氟硼吡咯染料合成方法学及发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光材料由于种类繁多、性质多样、应用广泛成为近年来的研究热点。从传统的光致发光领域到新兴的电致发光领域的研究及应用中,有机发光材料无不发挥着重要的作用。BODIPY(氟化硼络合二吡咯甲川类)荧光染料由于其独特的光化学光物理性质引起了人们的广泛关注,成为近十几年研究的热点。本论文选择BODIPY为母体,设计合成了一系列新的荧光化合物,并且标识了化合物的结构,测定了其光化学光物理性质。根据结构特征分别研究开发他们在荧光探针领域及功能光电材料领域(电致发光材料、双光子活性材料和激光染料)的应用。
     1.在氟硼吡咯的β位通过Suzuki偶联反应引入共轭基团,改变其光谱性质。其中化合物6a和6b是两个基于光诱导电子转移机理的对氢质子敏感的分子,对其进行了酸滴定实验,通过晶体和电化学性质的研究,证实了电子转移过程的存在。化合物7和8是由双键共轭连接的,最大吸收和荧光发射都大大明显红移,斯托克斯位移增大到80 nm以上。
     2.在氟硼吡咯的β位通过Sonogashira偶联反应引入共轭基团,得到4个新型荧光化合物。化合物T2作为最简单的共轭结构被用作参比化合物,对其它化合物的结构与光谱性质关系进行系统的研究。其中化合物T3和T4是两个D-π-D型双光子吸收活性分子,对其线形及非线性光学性质都进行了测定,其双光子激发荧光波长均达到650 nm以上,并进行了活细胞内荧光成像,显示出无毒性和很好的细胞穿透性。说明这两个荧光化合物在生物体信息传递领域有一定应用潜质。化合物T5结构中引入了大空间位阻基团,增加了斯托克斯位移,有效地减少了分子间的π-π堆积作用,抑制了荧光自淬灭现象,并对其电致发光及器件的光学性质进行了初步的研究。
     3.在氟硼吡咯的α位通过Knoevenagel缩合反应,合成了系列化合物K1-K8。对其中的K1-K5进行了详细的对比研究,发现将延展共轭体系和调节电荷转移作用这两种方法结合起来,得到的含有咔唑基团的染料K5具有较长发射波长、较大摩尔消光系数、很窄的光谱和较高的荧光量子产率等优秀性质,不仅具有激光性能而且也可以应用在生物荧光成像方面,是一个集多种功能于一体的荧光团。K6和K7是我们设计的一对红色激光染料,通过对激光效率、光稳定性等方面的测试,证明这对化合物激光性能优良,在红光区域可以与商品化染料竞争。K8的最大吸收在675 nm,荧光发射在700 nm,在强极性溶剂中荧光量子产率为0.7以上,对活细胞无毒副作用,是一个近红外生物荧光标记试剂。
     4.以氟硼吡咯染料为能量供体,通过简洁的合成手段得到了基于能量转移机理设计的化合物E1和E2,对其光谱性质及激光性能进行了一定的研究。将参比化合物T2和E1进行对比测试,用不同波长激发光源500 nm,532 nm和570 nm进行激发,证实了E1分子能量转移过程的发生。E1和E2是一对结构新颖、创新设计的激光染料,为激光染料的研发提供一条新路。
Organic optical materials are hence suitable for use in many fields, for example, photolumicescence and electroluminescence, which have attracted considerable attentions. In the last decades, boron dipyrromethene dyes (BODIPY) have draw much attention of the researchers for their exceptional photochemistry and photophysical properties. In this paper, new series of BODIPY dyes have been synthesized and identified. The optical and electrochemistry properties have been studied to explore the applications of these compouds in fluorescent sensing and optical functional materials (electroluminescent materials, two-photon absorption activity materials and laser dyes).
     1. The new fluorophores were synthesized by Suzuki coupling recation onβ-position of the BODIPY core. Compounds 6a and 6b were designed for detecting proton based on PET (Photoinduced Electron Transfer) mechanism. The electron transfer processes were proved by crystal data and electrochemistry research. Compounds 7 and 8 contained conjugated double bonds, which resulted in the notable long maximum absorption wavelength, the fluorescence emission wavelength, and the large Stokes shift (more than 80 nm).
     2. Four novel fluorescent dyes were obtained by introducing conjugated groups onβ-position of the BODIPY through Sonogashira coupling reaction. Systemic research on the compounds was carried out, and compound T2 was used as the reference compound because of its simple structure. Compounds T3 and T4 were two D-π-D type two-photon activity materials with long absorption and emission wavelengths (650 nm), also with good linear optical properties. The preliminary fluorescence imaging experiments indicated their cell-permeability and nontoxicity. This suggested that the novel BODIPY dyes were highly applicable as fluorescent reporters, particularly in assays which were based on two-photon excited fluorescence. Compound T5, bulky 4-tritylphenylethynyl substituted BODIPY with pure red emission, relatively large Stokes shift, high fluorescence quantum yield, less self-quenching was efficiently synthesized. The electroluminescent properties were also preliminary investigated.
     3. Compounds K1-K8 were synthesized by introducing conjugated groups on a-position of BODIPY through Knoevenagel reaction. Contrastive research was carried on K1-K5 in detail. Through comparison and combination of two strategies, extension ofπ-conjugation and adjustment of ICT effects, we obtained a new carbazole-containing BODIPY derivative K5 which was an excellent fluorophore with relatively long emission, large molar extinction coefficient, narrow spectra shapes, high fluorescence quantum yields in polar and apolar solvents. These advantageous characteristics together with the laser properties make it potentially useful as a new biological tool. K6 and K7 were two red emission laser dyes with excellent luminescent yields and photostabilities, which can compete with the commercial dyes in red region. Compound K8 was a good NIR fluorescent dye with maximum absorption at 675 nm, fluorescence emission at 700 nm and fluorescence quantum yield 0.7 in polar solvents.
     4. Compounds E1 and E2 were obtained by simple and convenient methods which designed based on fluorescence resonance energy transfer mechanism, and BODIPY acted as the energy donor. The optical and laser properties were investigated. Comparing reference compound T2 and E1, excited by different lamps (500 nm,532 nm and 570 nm), it also proved the FRET process in E1. It provided a route to novel laser dyes.
引文
[1]Mishra A, Behera R K, Mishra B K, et al. Cyanine during the 1990s:A Review [J]. Chem. Rev.,2000,100:1973-2011.
    [2]Hamer F M. Cyanine Dyes and Related Compounds [M]. London:Interscience Publishers, John Wiley& Sons Ltd.,1964.4.
    [3]Guo X, Qian X, Jia L. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution [J]. J. Am. Chem. Soc.,2004,126(8):2272-2273.
    [4]Zhang Z, Guo X, Qian X, et al. Fluorescent imaging of acute mercuric chloride exposure on cultured human kidney tubular epithelial cells [J]. Kidney Int.,2004,66(6): 2279-2282.
    [5]Wang J, Qian X. Two regioisomeric and exclusively selective Hg(II) sensor moleculars composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor [J]. Chem. Commun.,2006:109-111.
    [6]Xu Z, Xiao Y, Qian X, et al. Ratiometric and Selective Fluorescent Sensor for Cull Based on Internal Charge Transfer (ICT) [J]. Org. Lett.2005,7(5):889-892.
    [7]Lu C, Xu Z, Cui J, et al. Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological Range:A New Strategy to Discriminate Cadmium from Zinc [J]. J. Org. Chem.2007,72 (9):3554-3557.
    [8]Brana M F, Castellano J M, Roldan C M. Synthesis and mode(s) of action of a new series of imide derivatives of 3-nitro-1,8-naphthalic acid [J]. Cancer Chemother Pharmacol., 1980,4:61-66.
    [9]Sami S M, Dorr R T, Solyom A M, et al. Amino-substituted 2-[2'-(dimethylamino) ethyl]-1,2-dihydro-3H-dibenzisoquinoline-1,3-diones. Synthesis, antitumor activity, and quantitativestructure-acitvity relationship [J]. J Med. Chem.1995,38(6):983-993.
    [10]杨鹏.新型杂环并萘酰亚胺化合物的设计合成及生物活性研究[D].(博士学位论文).大连:大连理工大学,2006.
    [11]李永刚.含硫稠环萘酰亚胺DNA嵌入剂和光敏切断剂及其抗肿瘤效果[D].(博士学位论文).上海:华东理工大学,2003.
    [12]Li Z, Yang Q, Qian X. Novel thiazonaphthalimides as efficient antitumor and DNA photocleaving agents:Effects of intercalation, side chains, and substituent groups [J]. Bioorg. Med. Chem.,2005,13 (16):4864-4870.
    [13]Woodroofe C C, Lippard S J A Novel Two-Fluorophore Approach to Ratiometric Sensing of Zn2+ [J]. J. Am. Chem. Soc.,2003.125 (38):11458-11459.
    [14]Haugland R P. Handbook of Fluorescent Probes and Research Chemcals,6th ed [M]. Molecular Probes:Eugene, OR,1996.
    [15]Loudet A, Burgess K. BODIPY dyes and their derivatives:Syntheses and spectroscopic properties [J]. Chem. Rev.,2007,107:4891-4932.
    [16]Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent bodipy dyes:Versatility unsurpassed [J]. Angew. Chem. Int. Ed.,2008,47:1184-1201.
    [17]Ziessel R, Ulrich G, Harriman A. The chemistry of Bodipy:a new El Dorado for fluorescence tools [J]. New J. Chem.,2007,31:496-501.
    [18]Chen J, Burghart A, Derecskei-Kovacs A, et al.4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) dyes modified for extended conjugation and restricted bond rotations [J]. J. Org. Chem.,2000,65(10):2900-2906.
    [19]Kang H C, Haugland R P. Dibenzopyrrometheneboron Difluoride Dyes. U.S. Patent 5,433,896, July 18,1995.
    [20]Wu Y, Klaubert D H, Kang H C, et al. Long-wavelength dyes for infrared tracing and their use. U.S. Patent 6,005,113,1999.
    [21]Zhao W, Carreira E M. Conformationally restricted aza-bodipy:A highly fluorescent, stable, near-infrared-absorbing dye [J]. Angew. Chem. Int. Ed.,2005,44(11): 1677-1679.
    [22]Zhao W, Carreira E M. Conformationally restricted Aza-BODIPY:Highly fluorescent, stable near-infrared absorbing dyes [J]. Chem. Eur. J.,2006,12(27):7254-7263.
    [23]Coskun A, Akkaya E U. Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions [J]. Tetrahedron Lett.,2004,45(25):4947-4949.
    [24]Rurack K, Kollmannsberger M, Daub J. A highly efficient sensor molecule emitting in the near infrared (NIR):3,5-distyryl-8-(p-dimethylaminophenyl) difluoroboradiaza-s-indacene [J]. New J Chem.,2001,25:289-292.
    [25]Baruah M, Qin W, Flors C, et al. Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyrromethene dye in solution [J]. J. Phys. Chem. A,2006, 110(18):5998-6009.
    [26]Rurack K, Kollmannsberger M, Daub J. Molecular Switching in the Near Infrared (NIR) with a Functionalized Boron-Dipyrromethene Dye [J]. Angew. Chem. Int. Ed.,2001,40(2): 385-387.
    [27]Rohand T, Qin W, Boens N, et al. Palladium-catalyzed coupling reactions for the functionalization of BODIPY dyes with fluorescence spanning the visible spectrum [J]. Eur. J. Org. Chem.,2006,20:4658-4663.
    [28]Goze C, Ulrich G, Mallon L J, et al. Synthesis and photophysical properties of borondipyrromethene dyes bearing aryl substituents at the boron center [J]. J. Am. Chem. Soc.,2006,128(31):10231-10239.
    [29]Ulrich G, Goze C, Guardigli M, et al. Pyrromethene dialkynyl borane complexes for "cascatelle" energy transfer and protein labeling [J]. Angew. Chem. Int. Ed.,2005, 44(24):3694-3698.
    [30]Harriman A, Izzet G, Ziessel R. Rapid energy transfer in cascade-type bodipy dyes [J]. J. Am. Chem. Soc.,2006,128,10868-10875.
    [31]Shah M, Thangaraj K, Soong M L, et al. Pyrromethene-BF2 complexes as laser dyes [J]. Heteroat. Chem.,1990,1 (5):389-399.
    [32]Suzuki T, Tanaka T, Higashiguchi I, et al. Organic electroluminescent device elements. JP Patent 11176572,1999.
    [33]Takuma K, Misawa T, Sugimoto K, et al. Visible light-curable resin compositions and their use in inks. JP Patent 10273504,1998.
    [34]Yogo T, Urano Y, Ishitsuka Y, et al. Highly Efficient and Photostable Photosensitizer Based on BODIPY Chromophore [J]. J. Am. Chem. Soc.,2005,127(35):12162-12163.
    [35]Wan C W, Burghart A, Chen J, et al. Anthracene-BODIPY Cassettes:Syntheses and Energy Transfer [J]. Chem. Eur. J.,2003,9:4430-4441.
    [36]Thivierge, C.; Bandichhor, R.; Burgess, K. Spectral dispersion and water solubilization of BODIPY dyes via palladium-catalyzed C-H functionalization [J]. Org. Lett.,2007,9(11):2135-2138.
    [37]Brunner K, Haare J, Langeveld-Voss B, et al. Mechanistic study of excitation energy transfer in dye-doped PPV polymers [J]. J. Phys. Chem. B,2002,106:6834-6841.
    [38]Wittmershaus B P, Skibicki J J, McLafferty J B, et al. Spectral Properties of Single BODIPY Dyes in Polystyrene Microspheres and in Solutions [J]. Journal of Fluorescence, 2001,11(2):119-128.
    [39]Bergmann A, Holzer W, Stark R, et al. Photophysical characterization of pyrromethene dyes in solid matrices of acrylic copolymers [J]. Chemical Physics,2001,271:201-213.
    [40]Sisk W N, Onob N, Yanob T, et al. Photostability studies of three new bicyclo-boron dipyrromethene difluoride dyes [J]. Dyes and Pigments,2002,55:143-150.
    [41]Gabe Y, Urano Y, Kikuchi K, et al. Highly Sensitive Fluorescence Probes for Nitric Oxide Based on Boron Dipyrromethene ChromophoresRational Design of Potentially Useful Bioimaging Fluorescence Probe [J]. J. Am. Chem. Soc.,2004,126:3357-3367.
    [42]Qi X, Jun E J, Xu L, et al. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+:Cooperative selectivity enhancement toward Cu2+[J]. J. Org. Chem.,2006,71(7):2881-2884.
    [43]Bricks J L, Kovalchuk A, Trieflinger C, et al. On the development of sensor molecules that display Fe-III-amplified fluorescence [J]. J. Am. Chem. Soc.,2005,127(39): 13522-13529.
    [44]Wu Y, Peng X, Guo B, et al. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(II) in living cells [J]. Org. Biomol. Chem.,2005,3(8): 1387-1392.
    [45]Martin V V, Rothe A, Gee K R. Fluorescent metal ion indicators based on benzoannelated crown systems:a green fluorescent indicator for intracellular sodium ions [J]. Bioorg. Med. Chem. Lett.,2005,15(7):1851-1855.
    [46]Rurack K, Kollmannsberger M, Resch-Genger U, et al. A selective and sensitive fluoroionophore for Hg-II, Ag-I, and Cu-II with virtually decoupled fluorophore and receptor units [J]. J. Am. Chem. Soc.,2000,122(5):968-969.
    [47]Wang J, Qian X. A Series of Polyamide Receptor Based PET Fluorescent Sensor Molecules:Positively Cooperative Hg2+ Ion Binding with High Sensitivity [J]. Org. Lett.,2006,8(17):3721-3724.
    [48]Mei Y, Bentley P A, Wang W. A selective and sensitive chemosensor for Cu2+ based on 8-hydroxyquinoline [J]. Tetrahedron Lett.,2006,47(14):2447-2449.
    [49]Kim H J, Kim J S. BODIPY appended cone-calix[4]arene:selective fluorescence changes upon Ca2+ binding [J]. Tetrahedron Lett.,2006,47(39):7051-7055.
    [50]Basaric N, Baruah M, Qin W, et al. Synthesis and spectroscopic characterisation of BODIPY (R) based fluorescent off-on indicators with low affinity for calcium [J]. Org. Biomol. Chem.,2005,3(15):2755-2761.
    [51]DiCesare N, Lakowicz J R. Fluorescent probe for monosaccharides based on a functionalized boron-dipyrromethene with a boronic acid group [J]. Tetrahedron Lett. 2001,42(52):9105-9108.
    [52]de Silva A P, Gunaratne H Q N, Gunulaugsson T. Signaling recognition events with fluorescent sensors and swithes [J]. Chem. Rev.,1997,97:1515-1566.
    [53]Rurack K. Flippling the light switch 'ON' -the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions [J]. Spectrochim. Acta A.,2001,57:2161-2196.
    [54]Coskun A, Akkaya E U. Signal Ratio Amplification via Modulation of Resonance Energy Transfer:Proof of Principle in an Emission Ratiometric Hg(II) Sensor [J]. J. Am. Chem. Soc.,2006,128:14474-14475.
    [55]Peng X, Du J, Fan J, et al. A selective fluorescent sensor for imaging cd2+ in living cells [J]. J. Am. Chem. Soc.,2007,129:1500-1501.
    [56]Coskun A, Akkaya E U. Ion Sensing Coupled to Resonance Energy Transfer:A Highly Selective and Sensitive Ratiometric Fluorescent Chemosensor for Ag(Ⅰ) by a Modular Approach [J]. J. Am. Chem. Soc.,2005,127:10464-10467.
    [57]Zhang X, Xiao Y, Qian X. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells [J]. Angew. Chem. Int. Ed.,2008,47 (42):8025-8029.
    [58]Yamada K, Toyota T, Takakura K, et al. Preparation of BODIPY probes for multicolor Fluorescence imaging studies of membrane dynamics [J]. New J Chem.,2001,25(5): 667-669.
    [59]Duan X, Zhao Z, Ye J, et al. Donor-Donor Energy-Migration Measurements of Dimeric Labeled at Its N-Terminal Amines with Fluorescent Probes:A Study of Protein Unfolding [J]. Angew. Chem. Int. Ed.,2004,43:4216-4219.
    [60]Luedtke N W, Carmichael P, Tor Y. Cellular Uptake of Aminoglycosides, Guanidinoglycosides and Poly-arginine [J]. J. Am. Chem. Soc.,2003,125(41): 12374-12375.
    [61]Soulet D, Covassin L, Kaouass M, et al. Role of endocytosis in the internalization of spermidine-C2-BODIPY, a highly fluorescent probe of polyamine transport [J]. Biochem. J.,2002,367:347-357.
    [62]Cornelius M, Christian G G, Kliem H G, et al. Detection and separation of nucleoside-5'-monophosphates of DNA by conjugation with the fluorescent dye BODIPYand capillary electrophoresis with laser-induced fluorescence [J]. Electrophoresis,2005, 26:2591-2598.
    [63]Song X, Swanson B L. Rapid assay for avidin and biotin based on fluorescence quenching [J]. Analytica Chimica Acta,2001,442:79-87.
    [64]Kalinin S, Johansson L B A. Energy migration and transfer rates are invariant to modeling the fluorescence relaxation by discrete and continuous distributions of lifetimes [J]. J. Phys. Chem. B.,2004,108:3092-3097.
    [65]Arbeloa T L, Arbeloa F L, Arbeloa I L. Correlations between photophysics and lasing properties of dipyrromethene-BF dyes in solution [J]. Chemical Physics Letters,1999, 299:315-321.
    [66]Costela A, Garcia-Moreno I, Gomez C. Photophysical and Lasing Properties of New Analogs of the Boron-Dipyrromethene Laser Dye PM567 Liquid Solution [J]. J. Phys. Chem. A., 2002,106(34):7736-7742.
    [67]Meltola N J, Wahlroos R, Soini A E. Hydrophilic labeling reagents of dipyrrymethene-BF2 Dyes for two-photon excited fluorometry:syntheses and photophysical characterization [J]. Journal of Fluorescence,2004,14(5):635-647.
    [68]Meltola N J, Soini A E, Hanninen P E. Syntheses of novel dipyrrylmethene-BF2 dyes and their performance as labels in two-photon excited fluoroimmunoassay [J]. Journal of Fluorescence,2004,14(2):129-138
    [69]Porres L, Mongin 0, Blanchard-Desce M. Synthesis, fluorescence and two-photon absorption properties of multichromophoric boron-dipyrromethene fluorophores for two-photon-excited fluorescence applications [J]. Tetrahedron Lett.,2006,47: 1913-1917.
    [70]Bouit P A, Kamada K, Feneyrou P, et al. Two-photon absorption-related properties of functionalized BODIPY dyes in the infrared range up to telecommunication wavelengths [J]. Adv. Mater.,2009,21:1151-1154.
    [71]Hattori S, Ohkubo K, Urano Y, et al. Charge separation in a nonfluorescent donor-acceptor dyad derived from boron dipyrromethene dye, leading to photocurrent generation [J]. J. Phys. Chem. B,2005,109:15368-15375.
    [72]Erten-Ela S, Yilmaz M D, Lcli B, et al. A panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells [J].Org. Lett.,2008,10(15):3299-3302.
    [73]Yilmaz M D, Bozdemir 0 A, Akkaya E U. Light harvesting and efficient energy transfer in a boron-dipyrrin (BODIPY) functionalized perylenediimide derivative [J]. Org. Lett. 2006,8(13):2871-2873.
    [74]Zhang X, Xiao Y, Qian X. Highly Efficient Energy Transfer in the Light Harvesting System Composed of Three Kinds of Boron-Dipyrromethene Derivatives [J]. Org. Lett.,2008, 10(1):29-32.
    [75]Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds [J]. Chem. Rev.,1995,95(7):2457-2483.
    [76]Toguchi S, Morioka Y, Ishikawa H, et al. Novel red organic electroluminescent materials including perylene moiety [J]. Synth. Met.,2000,111-112:57-61.
    [77]Sakakibara Y, Okutsu S, Enokida T. Red electroluminescence and photoluminescence properties of a reduced porphyrin compound, tetraphenylchlorin [J]. Thin Solid Films, 2000,363:29-32.
    [78]Koga T, Takase A,Yasuda S, et al. Fluorescence spectroscopic characterization of 4,7-bis(2-thienyl)-1,2,5-oxadiazolo[3,4-c]pyridine;lead structure of new red-emitting EL material [J]. Chem. Phys. Lett.,2002,354:173-178.
    [79]Chen C H, Tang C W, Shi J, et al. Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence [J]. Thin Solid Films,2000,363:327-331.
    [80]Fang X, Li J, Perlette J, et al. Molecular beacons-Novel fluorescent probes [J]. Anal. Chem.,2000,72(23):747A-753A.
    [81]Aita K, Temma T, Kuge Y, et al. Development of a novel neodymium compound for in vivo fluorescence imaging [J]. Luminesc.,2007,22:455-461.
    [82]Konig K. Multiphoton microscopy in life sciences [J]. J. Microsc.,2000,200:83-104.
    [83]Fabian J, Nakazumi H, Matsuoka M. Near-infrared absorbing dyes [J].Chem. Rev.,1992, 92,1197-1226.
    [84]Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy [J]. Science,1990,248:73-76.
    [85]He G S, Tan L-S, Zheng Q, et al. Multiphoton Absorbing Materials:Molecular Designs, Characterizations, and Applications [J]. Chem. Rev.,2008,108(4):1245-1330.
    [86]Picot A, D'Aleo A, Baldeck P L, et al. Long-Lived Two-Photon Excited Luminescence of Water-Soluble Europium Complex:Applications in Biological Imaging Using Two-Photon Scanning Microscopy [J]. J. Am. Chem. Soc.,2008,130(5):1532-1533.
    [87]Margineanu A, Hofkens J, Cotlet M, et al. Photophysics of a Water-Soluble Rylene Dye:Comparison with Other Fluorescent Molecules for Biological Applications [J]. J. Phys. Chem. B,2004,108(32):12242-12251.
    [88]Qu J, Kohl C, Pottek M, et al. Ionic perylenetetracarboxdiimides:Highly fluorescent and water-soluble dyes for biolabeling [J]. Angew. Chem. Int. Ed.,2004,43(12): 1528-1531.
    [89]Brousmiche D W, Serin J M, Frechet J M J, et al. Fluorescence Resonance Energy Transfer in a Novel Two-Photon Absorbing System [J]. J. Am. Chem. Soc.,2003,125(6):1448-1449.
    [90]Chung S-J, Lin T-C, Kim K-S, et al. Two-Photon Absorption and Excited-State Energy-Transfer Properties of a New Multibranched Molecule [J]. Chem. Mater.,2001, 13(11):4071-4076.
    [91]Heinz L., Oswald K, Kurt P, et al. A novel fluorescent dye with strong, anisotropic soild-state fluorescence, small Stokes shift, and high photostability [J]. Angew. Chem. Int. Ed.,2005,44:2427-2428
    [92]Heinz L, Rami I, Oktay Y. Persistent fluorescence of perylene dyes by steric inhibition of aggregation [J]. Tetrahedron,2000,56:5435-5441.
    [93]Li J, Liu D, Lee C-S, et al. High T Carbazole-Based Hole-Transporting Material for Organic Light-Emitting Devices [J]. Chem. Mater.,2005,17(5):1208-1212.
    [94]Burghart A, Kim H, Welch M B, et al.3,5-Diaryl-4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) Dyes:Synthesis, Spectroscopic, Electrochemical, and Structural Properties [J]. J. Org. Chem.,1999,64(21):7813-7819.
    [95]Chen Y, Graham A, Potter W, et al. Bacteriopurpurinimides:Highly stable and potent photosensitizers for photodynamic therapy [J]. J. Med. Chem.,2002,45(2):255-258.
    [96]Umezawa K, Nakamura Y, Makino H, et al. Bright, color-tunable fluorescent dyes in the visible-near-infrared region [J]. J. Am. Chem. Soc.,2008,130(5):1550-1551.
    [97]Fischer G M, Ehlers A P, Zumbusch A, et al. Near-infrared dyes and fluorophores based on diketopyrrolopyrroles [J]. Angew. Chem. Int. Ed.,2007,46(20):3750-3753.
    [98]Wakamiya A, Mori K, Yamaguchi S.3-Boryl-2,2'-bithiophene as a versatile core skeleton for full-color highly emissive organic solids [J] Angew. Chem., Int. Ed.,2007,46(23): 4273-4276.
    [99]Xiao Y, Liu F, Qian X, et al. A new class of long-wavelength fluorophores:strong red fluorescence, convenient synthesis and easy derivation [J]. Chem. Commun.,2005,2: 239-241.
    [100]Fu M, Xiao Y, Qian X, et al. A design concept of long-wavelength fluorescent analogs of rhodamine dyes:replacement of oxygen with silicon atom [J]. Chem. Commun.,2008, 15:1780-1782.
    [101]Zhou Y, Xiao Y, Chi S, et al. Isomeric boron-fluorine complexes with donor-acceptor architecture:Strong solid/liquid fluorescence and large stokes shift [J]. Org. Lett., 2008,10(4):633-636.
    [102]Shen Z, Rohr H, Rurack K, et al. Boron-diindomethene (BDI) dyes and their tetrahydrobicyclo precursors-en route to a new class of highly emissive fluorophores for the red spectral range [J]. Chem. Eur. J.,2004,10(19):4853-4871.
    [103]Gorman A, Killoran J,O'Shea, et al. In vitro demonstration of the heavy-atom effect for photodynamic therapy [J]. J. Am. Chem. Soc.2004,126(34):10619-10631.
    [104]Costela A, Garcia-Moreno I, Pintado-Sierra M, et al. New laser dye based on the 3-styryl analog of the BODIPY dye PM567 [J]. J. Photochem. and Photobiol. A:Chem., 2008,198(2-3):192-199.
    [105]刘东志.功能性染料导论[M].天津科技翻译出版公司,1996,81-88.
    [106]Berggren M, Dodabalapur A, Slusher R E, et al. Light amplification in organic thin films using cascade energy transfer [J]. Nature,1997,389:466-469.
    [107]Schafer F P. Tunable lasers and applications [M]. Springer Series in optical science, 1976,3:50-59.
    [108]Pavlopoulos T G, Boyer J H, Thangara j K, et al. Laser dye spectroscopy of some pyrromethene-BF2 complexes [J]. Appl. Opt.,1992,31(33):7089-7094.
    [109]Pavlopoulos T G, Boyer J H, Shah M, et al. Laser action from 2,6,8-position trisubsituted 1,3,5,7-tetramethylpyrromethene-BF2 complexes:part 1 [J]. Appl. Opt., 1990,29(27):3885-3886.
    [110]Ahmad M, Rahn M, King T A. Singlet oxygen and dye-triplet-state quenching in solid-state dye lasers consisting of pyrromethene 567-doped poly (methyl methacrylate) [J]. Appl. Opt.,1999,38(30):6337-6342.
    [111]Faloss M, Canva M, Georges P, et al. Toward millions of laser pulses with pyrromethene-and perylene-doped xerogels [J]. Appl. Opt.,1997,36(27):6760-6763.
    [112]Chang T, Kuo C, Chiang C, et al. Investigation of guanine-rich DNA telomeric structureby a covalently linked BODIPY dye [J] Phys. Chem. Chem. Phys.,1999,1(16): 3783-3787.
    [113]Jensen K K, Van Berlekom S B, Kajanus J, et al. Mediated energy transfer in covalently linked porphyrin dimmers [J] J. Phys. Chem. A,1997,101(12):2218-2220.
    [114]Kilsa K, Kajanus J, Martensson J, et al. Mediated electronic coupling:singlet energy transfer in porphyrin dimers enhanced by the bridging chromophore [J] J. Phys. Chem. B,1999,103(34):7329-7339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700