有机溶剂中金属镁薄膜的电沉积行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁具有电池比容量高、环境友好、价格低廉、吸氢量大等特点,在新型的绿色电池、负极材料和储氢材料中越来越受到关注,被誉为“21世纪绿色工程材料”。与其他制膜方法相比,电化学沉积法具有很多优点如工艺简单、操作方便、污染小、能耗少、生产方式灵活等,是一种经济的薄膜制备方法,比较适于工业化生产。本论文采用电化学沉积法,成功制备出致密光亮的金属镁薄膜,并采用SEM、XRD和EDS对沉积金属镁薄膜的形貌、组织和成分进行分析。
     配制有机非质子极性溶剂乙基氯化镁/四氢呋喃(EtMgCl/THF)溶液作为镁电沉积电解液,采用循环伏安法研究了金属镁在基体材料纯铜带上的初始电化学沉积行为,研究发现,镁在铜基体上的薄膜生长遵循形核/生长机制。
     采用恒流电沉积法,通过改变电沉积时间、电解液浓度和电流密度,分别研究各参数对镁金属电沉积行为的影响,并探讨恒流电沉积下,镁金属薄膜的电结晶机理。结果表明,金属镁薄膜在基体铜上的生长方式属于核生长型。沉积膜层厚度和致密度随着电解液浓度和电流密度的增大而逐渐增大,但当厚度增大到一定程度时,膜层之间由于存在内应力而产生裂纹、变形、起皮、结合力降低等各种缺陷。沉积层晶粒尺寸在电解液浓度为0.54M、电流密度为-5mA/cm2时最小。
     采用脉冲电沉积法,通过改变电沉积时间、电流密度及脉冲占空比,分别研究各参数对镁金属电沉积行为的影响,探讨脉冲电沉积下,镁金属薄膜的电结晶机理,并对比研究了恒流和脉冲两种不同的电沉积方法对镁电沉积行为的影响。结果表明,脉冲沉积时晶粒在形核长大过程中存在某晶面的择优取向呈层状排列。随着电流密度的增大,膜层硬度和沉积速率大致呈增大的趋势,在不同的电流密度下,不同晶面存在着不同程度的择优取向。随着占空比的逐渐减小,晶粒尺寸也不断呈减小的趋势。
Magnesium is known as the "Green engineering material of the21st century" because of its high theoretical capacity, low cost, environmental-friendly and absorbing a great amount of hydrogen, So magnesium has attracted more and more attention in many fields, especially in new type of green batteries, anode materials and hydrogen storage materials. Compared with other methods, electrochemical deposition have some advantages such as simple process, easy operation, vironmental safety, less energy consumption and flexible production mode, etc, so it is an economical preparation methods for thin film and suitable for industrial production. In this paper, some compact and bright magnesium films were successfully prepared by electrochemical deposition technology, and the morphology, microstructure and composition of magnesium films were characterized by using Scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS).
     Anhydrous ethylmagnesium chloride in THF (EtMgCl/THF) was prepared as electrolyte, and the initial electrochemical deposition behavior of magnesium on the copper matrix was studied by Cyclic voltammetry. The results show that the deposition of magnesium film followed the mechanism of nucleation and subsequent grain growth.
     The effects of various parameters, including deposition time, electrolyte concentration and current density, on the electrochemical deposition behavior of magnesium were studied by using direct-current plating method. The results show that the Growth pattern of magnesium film on the copper matrix followed Volmer Veber, and the deposition thickness and density gradually increases with the increase of electrolyte concentration and current density. While when the thickness increases to a certain extent, various defects such as deformation, cracks, binding reduced, peeling are appeared between the layers because of the internal stress. The minimum grain size of the deposit was prepared at0.54M EtMgCl/THF and-5mA/cm2.
     The effects of various parameters, including deposition time, current density and pulse duty cycle on the electrochemical deposition behavior of magnesium were studied by using pulse-current plating method, and the electrocrystallization mechanism was investigated in this paper. The effect of constant current electrodeposition and pulse electrodeposition method on the behavior of magnesium electrodeposition was comparatively studied. The results suggest a preferential orientation parallel to a certain crystallographic planes during the nucleation and growth process of the Mg crystals. With the increases of pulse current density, the deposition rate and the hardness of films increase. For different current densities, the preferred orientations of crystal growth are different. The grain sizes of deposites are reduced with the decrease of pulse duty cycle.
引文
[1]Aurbach D, Lu Z, Schechter A, et al. Prototype system for rechargeable magnesium batteries[J]. Nature,2000:407:724.
    [2]Aurbach D, Gofer Y, Schechter A, et al. A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes[J]. Journal of Power Sources, 2001(97-98):269-273.
    [3]慕伟意,李争显,杜继红等.镁电池的发展及应用[J].材料导报,2011,25(7):35-39.
    [4]Venkatesa ra R K. Performance evaluation of Mg-AgCl batteries for underwater propulsion[J]. Denf Sci J,2001,51(2):161-165.
    [5]杨维谦,杨少华,孙公权,等.镁燃料电池的发展及应用[J].电源技术,2005,29:182-186.
    [6]Wood Robert T. Magnesium primary cell:US,1696873[P].1928-12-25.
    [7]余琨,宋觉敏,蔡志勇,等.镁及镁合金电池阳极材料的研究、开发及应用[J].金属功能材料,2010,17(4):66.
    [8]Yanna NuLi, Jun Yang, Jiulin Wang, et al. Electrochemical Magnesium Deposition and Dissolution with High Efficiency in Ionic Liquid[J]. Electrochemical and Solid-State Letters,2005,8(17):C166-C169.
    [9]Gregory T D, H offman R J, Winterton R C. Nonaqueous electrochemistry of magnesium:Application to energy storage[J]. J Electrochem Soc,1990,137(3):775-779.
    [10]Aurbach D, Gofer Y, Lu Z, et al. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology [J]. J Power Sources,2001, 97-98:28-33.
    [11]王璞.二次电池新材料新体系的研究[D].上海:上海交通大学,2007.
    [12]Stampfer Jr J F, Holley Jr C E, Suttle J F. The magnesium-hydrogen system[J]. J. Am. Chem. Soc.,1960,82(14):3504-3508.
    [13]陈玉安,唐体春,张力.镁基储氢材料的研究进展[J].重庆大学学报(自然科学版),2006,29(12):72-75.
    [14]韩晓英,张羊换,王新林,等.镁基贮氢合金的制备[J].金属功能材料,2005,12(6):32-35.
    [15]贾志华,马光,李银蛾,等.镁系储氢薄膜的研究进展[J].钛工业进展,2005,22(6):28-33.
    [16]王栋,李燕,王玲,等.电沉积和化学镀技术在镁基储氢合金制备及表面改性中的应用[J].电镀与涂饰,2009,28(5):1-4.
    [17]Rosalind J. Gummow, Yinghe He. Morphology and Preferred Orientation of Pulse Electrodeposited Magnesium[J]. Journal of The Electrochemical Society,2010,157 (4): E45-E49.
    [18]张立德.纳米材料[M].北京:化学工业出版社,2000.
    [19]潘峰,范旒殿.纳米磁性多层膜研究进展[J].物理,1991,22:9-12.
    [20]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2003:58-63.
    [21]田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006:152-169.
    [22]宋长安,车京兰.纳米薄膜的制备[J].甘肃科技,2005,21(2):118-125.
    [23]邸英浩,曹晓明.真空镀膜技术的现状及发展[J].天津冶金,2004(5):45-48.
    [24]陈晖,周细应,言智.气相沉积法的薄膜制备研究[J].上海工程技术大学学报,2010,24(2):167-171.
    [25]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001:92-93.
    [26]Cassell A M, Raymakers J A, Kong J, et al. Large seale CVD synthesis of single-walled carbon nanotubes[J], J.phys.Chem.B,1999,103(31):6484-6492.
    [27]李鸿年,张绍恭,张炳乾,等.电镀工艺手册[M].上海:上海科学技术出版社,1989:1-4.
    [28]屠振密,李宁,胡会利,等.电沉积纳米晶材料技术[M].北京:国防工业出版社,2008:3-4.
    [29]韩小斐.功能纳米金属氧化物薄膜的电化学制备与光学性能的研究[D].杭州:浙江大学,2006.
    [30]Shriram S, Mohan S, Renganathan N G, et al. Electrodeposition of nanocrystalline nickel-a brief review[J]. Trans IMF,2000,78(5):194-197.
    [31]Natter H, Schmelzer M, Hempelmann R. Nanocrystalline nickel and nickel-copper alloys:synthesis, characterization, and thermal stability[J]. J. Mater. Res.,1998,13: 1186-1197.
    [32]Muller B, Ferkel H. Properties of nanocrystalline Ni/Al2O3 composites[J]. Zeitschrift fur Metallkunde,1999,90(11):868-871.
    [33]郑伟伟.镁电极在不同电解质溶液中电化学性能初步研究[D].天津:天津大学,2009.
    [34]赵夕.格氏试剂溶液中镁电沉积行为的研究[D].天津:天津大学,2010.
    [35]冯真真,杨军.镁二次电池材料制备及电化学性能研究[D].上海:上海交通大学,2008.
    [36]梁焕巢.薄膜初期成核及生长过程的模拟研究[D].辽宁:东北大学,2005.
    [37]陈丹丹,李林,滕春禹等.薄膜生长初期形貌转变的模拟研究[J].材料导报,2007(21):89-91.
    [38]薛文晨,张文栋.半导体薄膜光谱学[M].北京:科学出版社,2008:69-81.
    [39]吴广明,杜开放.纳米薄膜的制备与气致变色特性研究[J].功能材料,2003,34(6):707-710.
    [40]赵年伟,王伟.纳米材料和技术在玻璃行业的应用[J].玻璃,2002,21(2):36-37.
    [41]Nystrom M, Kaipil L, Luque S. Fouling, detention and retention of nanofilter membranes[J]. J Member Sci,1995,98:249-252.
    [42]邱成军,曹茂盛.纳米薄膜材料的研究进展[J].材料科学与工程,2001,19(4):132-137.
    [43]温诗铸,雒建斌.纳米薄膜润滑研究[J].清华大学学报:自然科学版,2001,41(4):63-68.
    [44]沈海军,穆先才.纳米薄膜的分类、特性、制备方法和应用[J].纳米材料与结构,2005(11):506-510.
    [45]Fereshteh Ebrahimi, Hongqi Li. Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys[J]. Scripta Materialia,2006,55(3):263-266.
    [46]Michel L Trudeau. Nanocrystalline Fe and Fe-riched Fe-Ni through electrodeposition[J]. NanoStructured Materials,1999,12(1):55-60.
    [47]王合英,马振伟.纳米薄膜的结构和软磁性能[J].材料研究学报,1999,13(4):343-346.
    [48]刘庆,陆文雄,印仁和.电化学法制备纳米材料的研究现状[J].材料保护,2004,37(2):33-36.
    [49]张丽芳.电沉积纳米晶材料的制备[J].中国科技信息,2009(11):62-64.
    [50]屠振密,胡会利,李宁,等.电沉积纳米晶材料制备方法及机理[J].电镀与环保,2006,26(4):4-8.
    [51]赵建坡,田宝丽,万绍明.直流电沉积法制备单晶Ag纳米棒阵列[J].功能材料,2009,7(40):1208-1210.
    [52]任凌云,佘希林,王士财.直流电沉积法制备铁纳米线阵列及表征[J].电子元件与材料,2010,29(5):64-66.
    [53]刘小虹,颜肖慈,李学丰,等.纳米镀锌层在NaCl溶液中的腐蚀行为研究[J].材料保护,2003,36(1):11-13.
    [54]乔俊强,孙晓军,孙英杰,等.电沉积镍纳米晶材料制备及性能[J].电镀与涂饰,2005,9,24(9):6-8.
    [55]王立平,高燕,薛群基,等.电沉积镍纳米晶材料制备及性能[J].电镀与涂饰,2004,23(3):1-5.
    [56]安茂忠,栾野梅,乐士儒,等.银纳米膜的电化学制备方法及性能表征[J].应用光学,2006,27(1):35-38.
    [57]Harald Natter, Rold Hempelmann. Tailor-made nanomaterials desigend,by electrochemical methods[J]. Electrochemical Acta,2003,49:51-61.
    [58]Erich C Walter, Michael P Zach, Benjamin J Murray, et al. Metal nanowire array by electrodeposition[J], ChemPhyChem,2003,4:131-138.
    [59]向国朴.脉冲电镀的原理及应用[J].工业技术,1987,(9):30-33.
    [60]向国朴.脉冲电镀的原理及应用[M].天津:科学技术出版社,1989.
    [61]张文峰,朱荻Ni-ZrO2纳米复合电镀层的制备及其耐蚀性研究[J].腐蚀科学与防护技术,2006,18(5):325-328.
    [62]刘勇,罗义辉,魏子栋.脉冲电镀的研究现状[J].电镀与精饰,2005,27(5):25-29.
    [63]韩苗兴,何永夫.电镀用脉冲电源的应用推广[J].表面技术,2002,31(5):65-69.
    [64]Ccheung C, Erb U. Advancing microsystem technologes through electroplated nanostructeres[C]. AESFSUR/FIN Conference,2004 & Interfinish 2004 World Congres. U S A Chicago, June 28-July 1:786-803.
    [65]杨辉,卢文庆.应用电化学[M].北京:科学出版社,2001:4.
    [66]Nelson J M, Evans W V.J.Am. Cathode Materials and Electrolytes for Magnesium Secondary Batteries[J]. Chem. Soc.,1917,39:82-83.
    [67]Gaddum L W, French H E. The electrolysis of grignard solutions[J]. J.Am. Chem.Soc, 1927,49(5):1295-1299.
    [68]Gregory J D, Pletcher D. Studies using microelectrodes of the Mg (II)/Mg couple in tetrahydrofuran and propylene carbonate[J]. J. Electroanal. Chem.,1986,199(1,25): 93-100.
    [69]Aurbach D, Lu Z, Schechter A, et al. Prototype system for rechargeable magnesium batteries[J]. Nature,2000,407:724-72.
    [70]王璞,努丽燕娜.二次电池新材料新体系的研究[D].上海:上海交通大学,2006.
    [71]Youssef Kh M S, Koch C C, Fedkiw P S. Influence of additives and pulse Electrodeposition parameters on production of nanocrystalline zinc from zinc chloride electrolytes[J]. Journal of The Electrochemical society,2004,151(2):C103-C111.
    [72]尧玉芬,陈昌国,刘渝萍,等.镁电池的研究进展[J].材料导报,2009,2(10):119-121.
    [73]努丽燕娜,杜国栋,冯真真,等.碳酸乙烯酯添加剂对BMImBF4离子液体作为镁沉积-溶解电解液的改性研究[J].化学学报,2008,66:175-180.
    [74]彭成红,朱敏.镁电池研究进展[J],电池,2003,33(2):121-123.
    [75]袁华堂,刘秀生,曹建胜.可充镁电池有机电解液的研究进展[J].电池,2004,34(2):138-140.
    [76]郭鹤桐,姚素薇.基础电化学及其测量[M].北京:化学工业出版社,2009:79.
    [77]胡会利,李宁.电化学测量[M].北京:国防工业出版社,2007:169.
    [78]乔俊强,孙晓军,孙英杰,等.电沉积纳米晶镍镀层的微结构与性能[J].电镀与涂饰,2005,24(9):6-8.
    [79]Tatiparti S S V, Ebrahimi F. Electrodeposition of Al-Mg alloy powders[J]. J. Electrochem. Soc.,2008,155(50):D363-D368.
    [80]安茂忠,栾野梅,乐士儒,等.银纳米膜的电化学制备方法及性能表征[J].应用光学,2006,27(1):35-38.
    [81]Amir N, Vestfrid Y, Chusid O, et al. Progress in nonaqueous magnesium electrochemistry [J]. Journal of Power Sources,2007(174):1234-1240.
    [82]Samuel B.Emery, Jennifer L.Hubbley, Dipankar Roy. Voltammetric and amperometric analyses of electrochemical nucleation:electrodeposition of copper on nickel and tantalum[J]. Journal of Electroanalytical Chemistry,2004,568:121-133.
    [83]宋利晓,张昭,曹楚南.纳米结构黑镍薄膜的沉积机理[J],金属学报,2011,47(1):123-128.
    [84]Devos O, Jakab S, Gabrielli C. Nucleation growth process of scale electrodeposition influence of the magnesium ions[J], Journal of Crystal Growth,2009, (311):4334-4342.
    [85]荣海波.薄膜生长初期的蒙特卡罗模拟研究[D].大连:大连理工大学,2010.
    [86]殷立涛.金属薄膜的电沉积工艺及力学性能研究[D].郑州:河南科技大学,2009.
    [87]李茂枝.表面纳米结构形和稳定性的动力学标度性质[D].北京:中科院物理研究所,2001.
    [88]王恩哥.薄膜生长中的表面动力学(Ⅰ)[J].物理学进展,2003,23(01):1-6.
    [89]雷卫宁.纳米晶脉冲电铸的实验研究[J].机械科学与技术,2002,21(6):975-978.
    [90]胡美些,王宁.我国电铸技术的研究进展[J].电镀与涂饰,2006,25(11):38-39.
    [91]Li S C.Quantum Effect of the Superplastivity in Zn5Al Alloy[J]. Progress in Natural Science,1999,9(9):656-660.
    [92]Cheng K J, Cheng S Y. An Introduction on Theoretical Foundation of Material Science[J]. Materials Science&Engineering,1998,16(1):1-7.
    [93]王宁,王超群.薄膜表面和界面应力的X射线衍射分析(上)[J].硬质合金,2011,28(2):120-125.
    [94]Bakkar A, Neubert V. Electrodeposition onto magnesium in air and water stable ionic liquids:From corrosion to successful plating[J]. Electrochemistry Communications, 2007, (9):2428-2435.
    [95]康进兴,赵文珍,徐英鸽,等.工艺参数对电沉积纳米晶镍电流效率的影响[J].稀有金属材料与工程,2008,37(2):366-369.
    [96]张含卓,江中浩,连建设,等.电流密度对电沉积纳米晶铜工艺及显微组织的影响[J].吉林大学学报(工学版),2007,37(5):1074-1077.
    [97]李光玉,牛丽媛,江中浩,等.电流密度对那么锌镍合金镀层显微组织的影响[J]. 吉林大学学报(工学版),2006,36(6):835-840.
    [98]Qu N S. Zhu D, Chan K C. Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density[J]. Surface and Coatings Technology, 2003,168(2-3):123-128.
    [99]杨建明,朱荻,雷卫宁.电沉积法制备纳米晶材料的研究进展[J].材料保护,2003,36(4):1-5.
    [100]Devos O, Jakab S, Gabrielli C, et al. Nucleation-growth process of scale electrodeposition-influence of the magnesium ions[J]. Journal of Crystal Growth, 2009,311:4334-4342.
    [101]Bakonyi I, Toth-Kadar E, Pogany L, et al. Preparation and characterization of d.c.-plated nanocrystalline nickel electrodeposits[J]. Surface and Coationgs Technology,1996,78: 124-136.
    [102]Zhou S. Electrodeposition of Metal-Principle and methods[M]. Shanghai:Shanghai Press of Science and Technology,1987.
    [103]张玉碧,高小丽,王东哲等.脉冲电沉积机理、动力学分析及其验证[J].材料保护,2011,44(6):18-21.
    [104]Li B; Fan C, Chen Y, et al. Pulse current electrodeposition of Al from an AlCl3-EMIC ionic liquid[J]. Electrochimica Acta,2011,56:5487-5482.
    [105]杨房祖,姚士冰,周绍民.添加剂的整平能力及其对Cu电沉积层结构的影响[J],厦门大学学报(自然科学版),2003,42(1):56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700