含生色团环糊精包合物的制备及其荧光比率检测功能的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作根据荧光共振能量转移(FRET)原理,选定了丹磺酰基(DNS),7-硝基-2,1,3-苯并氧杂噁二唑(NBD),异硫氰酸荧光素(FITC)为能量供体,罗丹明B为能量受体,通过环糊精的定位作用将两者绑定在FRET的有效距离内,使给体与受体间发生高效率的能量转移;此外,根据软酸硬碱理论(SHAB),我们改变配体中与金属离子络合部分的化学组成,从而使这些超分子体系表现出对特定离子的选择性识别功能,为其在离子检测等方面的应用提供新的途径。本论文的主要内容和结果如下:
     将单氨基β-环糊精与丹磺酰氯反应生成单(6-丹磺酰基-6-脱氧)-β-环糊精,以此作为主体分子;罗丹明B与二乙基三胺反应后与由N-羟基琥珀酰亚胺(NHS)活化的金刚烷甲酸反应,生成客体分子AD-SRhB。将客体分子与主体分子在水溶液通过金刚烷与环糊精的疏水相互作用形成β-CD-DNS/AD-SRhB超分子体系,使能量受体和供体之间的距离保持在可有效实现FRET的距离之内。通过对AD-SRhB/β-CD-DNS体系的光谱学性质研究,证实此体系在Fe3+存在时,内酰胺罗丹明会发生开环反应,从而形成与供体生色团能级匹配的罗丹明B开环结构作为能量受体,因此供体(连在β-环糊精上的丹磺酰基)的激发态能量转移给受体(罗丹明B/Fe3+络合物),由此实现了FRET,也实现了在水溶液中对Fe3+的荧光比率检测。
     按照软酸硬碱理论(SHAB),我们改变了配体中与金属离子络合部分的化学组成,由原来的亚胺基变为脲基,使配体中与金属离子结合部分“变软”,合成制备了含脲基配体的环糊精主体,以及含荧光素供体的客体分子,并制得了HOST1/GUEST 3包合物体系。此体系仍然是对三价铁离子的响应最明显,但体系同时对软酸金属离子二价汞离子也表现出了一定的响应性。在HOST 1/GUEST 3体系中,由于我们将供体生色团引入了疏水的环糊精内腔中,供体生色团的荧光量子产率得到了提高。同时我们还合成了带有DNS,NBD的金刚烷作为客体GUEST 1和GUEST 2,与HOST 1形成超分子体系HOST 1/GUEST 1和在HOST 1/GUEST 2.对三种供体生色团的对比研究可见,DNS-ADA引入环糊精的疏水微腔后,其荧光发射峰位置出现明显蓝移,导致其与受体生色团的能级不匹配,因此无法形成有效的FRET体系;而NBD作为供体时,由于其具有强吸电性,致使体系的能量转移有限。三种供体生色团中,FITC-ADA能与含配体的环糊精形成较好的FRET体系。
     为了实现对Hg2+的检测,我们在罗丹明配体生色团中引入软碱性更高的硫脲基,制备了含硫脲罗丹明配体的环糊精HOST 2,利用其与供体生色团GUEST 3的疏水相互作用制得了HOST 2/GUEST 3包合物体系。考察了HOST 2/GUEST 3包合物体系的光谱学性质,结果表明硫脲基的引入提高了配体生色团的碱软度,使得包合物体系对软酸金属离子汞离子具有很好的亲合力,可以选择性地与汞离子络合,因此该体系可用于汞离子的选择性荧光比率检测。在HOST 2/GUEST 3包合物体系中,当加入汞离子时,罗丹明配体可充分开环形成受体,由此供体生色团和受体生色团之间可以发生高效的能量转移。我们还尝试将HOST 2/GUEST 3包合物体系用于自来水和一些生理液体如尿液及血清中的汞离子荧光比率检测,结果表明,我们获得了一种在水相中对汞离子具有选择性识别检测功能的新型荧光传感器,并可应用于环境和生物检测。
In this thesis, according to the principles of Fluorescence Resonance Energy Transfer (FRET), we chose dansyl (DNS),7-nitrobenzofurazan (NBD), FITC as the donors, rhodamine B as the acceptor. Due to its unique structural feature, cyclodextrin can keep the donor and acceptor within the effective distance of the Forster energy transfer. Based on the Hard Soft Acid Base (HSAB) principle, we changed the chemical structure of the metal-ion ligand, so that the supramolecular-complex exhibited specific ion selective recognition. These supramolecular complexs may find new applications in ion detection. The main contents and the results of this work are as follows:
     First, we synthesized mono-6-deoxy-6-dansyl-β-CD through the reaction of mono-6-deoxy-6-amino-β-CD with dansyl chloride; then, the guest AD-SRhB was synthesized by the process in which Rhodamine B was reacted with diethylenetriamine first, and then reacted with the activated 1-adamantanecarboxylic acid. The supramolecular-complex AD-SRhB/β-CD-DNS was prepared. Spectral analysis of AD-SRhB/β-CD-DNS supramolecular-complex confirms that the addition of Fe3+ can promote the formation of the open-ring state of the SRhB moieties and the excited energy of donor (linked on cyclodextrin rim) could be transfered to the acceptor(rhodamine B/Fe3+). The antidisturbance experiment shows that in the presence of multifarious cations, the AD-SRhB/β-CD-DNS supramolecular-complex has very good antidisturbance. In this system, efficient energy transfer can occurr between pH 4-7. Therefore, this FRET-based supramolecular sensor can be readily formed via an inclusion process using the donor part and the acceptor part, and can serve as a water-soluble ratiometric fluorescent sensor for Fe3+.
     According to the mechanism of Hard Soft Acid Base (HSAB), we changed the chemical structure of the ion-ligand to carbamido from imino in order to improve the softness of the "soft base". Therefore, we synthesized the host(HOST 1) with carbamido group and the guest(GUEST 3) with fluorescein moiety to form the supramolecular-complex HOST 1/GUEST 3. This supramolecular-complex showed good response toward Fe3+, as well as a certain response to Hg2+ in aqueous medium. In the HOST 1/GUEST 3 supramolecular-complex, the donor was within the hydrophobic cavity of cyclodextrin, so the fluorescence quantum yield of donor was improved. The antidisturbance experiment shows that in the present of multifarious cations including Hg2+, the HOST 1/GUEST 3 supramolecular-complex has quite good antidisturbance. Moreover, DNS-ADA and NBD-ADA were also synthesized as the donors. But we found that when DNS-ADA enters the hydrophobic cavity of cyclodextrin, the emission profile of DNS exhibited hypsochromic shifts markedly. It results in the energy level mismatch of DNS and the acceptor, hence the FRET of supramolecular-complex HOST 1/DNS-ADA can't occur. When the NBD-ADA was used as the donor, because of its strongly electron-withdrawing feature, the efficiency of energy transfer of supramolecular-complex HOST 1/NBD-ADA was limited. Therefore, FITC-ADA is the better donor for rhodamine B/Fe3+ complex for the FRET system.
     For detecting Hg2+, we further improved the "soft base" of the ligand by changing the chemical structure of ligand from carbamido group to thioureido group. Cyclodextrin with thioureido moiety was synthesized as HOST 2, and the FITC-ADA as the GUEST 3. The supramolecular-complex HOST 2/GUEST 3 was formed in aqueous solution. Spectral analysis of HOST 2/GUEST 3 supramolecular-complex confirms that thioureido moiety can improve the "soft base" of the ligand evidently and the ligand could complex with Hg2+ selectively. This strategy provides a water-soluble ratiometric fluorescent sensor for Hg2+. In the HOST 2/GUEST 3 supramolecular-complex, the addition of Hg2+ can promote the formation of the open-ring state of the SRhB moieties and the excited energy of donor (in cyclodextrin) could be transfered to the acceptor (rhodamine B/Hg2+ complex linked on cyclodextrin). The efficiency of energy transfer of the supramolecular-complex HOST 2/GUEST 3 reaches 90.2%.
     HOST 1/GUEST 3 supramolecular-complex has the very good antidisturbance. Its application in the environment and biological detection was investigated, for instance, Hg2+ detecting in tap water, in serum and urine. In summary, the supramolecular-complex HOST 2/GUEST 3 can serve as a water-soluble ratiometric fluorescent sensor for Hg2+, and can be used in environment and biological detection.
引文
[1]Villiers A. Sur la transformation de la fecule en dextrine par le ferment butyrique. [J]. Compt. Rend. Fr. Acad. Sci.,1891,435-438
    [2]Hybl A., Rundle R. E., Williams D.E., The crystal and molecular structure of the cyclohexaamylose-potassium acetate complex [J]. J. Am. Chem. Soc.,1965,87(13): 2779-2788
    [3]Atwood, J. L., Davies, J. E. D., MacNicol, D. D. Inclusion Compounds [M]. London: Academic Press,1984
    [4]Duchene. D. Cyclodextrins and their Industrial Uses [M]. Editions de Sante. Paris:1987
    [5]Szejtli, J. Cyclodextrin Technology [M]. Dordrecht:Kluwer Academic Publisher,1988
    [6]Szejtli, J., Osa, T., Vogtle, F. Comprehensive Supramolecular Chemistry:Cyclodextrins [M]. Oxford:Pergamon,1996
    [7]French, D. The schardinger dextrins [J]. Adv. Carbohydr. Chem.,1957,12:189-260
    [8]Whistler, R. L.,BeMiller J, N., Paschall, E. F. Starch:Chemistry and Technology [M]. Second Edition. New York:Academic Press,1984
    [9]Griffiths, D. W., Bender, M. L. Cycloamyloses as catalysts[J]. Adv. Catal.,1973,23: 209-261
    [10]Bergeron, R. J. Cycloamyloses[J]. J. Chem. Educ.,1977,54:204-207
    [11]Lichtenthaler, F. W., Immel, S. On the hydrophobic characteristics of cyclodextrins: computer-aided visualization of molecular lipophilicity patterns [J] Liebig's Ann.,1996, 27-37
    [12]Briggner, L. E., Wadso, I. J. Heat capacities of maltose, maltotriose, maltotetrose and α-, β-, and γ-cyclodextrin in the solid state and in dilute aqueous solution [J]. J. Chem. Thermodyn.,1990,22(11):1067-1074
    [13]Gelb, R. I., Schwartz, L. M., Bradshaw, J. J.; Laufer, D. A. Acid dissociation of cyclohexaamylose and cycloheptaamylose [J]. Bioorg. Chem.,1980,9(3):299-304
    [14]Gelb, R. I., Schwartz, L. M.; Laufer, D. A. Acid dissociation of cyclooctaamylose [J]. Bioorg. Chem.,1982,11(3):274-280
    [15]Jozwiakowski, M. J., Connors, K. A. Aqueous solubility behavior of three cyclodextrins [J]. Carbohydr. Res.,1985,143:51-59
    [16]Manor, P. C., Saenger, W. Water molecule in hydrophobic surroundings:structure of cyclodextrin-hexahydrate (C6H10O5)6.6H20 [J]. Nature,1972,237:392-293
    [17]Manor, P. C., Saenger, W. Topography of cyclodextrin inclusion complexes. Ⅲ. Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimer inclusion complex [J] J. Am. Chem. Soc.,1974,96(11):3630-3639
    [18]Saenger, W. Circular hydrogen bonds [J]. Nature,1979,279:343-343
    [19]Lindner, K.; Saenger, W. Topography of cyclodextrin inclusion complexes. ⅩⅥ. Cyclic system of hydrogen bonds:structure of-cyclodextrin hexahydrate, form (Ⅱ):comparison with form (Ⅰ) [J]. Acta Crystallogr. B,1982,38(1),203-210
    [20]Chacko, K. K., Saenger, W. Topography of cyclodextrin inclusion complexes.15. Crystal and molecular structure of the cyclohexaamylose-7.57 water complex, form Ⅲ. Four-and six-membered circular hydrogen bonds [J] J. Am. Chem. Soc.,1981,103(7):1708-1715
    [21]Lindner, K.; Saenger, W. β-Cyclodextrin dodecahydrate:crowding of water molecules within a hydrophobic cavity [J]. Angew. Chem., Int. Ed. Engl.1978,17(9):694-695
    [22]Morales A, Struppe J and Melendez E. Host-guest interactions between niobocene dichloride and α-,β-, and γ-cyclodextrins:preparation and characterization[J]. J Incl Phenom Macrocycl Chem,2008,60:263-270
    [23]Steiner, T.; Koellner, G. Crystalline.beta.-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction [J]. J. Am. Chem. Soc.,1994,116(12):5122-5128
    [24]Marini, A., Berbenni, V., Bruni, G., Massarotti, V., Mustarelli, P., Villa, M. Dehydration of the cyclodextrins:A model system for the interactions of biomolecules with water [J]. J. Chem. Phys.,1995,103:7532-7540
    [25]Harata, K. Crystal structure of γ-cyclodextrin at room temperature [J]. Chem. Lett.,1984, 641-644
    [26]Heyes, S. J., Clayden, N. J., Dobson, C. M.13C-CP/MAS NMR studies of the cyclomalto-oligosaccharide (cyclodextrin) hydrates [J]. Carbohydr. Res.,1992,233:1-14
    [27]崔艳丽,毛建卫,2,6-二甲基-β-环糊精合成的研究[J],浙江医科大学学报,1997,26(2):56-59
    [28]Pitha J., Gerloczy A., Olivi A. J. Parenteral hydroxypropyl cyclodextrins:Intravenous and intracerebral administration of lipophiles [J]. J. Pharm,Sci.,1994,83(6):833-837
    [29]冯鸣,姚惟馨,裘利言.6-羟丙基-β-环糊精的合成[J].南京化工大学学报,1997,19(4):80-84
    [30]陈培丰.β-环糊精磺酰化的超分子作用机理研究[J].福建师范大学学报,2001,17(2):50-54
    [31]罗美明,谢如刚,赵华明.桥联环糊精仿酶研究进展[J].有机化学,1995,15:1-9
    [32]万军民,胡智文,陈文兴.纤维素纤维接枝β-环糊精的合成及其富集金属离子研究[J].高分子学报,2004,4:566-571
    [33]Kevin B. H., Rebecca M. H., Cindy B. S. Inhibition of Enzymatic Browning in Fresh Fruit and Vegetable Juices by Soluble and Insoluble Forms of β-Cyclodextrin Alone or in Combination with Phosphates[J]. J. Agric. Food Chem.,1996,44(9):2591-2594.
    [34]童林荟.环糊精化学[M].北京:科学出版社,2001:10-30
    [35]Williams III R.O., Mahaguna V., Sriwongjanya M. Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin [J]. Euro. J. Pharm. Biopharm., 1998,46:355-360
    [36]Hajime M., Kenzo L., Youmiko F. Complexation of various fragrance materials with 2-hydroxypropyl-β-cyclodextrin [J]. Chem. Pharm. Bull.,1991,39(4):827-830
    [37]陈敏,蔡同一,阎红.β-环糊精的化学改性及其在食品工业中应用的前景[J].食品与发酵工业,1998,24(5):69-71
    [38]Frisch H.L., Wasserman E. Chemical Topology [J]. J. Am. Chem. Soc.,1961,83(18): 3789-3795
    [39]Tian H., Wang Q.-C. Recent progress on switchable rotaxanes [J]. Chem. Soc. Rev.,2006, 35(4):361-374
    [40]Philp D., Stoddart J. F. Self-assembly in natural and unnatural systems [J]. Angew. Chem., Int. Ed. Engl.1996,35(11):1154-1196
    [41]Amabilino D. B., Stoddart J. F. Interlocked and intertwined structures and superstructures [J]. Chem. Rev.,1995,95(8):2725-2828
    [42]Rekharsky M.V., Inoue Y. Complexation thermodynamics of cyclodextrins [J]. Chem. Rev.,1998,98:1875-1918
    [43]刘育,尤长城,张衡益.超分子化学[M].天津:南开大学出版社,2001
    [44]Matsuda H., Arima H. Cyclodextrins in transdermal and rectal delivery [J]. Adv. Drug Deliv. Rev.,1999,36(1):81~99
    [45]谷福根,高永良,崔福德.环糊精包合物研究进展[J].中国新药杂志,2005,14(6):686-693
    [46]Nepogodiev, S. A.; Stoddart, J. F. Cyclodextrin-based catenanes and rotaxanes [J]. Chem. Rev.,1998,98(5):1959-1976
    [47]Eliadou, K., Yannakopoulou, K., Rontoyianni, A., Mavridis, I. M. NMR detection of simultaneous formation of [2]-and [3]pseudorotaxanes in aqueous solution between a-Cyclodextrin and linear aliphatic α,ω-amino acids, an a,co-diamine and an α,ω-diacid of similar length, and comparison with the solid-state structures [J] J. Org. Chem.,1999,64(17): 6217-6226
    [48]Avram, L., Cohen, Y. Complexation in pseudorotaxanes based on a-cyclodextrin and different α,ω-diaminoalkanes by NMR diffusion measurements [J]. J. Org. Chem.,2002, 67(8):2639-2644
    [49]Ashton, P. R., Baxter, I., Fyfe, M. C. T., Raymo, F. M., Spencer, N., Stoddart, J. F., White, A. J. P., Williams, D. J. Rotaxane or pseudorotaxane? That is the question! [J]. J. Am. Chem. Soc.,1998,120(10):2297-2307
    [50]Tsortos, A., Yannakopoulou, K., Eliadou, K., Mavridis, I. M., Nounesis, G J. Partial thermal dethreading of [3]pseudorotaxanes of a-cyclodextrin with linear aliphatic a,co-amino acids in aqueous solution [J]. J. Phys. Chem. B,2001,105(13):2664-2671
    [51]Giastas, P., Mourtzis, N., Yannakopoulou, K., Mavridis, I. M. Pseudorotaxanes of β-cyclodextrin with diamino end-functionalized oligo-phenyl and -benzyl compounds in solution and in the solid state [J]. J. Inclusion Phenom. Macrocyclic Chem.,2002,44: 247-250
    [52]Shen, X.-J., Chen, H.-L., Yu, F., Zhang, Y.-C., Yang, X.-H., Li, Y.-Z. A new type of [2] and [3]pseudorotaxane composed of β-cyclodextrin and bisimidazolyl compounds [J]. Tetrahedron Lett.,2004,45(36):6813-6817
    [53]Ogino, H. Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by.alpha.,.omega.-diaminoalkanes coordinated to cobalt(Ⅲ) complexes [J]. J. Am. Chem. Soc.,1981,103(5):1303-1304
    [54]Lyon, A. P., Macartney, D. H. Kinetic and spectroscopic studies on a-cyclodextrin rotaxanes with pentacyano(cyanopyridinium)ferrate(Ⅱ) stoppers [J]. Inorg. Chem.,1997, 36(4),729-736
    [55]Wylie, R. S., Macartney, D. H. Self-assembling metal rotaxane complexes of.alpha.-cyclodextrin [J]. J. Am. Chem. Soc.,1992,114(8):3136-3138
    [56]Baer, A. J., Macartney, D. H. α- and β-Cyclodextrin Rotaxanes of μ-Bis(4-pyridyl)bis[pentacyanoferrate(II)] Complexes [J]. Inorg. Chem.,2000,39(7),1410-1417
    [57]Shukla, A. D., Bajaj, H. C., Das, A. β-Cyclodextrin-assisted intervalence charge transfer in mixed-valent [2] rotaxane complexes having metal centers linked by an interrupted-electron system [J]. Angew. Chem., Int. Ed. Engl.2001,40(2):446-448
    [58]Harada, A., Li, J., Kamachi, M. J. Non-ionic [2]rotaxanes containing methylated β-cyclodextrins [J]. Chem. Soc., Chem. Commun.1997,1413-1414
    [59]Anderson, S., Aplin, R. T., Claridge, T. D. W., Goodson III, T., Maciel, A. C., Rumbles, G., Ryan, J. F., Anderson, H. L. J. An approach to insulated molecular wires:synthesis of water-soluble conjugated rotaxanes [J]. Chem. Soc., Perkin Trans.1,1998,2383-2398
    [60]Stanier, C. A., O'Connell, M. J., Clegg, W., Anderson, H. L. J. Synthesis of fluorescent stilbene and tolan rotaxanes by Suzuki coupling [J]. Chem. Soc., Chem. Commun.2001, 493-494
    [61]Onagi, H., Carrozzini, B., Cascarano, G L., Easton, C. J., Edwards, A. J., Lincoln, S. F., Rae, A. D. Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes [J]. Chem. Eur. J,2003,9(24):5971-5977
    [62]Onagi, H., Blake, C. J., Easton, C. J., Lincoln, S. F. Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane [J]. Chem. Eur. J.,2003,9(24):5978-5988
    [63]Terao, J., Tang, A., Michels, J. J., et al. Synthesis of poly(para-phenylenevinylene) rotaxanes by aqueous Suzuki coupling[J], J. Chem. Soc., Chem. Commun.2004,56-57
    [64]Taylor, P. N., O'Connell, M. J., McNeill, L. A. et al. Insulated molecular wires:Synthesis of conjugated polyrotaxanes by Suzuki coupling in water[J], Angew. Chem., Int. Ed. Engl. 2000,39(19),3456-3460
    [65]Wenz, G, Von der Bey, E., Schmidt, L., Angew. Chem., Int. Ed. Engl. Synthesis of a lipophilic cyclodextrin-[2]-rotaxane 1992,31,783-785
    [66]Craig, M. R., Claridge, T. D. W., Hutchings, M. G, et al. Synthesis of a cyclodextrin azo dye [3]rotaxane as a single isomer[J], J. Chem. Soc., Chem. Commun.1999, (16):1537-1538
    [67]Onagi, H., Carrozzini, B., Cascarano, G L., et al. Separated and Aligned Molecular Fibres in Solid State Self-Assemblies of Cyclodextrin [2]Rotaxanes, Chem. Eur. J.,2003,9, 5971-5977
    [68]Gidley, M. J., Bociek, S. Carbohydr. Res.,13C-C.p.-m.a.s. n.m.r. studies of frozen solutions of (1→4)-α-D-glucans as a probe of the range of conformations of glycosidic linkages:The conformations of cyclomaltohexaose and amylopectin in aqueous solution, 1988,183,126-130
    [69]Easton, C. J., Lincoln, S. F., Meyer, A. G, et al. Synthesis and conformational analysis of an alpha-cyclodextrin [2]-rotaxane[J]. J. Chem. Soc., Perkin Trans.1 1999, (17):2501-2506
    [70]Buston, J. E. H., Young, J. R.; Anderson, H. L. Rotaxane-encapsulated cyanine dyes: enhanced fluorescence efficiency and Photostability[J]. J. Chem. Soc., Chem. Commun.2000, (11):905-906
    [71]Craig, M. R., Hutchings, M. G, Claridge, T. D. W., et al. Rotaxane-encapsulation enhances the stability of an azo dye, in solution and when bonded to cellulose [J]. Angew. Chem., Int. Ed. Engl.2001,40(6):1071-1074
    [72]Anderson, H. L., Craig, M. R., Hutchings, M. G. Rotaxane type reactive dye for coloring substrates such as paper, hair, textile, leather, wood, polymer, glass and ceramics, comprises reactive azo chromophoric guest molecule and macrocyclic host molecule[P]. (BASF Aktiengesellschaft, Germany). WO 2002024816,2002; Chem. Abstr.2002,240889
    [73]Monti. S., Sortino. S. Photoprocesses of Photosensitizing drugs within cyclodextrin cavities[J]. Chem. Soc. Rev.,2002,31(5):287-300
    [74]Dzyubenko. M. I., Maslov. V. V., Pelipenko. V. P., et al. Study of the spectral and spatial-angular characteristics of pulse-periodic flashlamp-pumped dye laser [J]. Proc. SPIE Int. Soc. Opt. Eng.,1998,3403,194-199
    [75]Taguchi, T. (Fuji Photo Film Co., Ltd., Japan). JP 2003066575,2003; Chem. Abstr.2003, 165393
    [76]Haque, S. A., Park, J. S., Srinivasarao, M., et al. Molecular-level insulation:An approach to controlling interfacial charge transfer [J]. Adv. Mater.,2004,16(14):1177-1181
    [77]O'Regan, B.; Graetzel, M. A Low-cost, High-efficency Solar-cell Based on Dye-sensitized Colloidal TiO2 Films [J]. Nature (London, U. K.) 1991,353(6346):737-740
    [78]Willner. I., Rubin. S. Control of the Structure and Functions of Biomaterials by Light[J]. Angew. Chem., Int. Ed. Engl.1996,35(4):367-385
    [79]Stanier. C. A., Alderman. S. J., Claridge, T. D. W., et al. Unidirectional Photoinduced Shuttling in a Rotaxane with a Symmetric Stilbene Dumbbell[J]. Angew. Chem., Int. Ed.2002, 41(10):1769-1772
    [80]Wang, Q. C., Qu, D. H., Ren, J., et al. A Lockable Light-Driven Molecular Shuttle with a Fluorescent Signal[J]. Tian, H. Angew. Chem., Int. Ed.2004,43(20):2661-2665
    [81]Kawata, Y., Kawata, S. Three-Dimensional Optical Data Storage Using Photochromic Materials[J]. Chem. Rev.,2000,100 (5), pp 1777-1788.
    [82]Ferri, V., Scoponi, M., Bignozzi, C. A.; et al. Near-field optical addressing of luminescent photoswitchable supramolecular systems embedded in inert polymer matrices [J] Nano Lett. 2004,4(5):835-839.
    [83]Bruder, F. On an integrated approach for optimizing substrate polymers for future optical disc requirements [J] Macromol. Mater. Eng.,2001,286(11):685-690.
    [84]Buston, J. E. H., Marken, F., Anderson, H. L. Enhanced chemical reversibility of redox processes in cyanine dye rotaxanes [J]. J. Chem. Soc., Chem. Commun.2001, (11): 1046-1047
    [85]Wenz G, Han B-H, and Muller A. Cyclodextrin Rotaxanes and Polyrotaxanes[J]. Chem. Rev.2006,106,782-817
    [86]Mason W. T. Fluorescent and luminescent probes for biological activity[M].2nd ed. London:Academic Press,1999
    [87]Lakowicz J. R. Principles of fluorescence spectroscopy[M].3rd ed. New York:Springer Science,2006
    [88]Zhang J., Campbell R. E., Ting A. Y., et al. Creating new fluorescent probes for cell biology[J]. Natl. Rev.,2002,3:906-918
    [89]Waggoner A. Fluorescent labels for proteomics and genomics [J]. Curr. Opin. Chem. Biol.,2006,10:62-66
    [90]Stryer L. Fluorescence energy transfer as a spectroscopic ruler [J]. Annu. Rev. Biochem., 1978,47:819-846
    [91]Forster Th. Intermolecular energy migration and fluorescence [J]. Ann. Phys.,1948,2: 55-75
    [92]Sapsford K. E., Berti L., Medintz I. L.7.Materials for fluorescence resonance energy transfer analysis:Beyond traditional donor-acceptor combinations [J]. Angew. Chem. Int. Ed., 2006,45(28):4562-4588
    [93]Eisenhawer M, Cattarinussi S, Kuhn A, et al. Fluorescence energy transfer shows a close helix-helix distance in the transmembrane M13 procoat protein [J]. Biochemistry,2001, 40:12321-12328
    [94]Ramirez-Carrozzi V., Kerppola T. Gel-based fluorescence resonance energy transfer (gelFRET) analysis of nucleoprotein complex architecture [J]. Methods,2001,25(1):31-43
    [95]Sugawa M., Arai Y., Iwane A. H., et al. Single molecule FRET for the study on structural dynamics of biomolecules [J]. Biosystems,2007,88(3):243-250
    [96]Thompson M. DNA sequence-directed assembly of two peptide bioconjugates [J]. Bioorg. Chem.,2006,34(5):235-247
    [97]Hirata J., de Jong C. F., van Dongen M. M., et al. A flow injection kinase assay system based on time-resolved fluorescence resonance energy-transfer detection in the millisecond range [J]. Anal. Chem.,2004,76(15):4292-4298
    [98]Luo K. Q., Yu V. C., Pu Y. M., et al. Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells [J]. Biochem. Biophys. Res. Commun.,2001, 283(5):1054-1060
    [99]Pedersen M., Carmosino M., Forbush B. Intramolecular and intermolecular fluorescence resonance energy transfer in fluorescent protein-tagged Na-K-Cl cotransporter (NKCC1) sensitivity to regulatory conformational change and cell volume [J]. J. Bio. Chem.,2008, 283(5):2663-2674
    [100]Fujita Y, Funabashi H., Mie M., et al. Design of a thermocontrollable protein complex [J]. Bioconjugate Chem.,2007,18(5):1619-1624
    [101]Dai Z., Zhang J. M., Dong Q. X., et al. Adaption of Au nanoparticles and CdTe quantum dots in DNA detection [J]. Chin. J. Chem. Eng.,2007,15(6):791-794
    [102]Clapp A. R., Medintz I. L., Mattoussi H. Forster resonance energy transfer investigations using quantum-dot fluorophores [J]. Chemphyschem,2006,7(1):.47-57
    [103]Galvez E. M., Zimmermann B., Rombach-Riegraf V., et al. Fluorescence resonance energy transfer in single enzyme molecules with a quantum dot as donor [J]. Euro. Biophys. J. Biophys. Lett.,2008,37(8):1367-1371
    [104]Fernandez-Arguelles M. T., Yakovlev A., Sperling R. A., et al. Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes [J]. Nano Lett.,2007,7(9):2613-2617
    [105]Clapp A. R., Medintz I. L., Mauro J. M., et al. Quantum dot bioconjugates as energy donors in fluorescence resonance energy transfer assays [J]. Biomicroelectromechanical Systems (Biomems),2003,773:167-172
    [106]Kimura R. H., Steenblock E. R., Camarero J. A. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease [J]. Anal. Biochem.,2007,369(1):60-70
    [107]Kukolka F., Schoeps O., Woggon U., et al. DNA-Directed assembly of supramolecular fluorescent protein energy transfer systems [J]. Bioconjugate Chem.,2007,18(3):621-627
    [108]Dragan A. I., Privalov P. L. Use of fluorescence resonance energy transfer (Fret) in studying protein-induced DNA bending [J]. Fluorescence Spectroscopy,2008,450:185-199
    [109]Kao M. W. P., Yang L. L., Lin J. C. K., et al. Strategy for efficient site-specific FRET-dye labeling of ubiquitin [J]. Bioconjugate Chem.,2008,19(6):1124-1126
    [110]Zhou D. J., Ying L. M., Hong X., et al. A compact functional quantum dot-DNA conjugate:Preparation, hybridization, and specific label-free DNA detection [J]. Langmuir, 2008,24(5):1659-1664
    [111]Clapp A. R., Pons T., Medintz I. L., et al. Two-Photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications [J]. Adv. Mater.,2007,19(15): 1921-1926
    [112]Medintz I. L., Konnert J. H., Clapp A. R., et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly [J]. Proc. Natl. Acad. Sci. USA,2004,101(26):9612-9617
    [113]Medintz I. L., Sapsford K. E., Clapp A. R., et al. Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots [J]. J. Phys. Chem. B, 2006,110(22):10683-10690
    [114]Medintz I. L., Sapsford K. E., Golden J. P., et al. Towards the design and implementation of surface tethered quantum dot-based nanosensors [J]. Quantum Dots, Nanoparticles and Nanowires,2004,789:105-110
    [115]Medintz I. L., Clapp A. R., Trammell S. A., et al. Modulation of quantum dot Photoemission based on fluorescence resonance energy transfer to a Photochromic dye acceptor [J]. Nanosensing:Materials and Devices,2004,5593:300-307
    [116]Medintz I. L., Trammell S. A., Mattoussi H., et al. Reversible modulation of quantum dot Photoluminescence using a protein-bound Photochromic fluorescence resonance energy transfer acceptor [J]. J. Am. Chem. Soc.,2004,126(1):30-31
    [117]Medintz I. L., Goldman E. R., Clapp A. R., et al. A fluorescence resonance energy transfer qantum dot explosive nanosensor [J]. Nanobiophotonics and Biomedical Applications 11,2005,5705:166-174
    [118]Medintz I. L., Goldman E. R., Clapp A. R., et al. A fluorescence resonance energy transfer qantum dot explosive nanosensor [J]. Nanobiophotonics and Biomedical Applications Ⅱ,2005,5705:166-174
    [119]Peng H., Zhang L. J., Kjallman T. H. M., et al. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA [J]. J. Am. Chem. Soc.,2007, 129(11):3048-3049
    [120]Frutos A. G., Pal S., Quesada M., et al. Method for detection of single-base mismatches using bimolecular beacons [J]. J. Am. Chem. Soc.,2002,124(11):2396-2397
    [121]Sando S., Sasaki T., Kanatani K., et al. Amplified nucleic acid sensing using programmed self-cleaving DNAzyme [J]. J. Am. Chem. Soc.,2003,125(51):15720-15721
    [122]Dubertret B., Calame M., Libchaber A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nature Biotech.,2001,19(7):680-681
    [123]Oquare B. Y., Taylor J. S. Synthesis of Peptide Nucleic Acid FRET Probes via an Orthogonally Protected Building Block for Post-Synthetic Labeling of Peptide Nucleic Acids at the 5-Position of Uracil[J]. Bioconjugate Chem.,2008,19(11):2196-2204
    [124]Socher E., Bethge L., Knoll A., et al. Low-noise stemless PNA beacons for sensitive DNA and RNA detection [J]. Angew. Chem. Int. Ed.,2008,47(49):9555-9559
    [125]Endoh T., Mie M., Kobatake E. Direct detection of RNA transcription by FRET imaging using fluorescent protein probe [J]. J. Biotech.,2008,133(4):413-417
    [126]Mhlanga M. M., Tyagi S. Using tRNA-linked molecular beacons to image cytoplasmic mRNAs in live cells[J]. Nature Protocols,2006,1(3):1392-1398
    [127][166] Grossmann T. N., Roglin L., Seitz O. Triplex molecular beacons as modular probes for DNA detection [J]. Angew. Chem. Int. Ed.,2007,46(27):5223-5225
    [128]Sando S., Narita A., Sasaki T., et al. Locked TASC probes for homogeneous sensing of nucleic acids and imaging of fixed E-coli cells [J]. Org. Biomol. Chem.,2005,3(6): 1002-1007
    [129]Tan L., Li Y., Drake T. J., et al. Molecular beacons for bioanalytical applications [J]. Analyst,2005,130(7):1002-1005
    [130]Kim J. H., Morikis D., Ozkan M. Adaptation of inorganic quantum dots for stable molecular beacons[J]. Sensors and Actuators B-Chemical,2004,102(2):315-319
    [131]Zhuang X. W., Bartley L. E., Babcock H. P., et al. A single-molecule study of RNA catalysis and folding [J]. Science,2000,288(5473):2048-2051
    [132]Heyduk T., Heyduk E. Molecular beacons for detecting DNA binding proteins [J]. Nature Biotech.,2002,20(2):171-176
    [133]Medintz I. L., Goldman E. R., Clapp A. R., et al. FRET-based quantum dot protein nanosensors [J]. Abstracts of Papers of the American Chemical Society,2005,230: U3501-U3501
    [134]Clapp A. R., Medintz I. L., Mauro J. M., et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J]. J. Am. Chem. Soc.,2004, 126(1):301-310
    [135]Medintz I. L., Goldman E. R., Lassman M. E., et al. A fluorescence resonance energy transfer sensor based on maltose binding protein [J]. Bioconjugate Chem.,2003,14(5): 909-918
    [136]Chinnayelka S., McShane M. J. Resonance energy transfer nanobiosensors based on affinity binding between apo-enzyme and its substrate [J]. Biomacromolecules,2004,5(5): 1657-1661
    [137]Glickman J. F., Wu X., Mercuri R., et al. A comparison of ALAScreen, TR-FRET, and TRF as assay methods for FXR nuclear receptors [J]. J. Biomol. Screening,2002,7(1):3-10
    [138]Leblanc V., Delaunay V., Lelong J. C., et al. Homogeneous time-resolved fluorescence assay for identifying p53 interactions with its protein partners, directly in a cellular extract [J]. Anal. Biochem.,2002,308(2):247-254
    [139]Ueda H., Kubota K., Wang Y., et al. Homogeneous noncompetitive immunoassay based on the energy transfer between fluorolabeled antibody variable domains (open sandwich fluoroimmunoassay) [J]. Biotechniques,1999,27(4):738-742
    [140]Rega M. F., Reed J. C., Pellecchia M. Robust lanthanide-based assays for the detection of anti-apoptotic Bcl-2-family protein antagonists [J]. Bioorg. Chem.,2007,35(2):113-120
    [141]Willard D. M., Carillo L. L., Jung J., et al. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay [J]. Nano Lett.,2001,1(9):469-474
    [142]Mokhir A., Kiel A., Herten D. P., et al.20.Fluorescent sensor for Cu2+ with a tunable emission wavelength [J]. Inorg. Chem.,2005,44(16):5661-5666
    [143]Miyawaki A., Llopis J., Heim R., et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin [J]. Nature,1997,388(6645):882-887
    [144]Ueyama H., Takagi M., Takenaka S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation [J]. J. Am. Chem. Soc.,2002,124(48): 14286-14287
    [145]Soh N., Makihara K., Sakoda E., et al. A ratiometric fluorescent probe for imaging hydroxyl radicals in living cells [J]. Chem. Commun.,2004, (5):496-497
    [146]Khan S. N., Islam B., Yennamalli R., et al. Characterization of doxorubicin binding site and drug induced alteration in the functionally important structural state of oxyhemoglobin [J]. J. Pharma. Biomed. Anal.,2008,48(4):1096-1104
    [147]Cash T. P., Pan Y., Simon M. C. Reactive oxygen species and cellular oxygen sensing [J]. Free Radical Biology and Medicine,2007,43(9):1219-1225
    [148]Kenworthy A. K., Edidin M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of<100 angstrom using imaging fluorescence resonance energy transfer [J]. J. Cell Biology.,1998,142(1):69-84
    [149]Mahajan N. P., Linder K., Berry G., et al. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer [J]. Nature Biotech.,1998,16(6):547-552
    [150]Gouanve F., Schuster T., Allard E., et al. Fluorescence quenching upon binding of copper ions in dye-doped and ligand-capped polymer nanoparticles:A simple way to probe the dye accessibility in nano-sized templates [J]. Adv. Funct. Mater.,2007,17(15):2746-2756
    [151]Dodd D. E., Bus J. S., Barrow C.S., Nonprotein sulfhydryl alterations in F-344 rats following acute methyl chloride inhalation [J]. Toxical Appl. Pharmacol,1982,62(2) 228-236
    [152]张承宏,潘家理,化学反应的酸碱理论[M],上海:上海科学技术出版社,1983
    [153]沈宏康,软硬酸碱原理在有机化学中的应用[J].化学通报,1976,(6):291-296.
    [154]Guo, X., Zhang, D., Zhou, Y, et al. Synthesis and spectral investigations of a new dyad with spiropyran and fluorescein units:Toward information processing at the single molecular level [J]. J. Org. Chem.,2003,68(14):5681-5687
    [155]Medintz, I. L., Uyeda, H. T., Goldman, E. R., et al. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nat. Mater.,2005,4(6):435-446.
    [156]Medintz, I. L., Trammell, S. A., Mattoussi, H., et al. Reversible modulation of quantum dot Photoluminescence using a protein-bound Photochromic fluorescence resonance energy transfer acceptor [J]. J. Am. Chem. Soc.,2004,126(1):30-31.
    [157]Tomasulo, M., Giordani, S., Raymo, F. M., Fluorescence modulation in polymer bilayers containing fluorescent and Photochromic dopants [J]. Adv. Funct. Mater.,2005,15(5): 787-794.
    [158]Brasola, E., Mancin, F., Rampazzo, E., et al. A fluorescence nanosensor for Cu2+ on silica particles [J]. Chem. Commun.,2003, (24):3026-3027
    [159]Corrie, S. R., Lawrie, G A., Trau, M. Quantitative analysis and characterization of biofunctionalized fluorescent silica particles [J]. Langmuir,2006,22(6):2731-2737
    [160]Meallet-Renault, R., Herault, A., Vachon, J. J., et al. Fluorescent nanoparticles as selective Cu(Ⅱ) sensors[J]. Photochem. Photobiol. Sci.,2006,5(3):300-310
    [161]Gouanve, F., Schuster, T., Allard, E., et al. Fluorescence quenching upon binding of copper ions in dye-doped and ligand-capped polymer nanoparticles:A simple way to probe the dye accessibility in nano-sized templates [J]. Adv. Funct. Mater.,2007,17:2746-2756
    [162]Chen, J., Zeng, F., Wu, S., et al. A core-shell nanoparticle approach to Photoreversible fluorescence modulation of a hydrophobic dye in aqueous media [J]. Chem. Euro. J.,2008, 14(16):4851-4860
    [163]Chen, J, Zeng, F, Wu, SZ, et al. Photoreversible Fluorescent Modulation of Nanoparticles via One-Step Miniemulsion Polymerization [J]. Small,2009,5(8):970-978
    [164]Wu, S., Zeng, F., Zhu, H., et al. Energy and electron transfers in Photosensitive chitosan[J]. J. Am. Chem. Soc.,2005,127(7):2048-2049
    [165]Chen, J., Zeng, F., Wu, S., et al. Reversible fluorescence modulation through energy transfer with ABC triblock copolymer micelles as scaffolds [J]. Chem. Commun.,2008, (43): 5580-5582
    [166]Wu, S., Luo, Y., Zeng, F., et al. Photoreversible fluorescence modulation of a rhodamine dye by supramolecular complexation with Photosensitive cyclodextrin[J]. Angew. Chem., Int. Ed.2007,46(37):7015-7018
    [167]Yuan, M. J., Zhou, W. D., Liu, X. F., et al. A multianalyte chemosensor on a single molecule:promising structure for an integrated logic gate [J]. J. Org. Chem.,2008,73: 5008-5014
    [168]Lee M. H., Kim H. J., Yoon S. W., et al. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine [J]. Org. Lett.,2008,10 (2):213-216
    [169]Lee M. H., Wu, J. S., Lee, J. W., et al. Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore [J]. Org. Lett.,2007,9 (13):2501-2504
    [170]Yu, W. W., Chang, E., Falkner, J. C., et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers [J]. J. Am. Chem. Soc.,2007,129(10): 2871-2879
    [171]Dondon, R., Fery-Forgues, S. Inclusion complex of fluorescent 4-hydroxycoumarin derivatives with native beta-cyclodextrin:Enhanced stabilization induced by the appended substituent [J]. J. Phys. Chem. B,2001,105(43):10715-10722
    [172]Al-Soufi, W., Reija, B., Novo, M., rt al. Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics:Inclusion complexes of pyronines with cyclodextrin [J]. J. Am. Chem. Soc.,2005,127(24):8775-8784
    [173]Murphy, R. S., Barros, T. C., Mayer, B., et al. Photophysical and theoretical studies on the stereoselective complexation of naphthylethanols with beta-cyclodextrin [J]. Langmuir, 2000,16(23):8780-8788
    [174]Liu, Y., Li, X. Q., Chen, Y., et al. Spectrophotometric study of selective binding behaviors of dye molecules by pyridine-and bipyridine-modified β-cyclodextrin derivatives with a functional tether in aqueous solution [J]. J. Phys. Chem. B,2004,108(50): 19541-19549
    [175]Onclin, S., Mulder, A., Huskens, J., et al. Molecular printboards:Monolayers of beta-cyclodextrins on silicon oxide surfaces [J]. Langmuir,2004,20(13):5460-5466
    [176]Tomatsu, I., Hashidzume, A., Harada, A. Cyclodextrin-based side-chain polyrotaxane with unidirectional inclusion in aqueous media [J]. Angew. Chem., Int. Ed.2006,45(28): 4605-4608
    [177]Almutairi, A., Guillaudeu, S. J., Berezin, M. Y., et al. Biodegradable pH-Sensing Dendritic Nanoprobes for Near-Infrared Fluorescence Lifetime and Intensity Imaging[J]. J. Am. Chem. Soc.2008,130(2):444-445
    [178]Berton, M., Mancin, F., Stocchero, G., et al. Self-Assembling in Surfactant Aggregates: An Alternative Way to the Realization of Fluorescence Chemosensors for Cu(II) Ions[J]. Langmuir,2001,17(24):7521-7528
    [179]Mansell, D., Rattray, N., Etchells, L. L., et al. Fluorescent probe:complexation of Fe3+ with the myo-inositol 1,2,3-trisphosphate motif[J]. Chem. Commun.2008,5161-5163
    [180]Lee, S. H., Kumar, J., Tripathy, S. K. Thin Film Optical Sensors Employing Polyelectrolyte Assembly[J]. Langmuir 2000,16(26):10482-10489
    [181]Cordes, D. B., Gamsey, S., Sharrett, Z., et al. The Interaction of Boronic Acid-Substituted Viologens with Pyranine:The Effects of Quencher Charge on Fluorescence Quenching and Glucose Response[J]. Langmuir 2005,21(14):6540-6547
    [182]Cicchetti, G., Biernacki, M., Farquharson, J., et al. A Ratiometric Expressible FRET Sensor for Phosphoinositides Displays a Signal Change in Highly Dynamic Membrane Structures in Fibroblasts[J]. Biochemistry 2004,43(7):1939-1949
    [183]Sapsford, K. E., Berti, L., Medintz, I. L. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations[J]. Angew. Chem., Int. Ed.2006,45(28):4562-4589
    [184]Merzlyakov, M., Li, E., Casas, R., et al. Spectral Forster resonance energy transfer detection of protein interactions in surface-supported bilayers[J]. Langmuir 2006,22(18): 6986-6992
    [185]Cejas, M. A.; Raymo, F. M. Fluorescent Diazapyrenium Films and Their Response to Dopamine[J]. Langmuir 2005,21(13):5795-5802
    [186]Palacios, M. A., Wang, Z., Montes, V. A., et al. tional Design of a Minimal Size Sensor Array for Metal Ion Detection[J]. J. Am. Chem. Soc.2008,130(31):10307-10314
    [187]Tolosa, J.; Zucchero, A. J.; Bunz, U. H. F. Water-Soluble Cruciforms:Response to Protons and Selected Metal Ions[J]. J. Am. Chem. Soc.2008,130(20):6498-6506
    [188]de Ruiter,G., Gupta, T.; van der Boom, M. E. Selective Optical Recognition and Quantification of Parts Per Million Levels of Cr6+ in Aqueous and Organic Media by Immobilized Polypyridyl Complexes on Glass[J]. J. Am. Chem. Soc.2008,130(9): 2744-2745
    [189]Ye, B. C.; Yin, B. C. Bincheng Yin, Highly Sensitive Detection of Mercury (Ⅱ) ion by Fluorescence Polarization via Gold Nanoparticle Enhancement[J]. Angew. Chem., Int. Ed. 2008,47,8386-8389
    [190]Kim, H. N., Lee, M. H., Kim, H. J., et al. A new trend in rhodamine-based chemosensors:Application of spirolactam ring-opening to sensing ions[J]. J. Chem. Soc. Rev. 2008,37(8):1465-1472
    [191]Zhang, X L, Xiao, Y.; Qian, X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells[J]. Angew. Chem., Int. Ed.2008,47(42):8025-8029
    [192]Mao, J.,Wang, L., Dou,W, et al. Tuning the selectivity of two chemosensors to Fe(Ⅲ) and Cr(Ⅲ)[J]. Org. Lett.2007,9:4567-4570
    [193]Xiang, Y.; Tong, A. A new rhodamine-based chemosensor exhibiting selective Fe-Ⅲ-amplified fluorescence[J]. Org. Lett.2006,8(8):1549-1552
    [191]Petter, R. C., Salek, J. S., Sikorski, C. T., et al. Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins[J]. J. Am. Chem. Soc.1990,112(10):3860-3868
    [192]Miyauchi, M., Hoshino, T., Yamaguchi, H., et al. Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers[J]. J. Am. Chem. Soc.2005,127(26):2034-2035
    [193]Kretschmann, O., Choi, S. W., Miyauchi, M., et al. Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers[J]. Angew. Chem., Int. Ed.2006,45(26):4361-4365
    [194]Silva, O. F., Fernandez, M. A., Pennie, S. L., et al. Synthesis and Characterization of an Amphiphilic Cyclodextrin, a Micelle with Two Recognition Sites[J]. Langmuir 2008,24(8): 3718-3726
    [195]Sanchez, M., Parella, T., Cervello, E., et al. NMR study of 9-(1-adamantyl-aminomethyl)-9,10-dihydroanthracene and its beta-cyclodextrin complexes[J]. Magn. Reson. Chem.2000,38(11):925-931
    [196]Kretschmann, O., Steffens, C., Ritter, H. Cyclodextrin complexes of polymers bearing adamantyl groups:Host-guest interactions and the effect of spacers on water solubility[J]. Angew. Chem., Int. Ed.2007,46(15):2708-2711
    [197]Blomberg, E., Kumpulainen, A., David, C., et al. Polymer Bilayer Formation Due to Specific Interactions between β-Cyclodextrin and Adamantane:A Surface Force Study[J]. Langmuir 2004,20(24):10449-10454
    [198]Camacho, C., Matias, J. C., Cao, R., et al. Hydrogen Peroxide Biosensor with a Supramolecular Layer-by-Layer Design[J]. Langmuir 2008,24(15):7654-7657
    [199]G. Pistolis and Angelos Malliaris. Nanotube Formation between Cyclodextrins and 1,6-Diphenyl-1,3,5-hexatriene[J]. J. Phys. Chem.,1996,100 (38):15562-15568
    [200]Gabriel, G. J., Iverson, B. L. Aromatic Oligomers that Form Hetero Duplexes in Aqueous Solution[J]. J. Am. Chem. Soc.2002,124(51):15174-15175
    [201]Biskup, C., Zimmer, T., Kelbauskas, L., et al. Multi-dimensional fluorescence lifetime and FRET measurements[J]. Microsc. Res. Tech.2007,70(5):442-451
    [202]Domingo, B., Sabariegos, R., Picazo, F., et al. Imaging FRET standards by steady-state fluorescence and lifetime methods[J]. Microsc. Res. Tech.2007,70(12):1010-1021
    [203]Gouanve, F; Schuster, T; Allard, E, et al. Fluorescence quenching upon binding of copper ions in dye-doped and ligand-capped polymer nanoparticles:A simple way to probe the dye accessibility in nano-sized templates[J]. Adv. Funct. Mater.2007,17:2746-2756
    [204]J. R. Lakowicz, Principles of Fluorescence Spectroscopy[M]. Plenum:New York,1999
    [205]B. Valeur in Molecular Fluorescence:principles and applications[M], Wiley-VCH: Weinheim, New York,2002.
    [206]lakowicz J. R. Principles of fluorescence spectroscopy [M],3rd ed. New York:Springer Science,2006
    [207]Sapsford, K E, Berti, L, Medintz, I L. Materials for fluorescence resonance energy transfer analysis:Beyond traditional donor-acceptor combinations[J]. Angew. Chem. Int. Ed., 2006,45(28):4562-4588
    [208]Tang X L, Peng X H, Dou W, et al. Design of a Semirigid Molecule as a Selective Fluorescent Chemosensor for Recognition of Cd(Ⅱ)[J]. Organic Letters 2008,10(17): 3653-3656
    [209]王莉艳,从环境保护谈汞的用途及汞污染的防治[J],重庆广播电视大学学报;2001年第4期,46-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700