
    [84] Muller Steffen, Uchanski Michael, Hedrick Karl Estimation of the Maximum Tire-Road Friciton Coefficiengt[J]. Journal of Dynamic systems, Measurement, and Control, 2003,125:607-617.
    [85]郑太雄;单荣明;蒋国英.杨勇;汽车ABS参考车速的确定方法[J].汽车技术,2009,(3):37-39.
    [86]杨财;宋健. ABS/TCS/AYC中参考车速和滑移率算法研究[J].汽车工程, 2009,31(1):24-27
    [87]黄全安,李亮,王会义.用于车辆动力学稳定性控制系统的参考车速实时算法研究[C].中国汽车工程学会汽车电子技术分会第七届(2006)年会暨学术研讨会论文集,2006.
    [88] Lin-Hui Zhao, Zhi-Yuan Liu, Hong Chen. Sliding mode observer for vehicle velocity estimation with road grade and bank angles adaptation[C] Intelligent Vehicles Symposium, 2009 :701– 706
    [89] Jaballah, B., M'Sirdi, N.K., Naamane, A., Messaoud, H., Estimation of longitudinal and lateral velocity of vehicle[C] Control and Automation, 2009. 582– 587.
    [90] Grip, H.F., Imsland, L., Johansen, T.A., Fossen, T.I., Kalkkuhl, J.C., Suissa, A., Nonlinear Vehicle Velocity Observer with Road-Tire Friction Adaptation[C]. Decision and Control, 2006: 3603– 3608.
    [91] Imsland, L., Johansen, T.A., Fossen, T.I., Kalkkuhl, J.C., Suissa, A., Vehicle Velocity Estimation using Modular Nonlinear Observers[C]. Decision and Control, 2005:6728– 6733.
    [92] Zhao, L.-H., Liu, Z.-Y., Chen, H., Design of a Nonlinear Observer for Vehicle Velocity Estimation and Experiments[J]. IEEE Transactions on Control Systems Technology, 2010, Issue: 99.
    [93] Wei Zhang, Nenggen Ding, Guizhen Yu, Wei Zhou, Virtual sensors design in vehicle sideslip angle and velocity of the centre of gravity estimation[C]. Electronic Measurement & Instruments, 2009,V3-652 - V3-656.
    [94] Villagra, J., d'ANDREA-Novel, B., Fliess, M., Mounier, H. Estimation of longitudinal and lateral vehicle velocities: An algebraic approach[C] American Control Conference, 2008, 3941– 3946
    [95] Marius Georgescu, Florin Moldoveanu, Dan Floroian. Design and Development of VelocityEstimation in Automotive Control Systems[C]. SAE 2004-34-0159.
    [96] Chul Ki Song, Michael Uchanski, J. Karl Hedrick. Vehicle speed estimation using accelerometer and wheel speed measurements[C]. SAE2002-01-2229.
    [97] Oh K. O., Song C. K. Absolute vehicle speed estimation using neural network model[J]. Trans. of KAPE, 2002, 19(9): 51-58.
    [98] Song C. k., Hwang J. K., Hedrivk J. K. Absolute vehicle speed estimation using fuzzy logic[J]. Trans. KSAE, 2002, 10(1): 179-186.
    [99] Lars Imsland, Tor A. Johansen, Thor I. Fossen, Jens C. Kalkkuhl, Avshalom Suissa, Nonlinear Observer for Vehicle Velocity Estimation[C].SAE 2006-01-1282.
    [100] J. K. HWANG, C. K. SONG. Fuzzy estimation of vehicle speed using an accelerometer and wheel sensors[J]. International Journal of Automative Technology, 2005, 6(4):359-365.
    [101] Kalman R.E. A New Approach to Linear Filtering and Prediction Problems[J]. Transaction of the ASME Journal of Basic Engineering, 2004: 35-45.
    [102] Daiss A.and Kiencke U. Estimation of Vehicle Speed Fuzzy-Estimation in Comparison with Kalman-Filtering[C]. Proceedings of the 4th IEEE Conference on Control Applications, 2002: 281-284.
    [103] Hyeongcheol Lee. Reliability Indexed Sensor Fusion and Its Application to Vehicle Velocity Estimation[J]. Journal of Dynamic systems, Measurement, and Control, 2006,128:236-243.
    [104] VAN ZANTEN,et al.Control Aspects of the Bosch-VDC[J].AVEC‘96,1996: 573-608.
    [105] Racelogic Limited. VBOXⅢ100 Hz with RTK RLVB3R2G2[M] .2007.
    [106] Bosch. Driving-safety systems [M].Society of Automotive Engineers,1999.
    [107] Van Zanten A T. Evolution of electronic control systems for improving the vehicle dynamic behavior[C] .AVEC‘02. 2002, :4481-4488.
    [108]胡爱军,施国标,林逸.汽车行驶状态参数的估计[J].公路交通科技, 2008, 25(10): 150-158.
    [109]施树明, Henk Lupker, Paul Bremmer, Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程, 2005, 27(04): 426-430.
    [110]倪江生.基于卡尔曼滤波算法的汽车运动参数测试方法研究[J].中国惯性技术学报, 2001, (03):19-23.
    [111]林棻,赵又群.汽车侧偏角估计方法比较[J].南京理工大学学报(自然科学版), 2009, 33(1):122-127.
    [112] Toshihiro Hiraoka, Hiromitsu Kumamoto, Osamu Nishihara. Side slip angle estimation and active front steering system based on lateral acceleration data at centers of percussion with respect to front/rear wheels[C]. JSAE, 20025539.
    [113] Florin Moldoveanu, Mihai Cernat, Marius Georgescu, Dan Floroian. Vehicle Body Side SlipAngle Observer[C]. SAE: 2004-34-0016.
    [114] Aoki, Y., Uchida, T., Hori, Y. Experimental demonstration of body slip angle control based on a novel linear observer for electric vehicle[C]. IECON, 2005, 250-257.
    [115]耿聪,堀洋一,青木良文.电动汽车稳定性控制中的车体侧偏角观测器研究.河北工业大学学报,2007,36(1):13-18
    [116] Marcus Hiemer, Uwe Kiencke, Takanori Matsunaga. Cornering Stiffness Adaptation for Improved Side Slip Angle Observation[C]. SAE: 2004-34-0067.
    [117] Ari uononen, Tero Lehtonen, Matti Juhala. Estimation of Tire Cornering Stiffness From Vehicle Measurements[C]. SAE: 2006-05-0479.
    [118]潘定海.汽车稳定性控制(VSC-Vehicle Stability Control),学术交流资料.
    [119] Youssef A. Ghoneim., W. C. Lin., et al. Intergrated chassis control system to enhance vehicle stability[J]. Internal Journal of Vehicle Design, 2000, 23(1):23-29.
    [120] Isermann, R. and B?rner, M. Supervision. Fault detection and diagnosis for mechatronic Automobiles[C]. Braunschweiger SymposiumAutomatisierungs- und Assistenzsysteme für Transportmittel 2002, Braunschweig,Germany.
    [121]郭孔辉.汽车操纵动力学[M].吉林:吉林科学技术出版社, 1991.
    [122] Sienel, W. Estimation of the Tire Cornering Stiffness and its Application to Active Car Steering[C]. Conference on Decision and Control,1997.
    [123]邓自立.自校正滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [124]罗明贵.基于滑移率控制的汽车横向稳定性控制算法研究[D].吉林大学硕士论文, 2007 .
    [125] HongLiang Zhou, ZhiYuan Liu. Design of vehicle yaw stability controller based on model predictive control[C]. Intelligent Vehicles Symposium, 2009: 802-807
    [126] Haiping Du, Nong Zhang and Wade Smith Robust Yaw Moment Control for Vehicle Handling and Stability[C]. SAE: 2009-01-0578.
    [127]米奇克.汽车动力学(第二版):C卷[M].陈萌兰译.北京:人民交通出版社,1997.
    [128] Liang Li, Jian Song, Huiyi Wang, Chunyu Xue. Linear subsystem model for real-time control of vehicle stability control system[C] RAM, 2006:1-6.
    [129] B?rner, M. and. Isermann, R. Model-based detection of critical driving situations with fuzzy logic decision making[J]. Control Engineering Practice, 2006, (14):527-536.
    [130] Oncu, S., Karaman, S., Guvenc, L., Ersolmaz, S.S., Ozturk, E.S., Cetin, E., Sinai, M. Robust Yaw Stability Controller Design for a Light Commercial Vehicle Using a Hardware in the Loop Steering Test Rig[C]. Intelligent Vehicles Symposium, 2007: 852-859.
    [131]胡寿松.自动控制原理(第五版)[M].北京:科学出版社,2008.
    [132]刘金坤.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2007
    [133]曾光奇,胡均安,王东,等.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2006.
    [134]中华人民共和国国家标准.汽车操纵稳定性试验方法. GB/T6323.1-64.
    [135] K.H.Guo, C.F.Zong, F.S.Kong, M.L.Chen. Objecttive evaluation correlated with human judgment-An approach to the optimization of vehicle handling control system[J]. Int. J. of Vehicle Design, 29(1/2):96-111.
    [136] M.Abe. A Theoretical Predication of Subjective Vehicle Handling Evaluation[C]. FISITA XVIII International Congress, 1980.
    [137] H. Harada. Stability Criteria and Evaluation of Steering Maneuver in ?Driver-Vehicle‘System[J]. JSME International Journal Serials C, 1994.
    [138] Garrick J. Forkenbrock, Devin Elsasser, Bryan O‘Harra. NHTSA‘S LIGHT VEHICLE HANDLING AND ESC EFFECTIVENESS RESEARCH PROGRAM[C]. EVS19:1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700