咔唑衍生物类双光子荧光探针在生物成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双光子荧光显微镜是一种强有力的研究动力学过程、活细胞成像特别是活组织生命现象的工具。双光子显微镜在成像细胞和组织方面具有以下几个优点:固有的局域激发,大的穿透深度(>500μm),低的自发荧光和自吸收,小的光损伤和光漂白,这使得长时间深入成像完整组织而不会引起组织破环成为可能。然而大多数用于双光子荧光显微镜的单光子荧光探针由于自身的双光子荧光活性吸收截面小而限制了它们在双光子显微镜上的应用。因此,发展具有大活性吸收截面的双光子荧光探针是非常必要的。本论文合成了系列咔唑衍生物类双光子荧光核酸探针和酸性囊泡探针,结果表明它们具有大的双光子荧光活性吸收截面,并且能够较好地进行双光子荧光活细胞或者活组织成像。
     1.咔唑阳离子衍生物在生物成像中的应用:
     在不同激发波长条件下,咔唑阳离子衍生物9E-BHVC、9E-BMVC和BMVC在不同溶剂中的双光子活性吸收截面均比传统的核酸探针DAPI的大。特别是在DNA存在时,衍生物的双光子荧光活性吸收截面达到了45-96 GM,而DAPI的仅为2.18 GM。随着DNA的增加,衍生物的紫外吸光度先下降后上升,吸收峰位红移;在350-550 nm范围内出现诱导圆二色信号;单光子荧光强度较其在缓冲溶液中的荧光强度分别增加了485(9E-BHVC)、83(9E-BMVC)和374(BMVC)倍,其结合常数达到了106-107量级。在双光子激发下,衍生物同样表现出对DNA的灵敏响应,双光子荧光强度显著增加,较其在缓冲溶液中的强度增大了36-54倍。
     对咔唑衍生物进行了生物学性能的评估:以双光子激光器的最佳激发波长800nm进行激发,获得了拟南芥活细胞和活组织中核酸的照片;以740 nn为激发波长,进行了拟南芥活组织的成像。当激发波长为800 nm时,咔唑衍生物和DAPI双染的原生质体实验结果表明,衍生物的染色细胞核的位置和染色细胞核的数目均与DAPI一致。9E-BHVC在成像拟南芥活组织中时,表现出了较其它两个衍生物更优越的染色性能。着重考察了9E-BHVC在拟南芥活组织中的成像性能:在相同的激发光能量下记录了9E-BHVC和DAPI荧光强度随成像深度的变化,在同一个成像深度上,9E-BHVC的荧光强度要比DAPI的大;在相同的成像深度条件下测定了9E-BHVC和DAPI荧光强度随激发光能量的变化,在同一个激发光能量条件下9E-BHVC的荧光总是比DAPI的强。结果表明,利用9E-BHVC可以获得更深入的双光子荧光图像或者在更低的激发光能量下可以获得满意的双光子荧光图像。当激发波长为740 nm时,9E-BHVC在成像浑浊组织方面也比DAPI有优势。
     9E-BHVC是一个有效的双光子荧光核酸探针,具有成为商业双光子荧光探针的潜力:(i)在DNA存在下有大的活性吸收截面(90 GM)和在缓冲溶液中小的活性吸收截面(2.4 GM);(ii)大的结合常数(1.02×107 M-1);(iii)好的DNA"光开关”性能;(iv)像DAPI一样,能够专一的全部的染色活植物组织中的细胞核,但比DAPI染的深;(v)具有高的光稳定性和低的生物毒性。
     2.咔唑阳离子衍生物与DNA相互作用的光谱研究:
     利用滴定实验,考察了咔唑阳离子衍生物BHVC-DNA体系的紫外光谱、圆二色光谱、单光子荧光光谱和双光子荧光光谱的变化,从而对BHVC和DNA的结合方式进行了探讨。当以磷酸根的浓度代表DNA时,这些光谱中均存在一个比值([磷酸根]/[BHVC]=2~4.3):当小于此值时, BHVC的吸光度减小、在320-550nm范围内出现负的诱导圆二色信号、DNA在275 nm处的圆二色信号由正变负、单/双光子荧光峰红移、BHVC在热变性核酸中的荧光强度较其在未变性核酸中的大;当大于此值时,BHVC的吸光度增加、在320-550 nm范围内出现负/正模式的诱导圆二色信号、DNA在275 nm处的圆二色信号强度降低、单/双光子荧光峰蓝移、BHVC在热变性核酸中的荧光强度较其在未变性核酸中的小。除此以外,在高比例和低比例的DNA-BHVC体系中加入KI时,两个体系均表现出荧光淬灭。可以推断:BHVC在低比例条件下主要以插入方式与DNA结合,咔唑部分插入到碱基对之间而吡啶部分暴露在外;BHVC在高比例时主要是以沟槽结合方式结合到DNA链外部。
     3.酸性环境敏感的咔唑衍生物的性能评估:
     咔唑中性分子衍生物(9E-BVC)在乙醇-三氟乙酸体系中的双光子荧光活性吸收截面可达到48.1 GM,远大于其在相应激发波长条件下乙醇中的活性吸收截面数值2.9 GM。在乙醇-三氟乙酸体系中的双光子荧光发射峰位为595 nm,较其在乙醇体系中的发射峰位(470 nm)红移了125 nm。并且可以在双光子激发条件下成像活细胞中的酸性囊泡。
     本文对所合成的系列核酸探针在浑浊组织中的成像性能做了详细评估,并对这类咔唑阳离子衍生物与DNA的结合方式进行了探讨;研究了具有强的荧光发射强度和大的斯托克斯位移的双光子酸性囊泡探针分子的成像性能。这为双光子荧光探针的设计、合成提供了依据,将进一步推动双光子荧光显微镜在生物学领域的应用。
Two-photon fluorescence microscopy (TPM) has been proved to be a powerful technique for the study of dynamic processes, live-cell imaging and especially living phenomena in living tissues. It offers several advantages for imaging of cells and tissues: deeper penetration depth (>500μm), lower tissue autofluorescence and self absorption, and reduced photodamage and photoleaching, in addition to the intrinsically locallized excitation. This allows imaging deep inside the intact tissue for a long period of time without tissue preparation artifacts. However, most of the one-photon fluorescent probes used for TPM have low two-photon excited fluorescent action cross section(φ×δ) that limit their use in TPM. Therefore, there is a pressing need to develop efficient two-photon fluorescent probes with largerφ×δfor in vivo imaging. In this thesis, series of crabazole derivatives type of two-photon fluorescent nucleic acid and acidic vesicles probe were synthesized, they have optimized two-photon properties and could image living cells and/or living tissues by TPM.
     1. Two-photon fluorescence imaging of nucleic acid in living plant turbid tissue with dicationic carbazole derivatives:
     At every excitation wavelength, the values ofφ×δof dicationic carbazole derivatives(9E-BHVC,9E-BMVC and BMVC) in various solvents are larger than that of DAPI. It is worth to note that theφ×δof 9E-BHVC,9E-BMVC and BMVC are in the range of 45-96 GM in the presence of DNA, whileφ×δof DAPI is 2.18 GM. With addition of DNA, electronic absorption spectra of the three molecules show significant bathochromic shifts (20-23 nm) and large absorbance changes in opposite directions; introduced circle dichroism in the range of 350-550 nm are found; one-photon fluorescent intensities are strongly enhanced, with exaltation of 485 (9E-BHVC), 83(9E-BMVC) and 374(BMVC); the binding constants reach 106-107 order. With the two-photon excitation, carbazole derivtives also display sensitive response to DNA, and their two-photon fluorescence exaltation are 36-54 fold.
     Their imaging DNA ability in living cells and living tissues at the excitation wavelength of 800 nm and 740 nm were envalued. At 800 nm, carbazole derivatives can stain the DNA in protoplasts and the positions and regions stained are consistent with those of DAPI. However, when staining living tissue of Arabidopsis thaliana, the abilities of 9E-BHVC and 9E-BMVC are superior to BMVC, and 9E-BHVC are best. Therefore, the imaging performance of 9E-BHVC in imaging highly scattering specimens were studies in detail. A series of doublestaining microscopic photos of DAPI and 9E-BHVC under the same imaging conditions and at different depths were obtained. In the same imaging depth, the fluorescent intnesity of 9E-BHVC are stronger than that of DAPI. Similarity, at the same power, the fluorescent intnesity of 9E-BHVC are also more intensitive than that of DAPI. Experimental results show:compared to DAPI,9E-BHVC can be used to carry out deeper observation using the same incident power, or can be used to obtain usable fluorescent images by using a lower incident power. At 740 nm,9E-BHVC also exhibits better imaging ability in living tissues than that of DAPI.
     Thus, we can say that 9E-BHVC is an efficient two-photon fluorescence nucleic acid probe. It possesses potential to become a commercial two-photon fluorescent DNA probe:(i) high (i)highφ×δwhen binding to DNA (90 GM) and lowφ×δin buffer solution in the absence of DNA (2.4 GM), (ii) large intrinsic binding constant to DNA (1.02×l07 M-1), (iii) good DNA "light-switch" properties, (iv) exclusively and fully labeling nuclei in living plant tissue same as DAPI, especially deeper imaging than DAPI. (v) high photostability and low biological toxicity. These excellent properties make 9E-BHVC important value to biologist for significant biological discovery.
     2. Analysis of interaction between dicationic carbazole derivatives and DNA by spectra:
     Using electronic absorption spectra, circle dichroism spectra and one-and two-photon emission spectra, the binding modes between BHVC and DNA have been studied. All spectral show such ratio of [phosphate of DNA]/[BHVC] in the range of 2~4.3. When less than the ratio, the absorbance of BHVC decrease, negative introduced circle dichroism in 320-550 nm are observed, positive circle dichroism signal of DNA at 275 nm change to be negative, peak position of one-and two-photon spectra red shift, fluorescence intensities of BHVC in the presence of denatured DNA are higher than that in normal DNA. When larger than the ratio, the absorbance of BHVC increase, negative/positive mode introduced circle dichroism in 320-550 nm are observed, intensity of positive circle dichroism signal of DNA at 275 nm decrease, peak position of one-and two-photon spectra blue shift, fluorescence intensities of BHVC in the presence of denatured DNA are lower than that in normal DNA. In addition, whether in low ratio of [phosphate]/[BHVC] or high ratio of [phosphate]/[BHVC] system, the one-photon fluorescence intensity of BHVC decrease with addition of KI. Therefore, BHVC bind to DNA with carbazole motif intercalate into base pair of DNA and pyridium motif exposed outside at low ratio, while BHVC bind to DNA with aggregation on the surface of DNA at high ratio.
     3. Basic research on properties of carbazole derivatives sensitive to acid enviroment:
     TheΦ×δof the title compound (9E-BVC) in acidic (0.1 M trifluoroacetic acid, TFA) ethanolic solution reach 48.1 GM, while at the same excitation wavelength, theΦ×δin ethanol only 2.9 GM. On the other hand, the two-photon fluorescent peak position in acidic (0.1 M trifluoroacetic acid, TFA) ethanolic solution is 595 nm, while that in ethanol only 470 nm. Moreover,9E-BVC can stain acidic vesicles in living cell by TPM.
     The imaging ablitiy of DNA probe in living turbid tissues are envalued in detail and the binding modes are disussed; Besides, a basic research on imaging ability of two-photon fluorescence acidic vesicles probe which possess both greatly enhanced emission intensity and large stokes shift, has been carried out. These provide guidance for the design and synthesis of two-photon fluorescence probe and will further promote the application of TPM in biological field.
引文
[1]T. C. So. Peter, Y. D. Chen, R. M. Barry, M. B. Keith, Two-photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng.,2000,2,399-429.
    [2]M. Goppert-Mayer, Uber elementarakte mit zwei quantensprungen, Ann. Phys. (Leipzig),1931,9,273-294.
    [3]W. Kaiser and C. G. B. Garrett, Two-photon excitation in CaF2:Eu2+, Phys. Rev. Lett., 1961,7,229-231.
    [4]W. M. McClain, Excited state symmetry assignmeng through polarized two-photon absorption in fluids, J. Chem. Phys.,1971,55,2289.
    [5]D. M. Friedrich, W. M. McClain, Two-photon molecular electronic spectroscopy, Annu. Rev. Chem. Phys.,1980,31,559-577.
    [6]S. Singh, L. T. Bradley, Three-photon absorption in naphthalene crystas by laser excitation, Phys. Rev. Lett.1964,12,162-164.
    [7]P. M. Rentzepis, C. J. Mitschele, A. C. Saxman, Measurement of ultrashort laser pulses by three-photon fluorencence, Appl. Phys. Lett,1970,7,229-231.
    [8]I. Gryczynski, H. Szmacinski, J. R. Lakowica, On the possibility of calcium imaging using Indo-1 with three photon excitation, Photochem. Phtobiol.,1995,62, 804-808.
    [9]C. J. R. Sheppard, R. Kompfner, J. Gannaway, D. Walshi, The scanning harmonic potical microscope,1977, Presented at IEEE/OSA Conf. Laser Eng. Appl., Wshington, DC.
    [10]J. N. gannaway, C. J. R. Sheppard, Second harmonic imaging in the scanning optical microscope, Opt. Quantum Electron,1978,10,435-439.
    [11]W. Denk, J. H. Strickler, W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science 1990,248,73-76.
    [12]P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, Two-photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng.,2000,02,399-429.
    [13]B. R.Masters, P. T. So and E.Graton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo humans kin, Biophys. J.,1997,72 (6), 2405-2412.
    [14]K. G. Heinze, A. Koltermann and P. Schwille, Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis, Proc. Natl. Acad. Sci. USA,2000,97(9),10377-10382.
    [15]A. Miyawaki, O. Griesbeck and R. Heim, Dinamic and quantitative Ca2+ measurements using improved cameleons, Proc Natl Acad Sci USA,1999,96 (3), 2135-2140.
    [16]W. Denk, D. W. Piston, W. W. Webb, Two-photon molecular excitationin laser-scanning microscopy, In Pawaley B. Handbook of Biological confocal Microscopy. New York:Plenum Press,1995,445-458.
    [17]V. E. Centonze, J. G White, Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging, Biophys. J.,1998,75, 2015-2024.
    [18]J. A. Feijo, N. Moreno, Imaging plant cell by two-photon excitation, Protoplasma 2004,223,1-32.
    [19]M. B. Ericson, C. Simonsson, S. Guldbrand, C. Ljungblad, J. Paoli, M. J. Smedh, Two-photon laser-scanning fluorescence microscopy applied for studies of human skin, Biophotonic 2008,1,320-330.
    [20]H. C. Gerritsen, C. J. D. Grauw, Imaging of optically thick specimen using two-photon excitation microscopy, Microsc. Res. Tech.,1999,47,206-209.
    [21]T. Gura, Biologists get up close and personal with live cells. Science 1997,276, 1988-1990.
    [22]B. A. Reihardt, Highly active two-photon dyes:design, synthesis and characterization toward application, Chem. Mater.,1998,10,1863-1874.
    [23]黄池宝,博士学位论文,大连理工大学,2008
    [24]H. M. Kim, M. Y. Jeong, H. C. Ahn, S. J. Jeon, B. R. Cho, Two-photon sensor for metal ions derived from azacrown ether, J. Org. Chem.,2004,69,5749-5751.
    [25]H. M. Kim, B. R. Kim, M. J. An, J. H. Hong, K. J. Lee, B. R. Cho, Two-photon fluorescent probes for long-term imaging of calcium waves in live tissue, Chem. Eur. J.,2008,14,2075-2083.
    [26]X. H. Dong, Y. Y. Yang, J. Sun, Z. H. Liu, B. F. Liu, Two-photon excited fluorescent probes for calcium based on internal charge transfer, Chem. Commun., 2009,3883-3885.
    [27]P. S. Mohan, C. S. Lim, Y. S. Tian, W. Y. Roh, J. H. Lee, B. R. Cho, A two-photon fluorescent probe for near-membrane calcium ions in live cells and tissues, Chem. Commun.,2009,5365-5367.
    [28]S. J. K. Pond, S. Tsutsumi, M. Rumi, O. Kwon, E. Zojer, J.-L. Bredas, S. R. Marder, J. W. Perry, Metal-ion sensing fluorophores with large two-photon absorption cross sections:aza-crown ether substituted donor-acceptor-donor distyrylbenzenes,J. Am. Chem. Soc.,2004,126,9291-9306.
    [29]H. M. Kim, P. R. Yang, M. S. Seo, J.-S. Yi, J. H. Hong, S.-J. Jeon, Y.-G Ko, K. J. Lee, B. R. Cho, Magnesium ion selective two-photon fluorescent probe based on a benzo[h]chromene derivative for in vivo imaging, J. Org. Chem.,2007,72, 2088-2096.
    [30]H. M. Kim, C. Jung, B. R. Kim, S.-Y. Jung, J. H. Hong, Y.-G. Ko, K. J. Lee, B. R. Cho, Environment-sensitive two-photon probe for intracellular free magnesium ions in live tissue, Angew. Chem. Int. Ed.,2007,46,3460-3463.
    [31]C. J. Chang, E. M. Nolan, J. Jaworski, K.-I. Okamoto, Y. Hayashi, M. Sheng, S. J. Lippard, ZP8, a neuronal zinc sensor with improved dynamic range; imaging zinc in hippocampal slices with two-photon microscopy, Inorg. Chem.,2004,43, 6774-6779.
    [32]H. M. Kim, M. S.Seo, M. J. An, J. H. Hong, Y. S. Tian, J. H. Choi, O. Kwon, K. J. Lee, B. R. Cho, Two-photon fluorescent probes for intracellular free zinc ions in living tissue, Angew. Chem. Int. Ed.,2008,47,5167-5170.
    [33]M. H. V. Werts, S. Gmouh, O. Mongin, T. Pons, M. Blanchard-desce, strong modulation of two-photon excited fluorescence of quadripolar dyes by (De)Protonation, J. Am. Chem. Soc.,2004,126,16294-19295.
    [34]H. M. Kim, M. J. An, J. H. Hong, B. H. Jeong, O. Kwon, J.-Y.Hyon, S.-C. Hong, K. J. Lee, B. R. Cho, Two-photon fluorescent probes for acidic vesicles in live cells and tissue, Angew. Chem. Int. Ed.,2008,47,2231-2234.
    [35]H. C. Ahn, S. K. Yang, H. M. Kim, S. J. Li, S.-J. Jeon, B. R. Cho, Molecular two-photon sensor for metal ions derived from bis(2-pyridyl)amine, Chem. Phys. Lett,2005,410,312-315.
    [36]J. S. Kim, H. J. Kim, H. M. Kim, S. H. Kim, J. W. Lee, S. K. Kim, B. R. Cho, Metal ion sensing novel calix[4]crown fluoroionophore with a two-photon absorption property, J. Org. Chem.,2006,71,8016-8022.
    [37]J. Q. Cui, J. L. Fan, X. J. Peng, S. G. Sun, G. C. Chen, K. X. Guo, A new fluorescent sensor selective for Pb2+ in water capable of two-photon-induced fluorescence Measurement Sci. China Ser. B-Chem.,2009,52,780-785.
    [38]C. B. Huang, J. L. Fan, X. J. Peng, Z. Y. Lin, B. P. Guo, A. X. Ren, J. Q. Cui, S. G. Sun, Highly selective and sensitive twin-cyano-stilbene-based two-photon fluorescent probe for mercury (ii) in aqueous solution with large two-photon absorption cross-section, J. Photochem. Photobiol. A Chem.,2008,199,144-149.
    [39]C. S. Lim, D. W. Kang, Y. S. Tian, J. H. Han, H. L. Hwang, B. R. Cho, Detection of mercury in fish organs with a two-photon fluorescent probe, Chem. Comm., 2010,46,2388-2390.
    [40]M. K. Kim, C. S. Lim, J. T. Hong, J. H. Han, H.-Y. Jang, H. M. Kim, B. R. Cho, Sodium-ion-selective two-photon fluorescent probe for in vivo imaging, Angew. Chem. Int. Ed.,2010,49,364-367.
    [41]Z. Q. Liu, M. Shi, F. Y. Li, Q. Fang, Z. H. Chen, T. Yi, C. H. Huang, Highly selective two-photon chemosensors for fluoride derived from organic boranes, Org. Lett.,2005,7,5481-5484.
    [42]M. Zhang, M. Y. Li, F. Y. Li, Y. F. Cheng, J. P. Zhang, T. Yi, C. H. Huang, A novel Y-type, two-photon active fluorophore:Synthesis and application in ratiometric fluorescent sensor for fluoride anion, Dyes andPigm.,2008,77,408-414.
    [43]H. M. Kim, H.-J. Choo, S.-Y. Jung, Y.-G. Ko, W.-H. Park, S.-J. Jeon, C. H. Kim, T. Joo, B. R. Cho, A two-photon fluorescent probe for lipid raft imaging:C-Laurdan, ChemBioChem.,2007,8,553-559.
    [44]H. M. Kim, B. H. Jeong, J.-Y. Hyon, M. J. An, M. S. Seo, J. H. Hong, K. J. Lee, C. H. Kim, T. Joo, S.-C. Hong, B. R. Cho, Two-photon fluorescent turn-on probe for lipid rafts in live cell and tissue, J. Am. Chem. Soc.,2008,130,4246-4247.
    [45]M. Zhang, M. Y Li, Q. Zhao, F. Y. Li, D. Q. Zhang, J. P. Zhang, T. Yi, C. H. Huang, Novel Y-type two-photon active fluorophore:synthesis and application in fluorescent sensor for cysteine and homocysteine, Tetrahed. Lett.,2007,48, 2329-2333.
    [46]M. Zhang, M. X. Yu, F. Y. Li, M. W. Zhu, M. Y. Li, Y. H. Gao, L. Li, Z. Q. Liu, J. P. Zhang, D. Q. Zhang, T. Yi, C. H. Huang, A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging, J. Am. Chem. Soc.,2007,129,10322-10323.
    [47]X. J. Zhang, X. S. Ren, Q. H. Xu, K. P. Loh, Z. K. Chen, One-and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift, Org. Lett.,2009,11,1257-1260.
    [48]J. H. Lee, C. S. Lim, Y. S. Tian, J. H. Han, B. R. Cho, A two-photon fluorescent probe for thiols in live cells and tissues, J. Am. Chem. Soc,2010,132,1216-1217.
    [49]T. Y. Ohulchanskyy, H. E. Pudavar, S. M. Yarmoluk, V. M. Yashchuk, E. J. Bergey, P. N. Prasad, A monomethine cyanine dye cyan 40 for two-photon-excited fluorescence detection of nucleic acids and their visualization in live cell, Photochem. Photobiol,2003,77,138-145.
    [50]J. A. Feijo, G. Cox, Visualization of meiotic events in intact living anthers by means of two-photon microscopy, Micron 2001,32,679-684.
    [51]A. Abbotto, G. Baldinib, L. Beverinaa, G. Chiricob, M. Collinib, L. D'Alfonsob, A. Diasproc, R. Magrassic, L. Nardob, G. A. Pagania, Dimethyl-pepep:a DNA probe in two-photon excitation cellular imaging, Biophys. Chem.,2005,114,35-41.
    [52]C. Allain, F. Schmidt, R. Lartia, G. Bordeau, C. Fiorini-Debuisschert, F. Charra, P. Tauc, M. Teulade-Fichou, Vinyl-pyridinium triphenylamines:novel far-red emitters with high photon stability and two-photon absorption properties for staining DNA, ChemBioChem.,2007,8,424-433.
    [53]G. Bordeau, E. Faurel, C. Allain, R. Lartia, F. Schmidt, C. Fiorini-Debuisschert, F. Charra, G. Metge, P. Tauc, M.-P. Teulade-Fichou, New triarylamine-based far-red DNA stainers with high two-photon absorption properties. Nucleic Acids Symp. Ser.,2008,52,155-156.
    [54]C. C. Chang, I. C. Kuo, I. F. Ling, C. T. Chen, H. C. Chen, P. J. Lou, J. J. Lin, T. C. Chang, Detection of quadruples DNA structures in human telomeres by a fluorescent carbazole derivative, Anal. Chem.,2004,76,4490-4494.
    [55]A. Picot, A. D'Aleo, P. L, Baldeck, A. Grichine, A. Duperray, C. Andraud, O. Maury, Long-lived two-photon excited luminescence of water-soluble europium complex:Applications in biological imaging using two-photon scanning microscopy, J. Am. Chem. Soc,2008,130,1532-1533.
    [56]Y. H. Gao, J. Y. Wu, Y. M. Li, P. P. Sun, H. P. Zhou, J. X.Yang, S. Y. Zhang, B. K. Jin, Y. P. Tian, A sulfur-terminal Zn(Ⅱ) complex and its two-photon microscopy biological imaging application, J. Am. Chem. Soc.,2009,131,5208-5213.
    [57]Y. S. Tian, H. Y. Lee, C. S. Lim, J. Park, H. M. Kim, Y. N. Shin, E. S. Kim, H. J. Jeon, S. B. Park, and B. R. Cho, A two-photon tracer for glucose uptake, Angew. Chem.,2009,121,8171-8175.
    [58]陈秀英,彭孝军,DNA分子荧光探针,染料与染色 2004,41,315-319.
    [59]S. Udenfriend, P. Zaltzman, Fluorescence characteristics of purines, pyrimines, and their derives, Anal. Biochem.,1962,3(1),49-59.
    [60]H. C. Borresen, On the luminescence properties of some purines and purimidines, Acta Chem. Scand,1963,17(4),921-929.
    [61]N. G. Chen, J. Wang, The enhanced electrogenerated chemiluminescence of Ru(bpy)32+ by glutathione on a glassy carbon electrode modified with some porphine compounds, Analyst.,2000,125,2294-2299.
    [62]凌连生,何治柯,曾云鹗,脱氧核糖核酸荧光探针的研究进展,分析化学 2001,6,721-724.
    [63]W. Y. Li, J. G. Xu, X. Q. Guo, Application of vitanminK3 ASA photochemical fluorescence probe in the determination of nucleic acids, Anal. Lett.,1997,30(2), 245-256.
    [64]N. Junk, I. Shukuro, Highly sensitive spectrofluorometic determination of nucleic acid based on the aggregation of two opppositely charged kind of water-soluble porphyrins, Anal. Lett.,1996,29(14),2453-2462.
    [65]Z. C. Huang, F. Y. Li, S.Y. Tong, Spectrofluorimetric determination of nucleic acids with aluminum(III) 8-hydroxyquinoline complex, Anal. Lett.,1997,30(7), 1305-1319.
    [66]D. Anja, B. Volker, M. Christian, Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands:A comparative study of ensemble and single-molecule data, Mol. Biotech.,2002,82, 211-231.
    [67]L. S. Ling, Z. K. He, G. W. Song, Y. Din, Y. E. Zeng, A novel method for detection of DNA by use of molecular'light switch' complex of Ru(bipy)2(dppx)2+, Anal. Chim. Acta,2000,403,209-217.
    [68]C. Q. Zhu, S. J. Zhuo, H. Zheng, J. L. Chen, Determination of nucleic acid based on shifting the association equilibrium between tetracarboxy alumium phthal-cyanine and poly-lysine, Spectrochim. Acta Part A,2005,61,743-748.
    [69]X. J. Zhang, X. S. Ren, Q. H. Xu, K. P. Loh, Z. K. Chen, One-and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift, Org. Lett.,2009,11,1257-1260.
    [1]H. M. Kim, B. R. Cho, Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues, Acc. Chem. Res.,2009,42,863-872.
    [2]I. Johnson, Fluorescent probes for living cells, Histochem. J.,1998,30,123-140.
    [3]F. A. Tanious, D. Ding, D. A. Patrick, A new type of DNA minor-groove complex: carbazole dication-DNA interactions, activity, Biochemistry 1997,36,15315-15325.
    [4]C.-C. Chang, I.-C. Kuo, I.-F. Ling, C.-T. Chen, H.-C. Chen, P.-J. Lou, J.-J. Lin, T.-C. Chang, Detection of quadruplex DNA structures in human telomeres by a fluorescent carbazole derivative, Anal. Chem.,2004,76,4490-4494.
    [5]F. A. Tanious, D. Ding, D. A. Patrick, Effects of compound structure on carbazole dication-DNA complexes:tests of the minor-groove complex models, Biochemistry 2000,39,12091-12101.
    [6]M. Albota, D. Beljonne, J.-L. Bredas, Design of organic molecules with large two-photon absorption cross sections, Science 1998,281,1653-1656.
    [7]W. C. Li, J. K. Feng, A. M. Ren, J. Z. Sun, X. Q. Yu, J. J. Wang, Theory studies of one-and two-photon absorption properties for 3,6- and 2,7-carbazole derivatives, Chem. J. Chin. Uni.,2010, DOI:0251-097001-06.
    [8]B. J. Coe, Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups, Acc. Chem. Res.,2006,39,383-393.
    [9]J. Bunkenborg, N. I. Gadjev, T. Deligeorgiev, J. P. Jacobsen, Concerted intercalation and minor groove recognition of DNA by a homodimeric thiazole orange dye, Bioconjugate Chem.,2000,11,861-867.
    [10]B. Juskowiak, M. Ohba, M. Sato, S. Takenaka, M. Takagi, H. Kondo, Photoisomerizable DNA ligands:spectral and electrochemical properties and base pairs selectivity of binding of bis[2-(1-alkylpyridinium-4-yl)vinyl]benzene Dyes, Bull. Chem. Soc. Jpn.,1999,72,265-277.
    [11]J. Liu, H. Zhang, C. H. Chen, H. Deng, T. B. Lu, L. N. Ji, Interaction of macrocyclic copper(II) complexes with calf thymus DNA:effect of the side chains of the ligands on the DNA-binding behaviors, Dalton Trans.,2003,114-119.
    [12]C. L. Liu, J. Y. Zhou, Q. X. Li, L. J. Wang, Z. R. Liao, H. B.Xu, DNA damage by copper (II) complexes:coordination-structural dependence of reactivities, J. Inorg. Biochem.,1999,75,233-240.
    [13]J. Huang, Y. H. Niu, W. Yang, Y. Q. Mo, M. Yuang, Y. Cao, Novel electroluminescent polymers derived from carbazole and benzothiadiazole, Macromolecules 2002,35,6080-6082.
    [14]C. C. Chang, J. Y. Wu, T. C. Chang, A Carbazole derivative synthesis for stabilizing the quadruplex structure,J. Chin. Chem. Soc.,2003,50,185-188.
    [15]王宗廷,张云山,王书超,夏道宏,Heck反应最新研究进展,有机化学 2007,27(2),143-152.
    [16]丁宁,李英霞,褚世栋,以Heck反应合成(E)-3-甲氧基-4,4‘-二羟乙基二苯乙烯的研究,有机化学2004,24(8),898-901.
    [17]R. F. Heck, J. P. Nolley, Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides, J. Org. Chem.,1972,14, 2320-2322.
    [18]T. Mizoroki, K. Mori, A. Ozaki, Arylation of olefin with aryl iodide catalyzed by palladium, Bull. Chem. Soc. Jpn.,1971,44,581-581.
    [19]A. Meijere, F. E. Meyer, Kleider machen leute:Heck-reaktion im neuen gewand, Angew. Chem.,1994,106,2473-2506.
    [20]E. Negishi, C. Coperet, S. Ma, S. Y. Liou, F. Liu, Cyclic carbopalladation:a versatile synthetic methodology for the construction of cyclic organic compounds, Chem. Rev.,1996,96,365-394.
    [21]M. Shibasaki, C. O. J. Boden, A. Kojima, The asymmetric Heck reaction, Tetrahedron 1997,53,7371-7395.
    [22]J. M. Brown, K. K. Hii, Die vharakterisierung reaktiver zwischenstufen in der palladium-katalysierten arylierung von methylacrylat (Heck-Reaktion), Angew. Chem.,1996,108,679-682.
    [23]F. Orsini, F. Pelizzoni, B. Bellini, G. Miglierini, Synthesis of biologically active polyphenolic glycosides (combretastatin and resveratrol series), Carbohydr. Res., 1997,301,95-109.
    [24]H. Meier, U. Dullweber, Extension of the squaraine chromophore in symmetrical bis(stilbenyl)squaraines, J. Org. Chem.,1997,62,4821-4826.
    [25]G. T. Crisp, Variations on a theme—recent developments on the mechanism of the Heck reaction and their implications for synthesis, Chem. Soc. Rev.,1998,27, 427-436.
    [26]张建华,郭睿威,李彬,董岸杰,RAFT试剂N-咔唑二硫代甲酸1,4-对二甲基苯双酯的合成及应用,高等学校化学学报 2009,30(8),1668-1673.
    [27]H. P. Zhou, D. M. Li, J. Z. Zhang, Crystal structures, optical properties and theoretical calculation of novel two-photon polymerization initiators, Chem. Phys., 2006,322(3),459-470.
    [28]张宝芹,硕士学位论文,山东大学,2007.
    [29]王军杰,硕士学位论文,山东大学,2009.
    [30]张田林,李海虹,原中立,2,5-二[4-(2-芳基乙烯基)苯基]嗯二唑的合成及发光特征,有机化学2005,25(8),997-1000.
    [31]H. H. Willard, L. L. Merritt, J. Dean, Instrumental Methodsof Analysis,5th ed., Nostrand Company, New York,1974, p.92.
    [32]王光荣,曾和平,3-[2-(8-羟基喹啉基)-乙烯基]-Ⅳ-芳基咔唑及其金属配合物的合成和光电性能研究,高等学校化学学报 2009,30(6),1140-1145.
    [1]樊玉芳,硕士学位论文,兰州大学,2007.
    [2]A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro, J. K. Barton, Molecular "light switch"for DNA:Ru(bpy)2·(dppz)]2+, J. Am. Chem. Soc.,1990,112, 4960-4962.
    [3]L. S. Ling, Z. K. He, High sensitive determination of DNA by use of molecular "light switch" complex of Ru(phen)2(dppx)2+, Anal. Chim. Acta,2001,436, 207-214.
    [4]K. E. Erkkila, D. T. Odom, J. K. Barton, Recognition and reaction of metallo-intercalators with DNA, Chem. Rev.,1999,99,2777-2795.
    [5]Y. Jiong, X. Fang, C. Bal, Signaling aptamer/protein binding by a molecular light switch complex, Anal. Chem.,2004,76(17),5230-5235.
    [6]L.S.Ling, Z. K. He, F. Chert, Y. E. Zeng, Single-mismatch detection using nucleic acid molecular "light switch", Talanta 2003,59(2),269-275.
    [7]刘鑫,刘恒,贾鹏飞,张波,王军杰,赵宁,张元红,于晓强,一种用于核成像的新型双光子荧光探针,高等学校化学学报 2009,30,465-467.
    [8]黄池宝,博士学位论文,大连理工大学,2008.
    [9]P. D. Silva, H. Q. N. Gunaratune, T. Gunnlaugsson, Signaling trcognition events with fluorescent sensors and switches, Chem. Rev.,1997,97(5),1515-1566.
    [10]Z. R. Grabowski, J. Dobkowski, Twisted intramolecular charge transfer (TICT) excited states:energy and molecular structure, Pure Appl. Chem.,1983,55(2), 245-252.
    [11]M. V. D. Auweraer, Z. R. Crabowsk, W. Retting, Molecular structure and temperature-dependennt radiative rated in twisted intramolecular charge transfer and exclplex systems, J. Phys. Chem.,1991,95(5),2083-2092.
    [12]P. Van Haver, N. Helsen, S. Depaemelaere, The influence of solvent polarity of nonradiative decay of exciplexes, J. Am. Chem. Soc.,1991,113,6849-6857.
    [13]F. D. Lewis, G. D. Reddy, D. M. Bassani, Exciplex conformational control of intramolecular photoaddition regioselectivity, J. Am. Chem. Soc.,1993,115, 6468-6469.
    [14]J. N. Demas, G A. Croby, The measurement of photoluminescence quantum yields. A review,J. Phys. Chem.,1971,75,991-1024.
    [15]J. H. Brannon, D. Magde, Absolute quantum yield determination by thermal blooming. Fluorescein, J. Phys. Chem.,1978,82,705-709.
    [16]C. Xu, W. W Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 run, J. Opt. Soc. Am. B,1996, 13,481-491.
    [17]M. A. Albota, C. Xu, W. W. Webb, Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 um, Appl. Opt.,1998,37(31), 7352-7356.
    [18]张献,博士学位论文,山东大学,2005.
    [19]Y. Guan, R. Shi, X. M. Li, M. P. Zhao, Y. Z. Li, Multiple binding modes for dicationic Hoechst 33258 to DNA, J. Phys. Chem. B,2007,111,7336-7344.
    [20]B. D. Wang, Z. Y. Yang, T. R. Li, Synthesis, Characterization, and DNA-binding properties of the Ln(III) complexes with 6-Hydroxy chromone-3-carbaldehyde-(2'-hydroxy) benzoyl hydrazone, Bioorg. Med. Chem., 2006,14,6012-6021.
    [21]C. V. Kumar, E. H. Asuncion, DNA binding studies and site selective fuorescence sensitization of an anthryl probe, J. Am. Chem. Soc.,1993,115(19),8547-8553.
    [22]E. Lopez, M. Pradillo, C. Romero, J. L. Santos, and N. Cunado, Pairing and synapsis in wild type arabidopsis thaliana. Chromosome Res.,2008,16,701-708.
    [23]M. C. Castex, C. Olivero, G. Pichler, D. Ade's, E. Cloutet, A. Siove, Photoluminescence of dornor-acceptor carbozole chromophores, Synth. Met.,2001, 122,59-61.
    [24]D. Ade's, V. Boucard, E. Clou tet, A. Siove, C. Olivero, M. C. Castex, G. Pichler, Photoluminescence of donor-acceptor carbzole-based molecules in amorphous and powder forms, J. Appl. Phys.,2000,87,7290-7293.
    [25]C. C. Chang, J. F. Chu, H. H. Kuo, C. C. Kang, S. H. Lina, T. C. Chang, Solvent effect on photophysical properties of a fluorescence probe:BMVC, J. Lumin., 2006,119,84-90.
    [26]H. Y. Woo, J. W. Hong, B. Liu, A. Mikhailovsky, D. Korystov, G. C. Bazan, Water-soluble [2,2paracyclophoane chormophores with large two-photon zction cross section, J. Am. Chem. Soc.,2005,127,820-821.
    [27]B. Strehmel, A. M. Sarker, J. H. Malpert, V. Strehmel, H. Seifert, D. C. Neckers, Effect of aromatic ring subsitution on the optical properties, emission dynamics, and solid-state behavior of fluorinated oligophenylenevinylenes, J. Am. Chem. Soc.,1999,121,1226-1236.
    [28]K. Rotkiewicz, K. H. Grellman, Z. R. Grabowski, Reinterpretation of the anomalous fluorescense of p-n,n-dimethylamino-benzonitrile, Chem. Phys. Lett., 1973,19,315-318.
    [29]W. Rettig, Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthsis, Angew. Chem. Int. Ed.,1986,25, 971-988.
    [30]A. Nag, K. Bhattacharyya, Role of twisted intramolecular charge transfer in the fluorescence sensitivity of biological probes:Diethylaminocoumarin laser dyes, Chem. Phys. Lett.,1990,169,12-16.
    [31]G. R. Fleming, G. Portor, R. J. Robbins, J. A. Synowiec, Excited singlet state decay pathways in the fluorescence probe molecule 1,8-Anilinonaphthalene sulphonate (ANS), Chem. Phys. Lett.,1977,52,228-232.
    [32]于晓强,陶绪堂,蒋民华,双光子生物荧光显微技术中的探针问题,大学化学,2008,23,1-7.
    [33]W. J. Yang, D. Y. Kim, M.-Y. Jeong, H. M. Kim, Y. K. Lee, X. Z. Fang, S.-J. Jeon, B. R. Cho, Two-photon absoption properties of 2,6-bis(styryl)anthrancene derivatives:effects of donor-acceptor substituents and the π center, Chem. Eur. J., 2005,11,4191-4198.
    [34]C. Zipfel, W. Shear, J. B. Williams, W. W. Webb, Multiphoton fluorescence excitation:New spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA,1996,93,10763-10768.
    [35]P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, Two-photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng.,2000,02,399-429.
    [36]M. Chauhan, F. Arjmand, Chiral and achiral macrocyclic copper (Ⅱ) complexes: synthesis, characterization, and comparative binding studies with calf-thymus DNA, Chem. Biodiversity,2006,3,660-676.
    [37]Z. D. Xu, H. Liu, M. Wang, S. L. Xiao, M. Yang, X. H. Bu, Synthesis, crystal Structure, antitumor activity and DNA-binding study on the Mn(II) complex of 2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline, J. Inorg. Biochem.,2002, 90,79-84.
    [38]J. Liu, H. Zhang, C. H. Chen, H. Deng, T. B. Lu, L. N. Ji, Interaction of macrocyclic copper(II) complexes with calf thymus DNA:Effect of the side chains of the ligands on the DNA-binding behaviors, Dalton Trans.,2003,114-119.
    [39]C. L. Liu, J. Y. Zhou, Q. X. Li, L. J. Wang, Z. R. Liao H. B.Xu, DNA damage by copper (II) complexes:Coordination-structural dependence of reactivities, J. Inorg. Biochem.,1999,75,233-240.
    [40]C. A. Frederick, L. D. Williams, G. Ughetto, G.A. Van der Marel, J. H. Van Bboom, A. Rich, A.H.-J. Wang, Structural comparison of anticancer drug-DNA complexes:adriamycin and daunomycin, Biochemistry 1990,29,2538-2549.
    [41]T. Y. Ohulchanskyy, H. E. Pudavarl, S. M. Yarmoluk, V. M. Yashchuk, E. J. Bergeyl, P. N. Prasad, A monomethine cyanine dye cyan 40 for two-photon-excited fluorescence detection of nucleic acid and their visualization in live cell. Photochem. Photobiol.,2003,77(2),138-145.
    [42]L. J. Kricka, Stains, labels and detection strategies for nucleic acids assays, Ann. Clin. Biochem.,2002,39,114-129.
    [43]J. Nygren, N. Svanvik, M. Kubista, The interactions between the fluorescent dye thiazole orange and DNA, Biopolymers 1998,46,39-51.
    [44]J. Liu, H. Zhang, C. H. Chen, H. Deng, T. B. Lu, L. N. Ji, Interaction of macrocyclic copper(II) complexes with calf thymus DNA:effect of the side chains of the ligands on the DNA-binding behaviors, Dalton Trans.,2003,114-119.
    [45]C. L. Liu, J. Y. Zhou, Q. X. Li, L. J. Wang, Z. R. Liao, H. B.Xu, DNA damage by copper (II) complexes:coordination-structural dependence of reactivities, J. Inorg. Biochem.,1999,75,233-240.
    [46]F. A. Tanious, J. M. Veal, H. Buczak, L. S. Ratmeyer, W. D. Wilson, DAPI (4',6-diamidino-2-phenylindole) binds differently to DNA and RNA: minor-groove binding at AT sites and intercalation at AU sites, Biochemistry 1992, 31,3103-3112.
    [47]W. D. Wilson, F. A. Tanious, H. J. Barton, R. L. Jones, K. Fox, R. L. Wydra, L. Strekowsk, DNA sequence dependent binding modes of 4',6-diamidino-2-phenylindole (DAPI), Biochemistry 1990,29,8452-8461.
    [48]A. Abbotto, G Baldinib, L. Beverinaa, G. Chiricob, M. Collinib, L. D'Alfonsob, A. Diasproc, R. Magrassic, L. Nardob, G A.Pagania, Dimethyl-pepep:a DNA probe in two-photon rxcitation cellular imaging, Biophys. Chem.,2005,114,35-41.
    [49]G. Dodin, M.A. Schwaller, J. Aubard, C. Paoletti, Binding of ellipticine base and ellipticinium cation to calf-thymus DNA:A thermodynamic and kinetic study, Eur. J. Biochem.,1988,176,371-376.
    [50]S.Mathur, S. Tabassum, Synthesis and characterization of a new macrocyclic copper(II) complex with an N-glycosidic pendant arm:in vitro cytotoxicity and binding studies with calf-thymus DNA, Chem. Biodiversity,2006,3,312-325.
    [51]F. Arjmand, M. Chauhan, Binding studies of asymmetric pentacoordinate Copper(Ⅱ) complexes containing phenanthroline and ethane-1,2-diamine ligands with calf-thymus DNA, Helv. Chim. Acta,2005,88,2413-2423.
    [52]E. Nordmeier, Absorption spectroscopy and dynamic and static light scattering studies of ethidium bromide binding to calf thymus DNA:implication for outside binding and interaction, J. Phys. Chem.,1992,96,6045-6055.
    [53]D. L. Carlson, D. H. Huchital, E. J. Mantilla, R. D. Sheardy, W. R. Murphy, A new class of DNA metallobinders showing spectator ligand size selectivity:binding of ligand-bridged bimetallic complexes of ruthenium(II) to calf thymus DNA, J. Am. Chem. Soc.,1993,115,6424-6425.
    [54]K. Kam-Wing Lo, C. K. Chung, N.Y. Zhu, Nucleic acid intercalators and avidin probes derived from luminescent cyclometalated iridum(III)-dipyridoquinoxaline and-dipyridophenazine complexes, Chem. Eur. J.,2006,12,1500-1512.
    [55]W. Y. Zhong, J.S. Yu, Y.Q. Liang, K.Q. Fan, L.H. Lai, Chlorobenzylidine-calf thymus DNA interaction Ⅱ:circular dichroism and nuclear magnetic resonance studies, Spectrochim. Acta, Part A,2004,60,2985-2992.
    [56]R. Bera, B. K. Sahoo, K. S. Ghosh, S. Dasgupta, Studies on the interaction of isoxazolcurcumin with calf thymus DNA, Int. J. Biol. Macromol.,2008,42,14-21.
    [57]D.L. Ma, C. M. Che, A bifunctional platinum(II) complex capable of intercalation and hydrogen-bonding interactions with DNA:binding studies and cytotoxicity, Chem. Eur. J.,2003,9,6133-6144.
    [58]H. Malak, F. N. Castellano, I. Grycaynski, J. R. Lakowica, Two-photon excitation of ethidium bromide labeled DNA, Biophys. Chem.,1997,67,35-41.
    [59]H. Y. Woo, D. Korystov, A. Mikhailovsky, T. Q. Nguyen, G. C. Bazan, Two-photon absorption in aqueous micellar solutions, J. Am. Chem. Soc.,2005, 127,13794-13795.
    [60]A. Magineanu, J. Hofkens, M. Cotlet, S. Habuchi, A. Stefan, J. Qu, C. Kohl, K. Mullen, J. Vercammen, Y. Engelborghs, T. Gensch, F. C. D. Schryver, Photophysics of water-soluble rylene dye:comparison with other fluorescent molecules for biological applications, J. Phys. Chem. B 2004,108,12242-12251.
    [61]S. J. K. Pond, O. Tsutsumi, M. Rumi, O. Kwon, E. Zojer, J.-L.Bre'das, S. R. Marder, J. W. Perry, Metal-ion sensing fluorophores with large two-photon absorption cross sections:aza-crown ether subsituted dornor-acceptor-donor distyrylbenzenes, J. Am. Chem. Soc.,2004,126,9291-9306.
    [62]K. J. Schafer-Hales, K. D. Belfield, S. Yao, P.K. Frederiksen, J. M. Hales, P. E. Kolattukudy, J. Biomed. Opt.,2005,10,051402/1-051402/8.
    [63]N. J. Meltola, R.Wahlroos, A. E. Soini, Syntheses of novel dipyrrylmethene-BF2 dyes and their performance as labels in two-photon excited fluoroimmunoassay, J. Fluoresc.,2004,14,129-138.
    [64]H. Y. Woo, J. W. Hong, B. Liu, A. Mikhailovsky, D. Korystov, G. Bazan, Water-soluble [2.2]paracylophane chromophores with large two-photon action cross section, J. Am. Chem. Soc.,2005,127,820-821.
    [65]B. Strehmel, A. M. Sarker, J. H. Malpert, V. Strehmel, H. Seifert, D. C. Neckers, Effect of aromatic ring substitutation on the optical properties, emission dynamics, and solid-state behavior of fluorinated oligophenyenevinylenes, J. Am. Chem. Soc., 1998,121,1226-1236.
    [66]S. Yang, H. Tian, H. Xiao, X. Shang, X. Gong, S. Yao, K. Chen, Photodegradation of cyanine and merocyanine dyes, Dyes Pigm.,2001,49,93-101.
    [1]鲁慧丽,博士学位论文,兰州大学,2007.
    [2]苏布道,硕士学位论文,兰州大学,2006.
    [3]E. Harbs,李宗沂,核酸—生化与功能,上海,上海科学技术出版社,1981,1
    [4]M. Gielen, H. Pan, In vitro effect of organotin-substituted steroids in human tumor cell lines, Inorg. Chim. Acta,1992,196,115-117.
    [5]N. J. Ptitchard, A. Blake, A. R. Peacocke, Modified intercalation model for the interaction of amino acridines and DNA, Nature 1966,212,1360-1361.
    [6]Y. Guan, R. Shi, X. M. Li, M. P. Zhao, Y. Z. Li, Multiple binding modes for dicationic Hoechst 33258 to DNA, J. Phys. Chem. B,2007,111,7336-7344.
    [7]Y. H. Gao, J. Y. Wu, Y. M. Li, P. P. Sun, H. P. Zhou, J. X. Yang, S. Y. Zhang, B. K. Jin, Y. P. Tian, J. Am.Chem. Soc.,2009,131,5208-5213.
    [8]H. M. Kim, B. R. Kim, J. H. Hong, J. S. Park, K. J. Lee, B. R. Cho, Angew. Chem. Int. Ed.,2007,46,7445-7448.
    [9]A. Abbotto, G. Baldinib, L. Beverinaa, G. Chiricob, M. Collinib, L. D'Alfonsob, A. Diasproc, R. Magrassic, L. Nardob, G. A. Pagania, Biophys. Chem.,2005,114, 35-41.
    [10]C. Allain, F. Schmidt, R. Lartia, G. Bordeau, C. Fiorini-Debuisschert, F. Charra, P. Tauc, M. Teulade-Fichou, ChemBioChem.,2007,8,424-433.
    [11]Y. H. Zhang, J. J. Wang, P. F. Jia, X. Q. Yu, X. Liu, N. Zhao, B. B. Huang, Two-photon fluorescence imaging of DNA in living plant turbid tissue with carbazole dicationic salt. Org. Biomol. Chem.,2010,8,4582^4588.
    [12]刘鑫,刘恒,贾鹏飞,张波,王军杰,赵宁,张元红,于晓强,一种用于细胞核成像的新型双光子荧光探针,高等学校化学学报 2009,30,465-467.
    [13]贾鹏飞,刘恒,张元红,刘鑫,赵宁,于晓强,2,7-BHVC,一个新的用于细胞核成像的双光子荧光探针,高等学校化学学报 2010,31(6),1075-1077.
    [14]Z. D. Xu, H. Liu, M. Wang, S. L. Xiao, M. Yang, X. H. Bu, Synthesis, crystal structure, antimumor activity and DNA-binding study on the Mn(II) complex of 2H-5-hydroxy-1,2,5-oxadiazo[3,4-f]1,10-phenanthroline, J. Inorg. Biochem.,2002, 90,79-84.
    [15]G. D. Liu, J. P. Liao, Y. Z. Fang, S. S. Huang, G. L. Sheng, R. Q. Yu, Interaction of bis(ethylene)tin(bis(salicylidene)ethylenediamine) with DNA, Anal. Sci.,2002, 18,391-395.
    [16]Z. D. Xu, H. Liu, M. Wang, S. L. Xiao, M. Yang, X. H. Bu, Maganese(II) complex of 6,7-dicycanodipyridoquinoxaline with antitumor activities:synthesis, crystal structure and binding with DNA, J. Inorg. Biochem.,2002,92,149-155.
    [17]W.Y. Zhong, J.S. Yu, W.L. Huang, K. Y. Ni, Y.Q. Liang, Spectroscopic studies of interaction of chlorobenzylidine with DNA, Biopolymers 2001,62,315-323.
    [18]V. G. Vaidyanathan, B. U. Nair, Synthesis, characterization, and DNA binding studies of a chromium(III) complex containing a tridentate ligand, Eur. J. Inorg. Chem.,2003,3633-3638.
    [19]M. Hranjec, K. Starcevic, I. Piantanida, M, Kralj, M. Marjanovic, M. Hasani, G. Westman, G. Karminski-Zamola, Synthesis, antimor evaluation and DNA binding studies of novel amidino-benzimidazolyl subsituted derivatives of furyl-phenyl-and thienyl-phenyl-acrylates, naphthofurans and naphthothiophenes, Eur. J. Med. Chem.,2008,43,2877-2890.
    [20]X. Jiang, L. Shang, Z. X. Wang, S. J. Dong, Spectrometric and voltammetric investigation of interaction of neutral red with calf thymus DNA:pH effect, Biophys. Chem.,2005,118,42-50.
    [21]C. A. Frederick, L. D. Williams, G. Ughetto, G.A. Van der Marel, J. H. Van Bboom, A. Rich, A.H.-J. Wang, Structural comparison of anticancer drug-DNA complexes:adriamycin and daunomycin, Biochemistry 1990,29,2538-2549.
    [22]M. Rosa, R. Dias, M. G. Miguel, B. Lindman, DNA-cationic sufactant interactions are different for double and single-stranded DNA, Biomacromolecules 2005,6, 2164-2171, and references therein.
    [23]A. E. Ferentz, T. A. Keating, G. L. Verdine, Synthesis and charactrization of disulfide cross-linked oligonucleotides, J. Am. Chem. Soc.,1993,115,9006-9014.
    [24]R. Lyng, T. Hard, B. Norden, Induced CD intercalators:electric dipole allowed transitions, Biopholymers 1987,26,1327-1345.
    [25]D. T. Breslin, C. J. Yu, D. Ly, G. B. Schuster, Structural modification changes the DNA binding mode of cation-substituted anthraquinone photonucleases: association by intercalation or minor groove binding determines the DNA cleavage efficiency, Biochemistry 1997,36,10463-10473.
    [26]A. Larsson, C. Carlsson, M. Jonsson, B. Albinsson, Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy,J. Am. Chem. Soc.,1994,116,8459-8465.
    [27]H. Goulaouic, S. Carteau, F. Subra, J. F. Mouscadet, C. Auclair, Selective binding to polynucleotides of the hybrid intercalating groove binder bis(pyrrolecaboxamide)-oxazolopyridocarbazole:a molecular modeling study, Biochemistry 1994,33,1412-1418
    [28]于晓强,陶绪堂,蒋民华,双光子生物荧光显微技术中的探针问题,大学化学,2008,23,1-7.
    [29]C. C. Chang, J. F. Chu, H. H. Kuo, C. C. Kang, S. H. Lin, T. C. Chang, Solvent effect on photophysical properties of a fluorescence probe:BMVC, J. Lumin., 2006,119-120,84-90.
    [30]K. Rotkiewicz, K. H. Grellman, Z. R. Grabowski, Reinterpretation of the anomalous fluorescense of p-n,n-dimethylamino-benzonitrile, Chem. Phys. Lett., 1973,19,315-318.
    [31]张慧,硕士学位论文,济南大学,2005.
    [1]B. Tang, F. B. Yu, P. Li, L. L. Tong, X. Duan, T. Xie, X. Wang, A near-infrared neutral pH fluorescent prob for monitoring minor pH changes:imaging in living HepG2 and HL-7702 cells, J. Am. Soc. Chem.,2009,131,3016-3023.
    [2]J. Stinchcombe, G. Bossi, G M. Griffiths, Liking albinism and immunity:the secrets of scretory lysosomes, Science 2004,305,55-59.
    [3]E. J. Blott, G. M. Griffiths, Secretory lysosomes, Nat. Rev. Mol. CellBiol.,2002,3, 122-131.
    [4]D. Cui, X. H. Qian, F. Y. Liu, R. Zhang, Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide, Org. Lett.,2004,6, 2757-2760.
    [5]G. Greiner, I. Maier, Anthrylmethylamines and anthrymethylazamacrocycles as fluorescent pH sensors-a systematic study of their static and dynamic properties, J. Chem. Soc. Perkin Trans.,2002,2,1005-1011.
    [6]K. M. Sun, C. K. Mclaughlin, D. R. Lantero, R. A. Manderville, Biomakers for phenol carcinogen exposure act as pH-sensing fluorescent probes, J. Am. Chem. Soc., 2007,129,1894-1895.
    [7]M. H. V. Werts, S. Gmouh, O. Mongin, T. Pons, M. Blanchard-desce, strong modulation of two-photon excited fluorescence of quadripolar dyes by (De)Protonation, J. Am. Chem. Soc.,2004,126,16294-19295.
    [8]H. M. Kim, M. J. An, J. H. Hong, B. H. Jeong, O. Kwon, J.-Y.Hyon, S.-C. Hong, K.J. Lee, B. R. Cho, Two-photon fluorescent probes for acidic vesicles in live cells and tissue, Angew. Chem. Int. Ed.,2008,47,2231-2234.
    [9]X. J. Zhang, X. S. Ren, Q. H. Xu, K. P. Loh, Z. K. Chen, One-and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift, Org. Lett.,2009,11,1257-1260.
    [10]张田林,李海虹,原中立,2,5-二[4-(2-芳基乙烯基)苯基]噁二唑的合成及发光特征,有机化学 2005,25(8),997-1000.
    [11]王光荣,曾和平,3-[2-(8-羟基喹啉基)-乙烯基]-Ⅳ-芳基咔唑及其金属配合物的合成和光电性能研究,高等学校化学学报 2009,30(6),1140-1145.
    [12]赵劲松,基于激发态过程机理的荧光传感器及离子识别,《荧光分析法》课程论文.
    [13]C. Xu, W. W Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B,1996, 13,481-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700