用户名: 密码: 验证码:
基于苝二酰亚胺和萘酰亚胺的新型荧光分子探针的设计、合成和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在分子识别领域中荧光化学传感器以其高灵敏度、丰富的测量信号以及探头设计的简便而备受关注。因此,设计和合成新颖高效的荧光探针是化学工作者一项迫切任务。
     苝二酰亚胺类衍生物(PDIs)以其良好的光、热以及化学稳定性,同时化学可修饰性强等优点,迅速成为现代光、电材料领域中新型分子器件研究的热点。同时,PDI也是一种很好的电子受体,这种性质决定了以PDI为荧光团的光致电子转移(PET)型的荧光分了探针将会有很好的应用前景。
     在第一部分研究工作中,我们合成了两种不同的双皮考林胺为金属离子识别基团、PDI为荧光体的“关-开”型荧光探针PDI-1和PDI-2,通过氢谱、碳谱和质谱对分子结构进行表征,并对过渡金属离子的选择性进行实验。首先,PDI-1在各种不同的金属离子中,表现出对Ni2+高度的选择性,荧光增强达49倍;从ESI-MS、Job's plot和荧光滴定曲线的非线性拟合等一系列实验结果确定PDI-l和Ni2+在DMF中形成化学计量比为1:2的配合物,通过Benesi-Hildebrand分析得出络合物稳定常数为2.7×109M-2,这是首次报导的表现出荧光增强的Ni2+荧光探针;PDI-2表现出对Fe3+良好的选择性,荧光增强达138倍,质谱结果显示PDI-2和Fe3+在DMF中形成1:2类型的稳定配合物。最有意义的结果是两个探针分子表现出的高选择性金属离子Ni2+和Fe3+都有强烈的顺磁性,是常见的荧光淬灭剂,因此发展Ni2+和Fe3+的荧光开型探针具有一定的挑战性,我们的研究结果表明在研究顺磁性金属离子荧光探针中,由于具有较高的氧化电位特点,PDIs是一种有利于荧光增强的荧光体。由于PDI结构可修饰性非常丰富,所以提出的作用机制对设计和发展其它新型的荧光探针很有价值。
     4-胺基-1,8-萘酰亚胺衍生物和PDIs类似也是一种良好的荧光染料。由于其荧光量子产率高、荧光发射波长适中、斯托克斯(stocks)位移大等优点,在工业荧光染色、激光材料、光电转换材料、荧光标记和荧光探针等方面都得到了广泛应用,尤其是光稳定性强、结构简单以及易于修饰等优点,成为荧光探针研究中一类重要的荧光团
     在第二部分研究工作中,我们以分子内电荷转移(ICT)为工作机制,4-溴-1,8-萘酐为原料合成了两种结构新颖的萘酰亚胺类荧光探针NaI-1和NaI-2,在8:2乙腈和水(V:V)混合体系中,都表现出对铜离子(Ⅱ)优良的选择性和灵敏性,竞争实验表明其它金属离子的干扰非常小;在铜离了滴定过程中,吸收光谱中的最大吸收峰蓝移近80nm,job's plot结果清楚地表明NaI-1和NaI-2两种探针分子和Cu2+形成的配合物的化学计量比分别为1:1和1:2,晶体结构清楚表明NaI-1和铜离子(Ⅱ)形成稳定五配位的化合物,通过Benesi-Hildebrand分析得出形成配合物的稳定常数分别为4.5×104M-1和3.12×109M-2,稳定性相当;同时,随着铜离子浓度的增加,其荧光几乎完全淬灭。在B3LYP/6-31G*水平上对NaI-1和NaI-1/Cu2+配合物进行DFT计算,结果表明NaI-1和Cu2+形成的配合物吸收光谱最大值和NaI-1相比明显蓝移,该结果和实验结果非常一致;同时做出主要贡献的前线分子轨道的电荷分布表明萘酰亚胺配体到金属铜的电荷转移是导致荧光淬灭的主要原因。
     在第三部分研究工作中,我们合成了以4-胺基-萘酰亚胺为荧光体、两种结构不同的皮考林胺(DPA)为离子识别基团的化合物NaI-3,通过'H NMR.13CNMR和ESI MS对分子结构进行表征。在纯乙腈中,分别加入Zn2+和Cu2+,吸收光谱最大值分别蓝移50 nm和80 nm,但是荧光性质截然不同,加入Zn2+荧光量子产率增大6.6倍,这主要是由于位于亚酰胺位置的四齿配体和锌离子络合后PET过程受阻导致荧光恢复;加入Cu2+后,由于ICT效应减弱,荧光量子产率进一步降低;加入等摩尔数的Zn2+、Cu2+时,荧光量了产率变化微弱。在传感性能基础上,利用PET和ICT两种因素,在单分子水平上实现了双化学信号输入/单荧光信号输出的逻辑操作-INHIBIT逻辑门,为高级复杂的逻辑门分子设计和发展提供了有益可靠的实验依据。
Fluorescent probes for sensing and monitoring chemical analytes are a topical and attractive field for chemistry, biology and environmental science due to their high sensitivity and simplicity. Developing highly effective fluorescent probes is thus a fundamental task for organic and analytical chemists.
     Perylene tetracarboxylic diimides (PDIs) are attractive molecular building blocks that are currently being extensively investigated for use in a variety of photoactive organic materials, such as organic field-effect transistor (OFET), light-harvesting solar cells, light emitting diodes. These dyes have recently generated great interest in the field of photonic materials, because of their excellent thermal and photo stability, high luminescence efficiency, easy modification on the molecular structure,, and desirable optical and redox characteristics. PDIs are good electron acceptors with low reduction potential. Therefore PDIs are promising candidates for the application as fluorophores in fluorescent probes based on photoinduced electron transfer (PET).
     In the first part of our research, two novel "turn-on" fluorescent probes with PDI as the fluorophore and two different di-(2-picolyl)-amine (DPA) groups as the metal ion receptor (PDI-1 and PDI-2) were successfully synthesized with satisfactory yields. PDI-1 exhibited high selectivity toward Ni2+ in the presence of various other metal cations including Zn2+, Cd2+ and Cu2+ which were expected to interfere significantly. A 1:2 stoichiometry was found for the complex formed by PDI-1 and Ni2+ by a Job's plot and by non-linear least square fitting of the fluorescence titration curves. The binding constant Ka was determined to be 2.7×109 M-2 through the Benesi-Hildebrand analysis. By introducing an extra diamino ethylene group between DPA and the phenyl bridge, the receptor was modified and the high selectivity of the PDI-based fluorescent chemosensor shifted to Fe3+ from Ni2+. The enhancement factor of fluorescence response of PDI-2 to Fe3+was as high as 138. The results of ESI MS showed that the stoichiometry of the complex between PDI-2 and Fe3+ in N, N-dimethylformamide (DMF) was 1:2. The binding behavior of the receptors in these two compounds is affected significantly by the PDI fluorophores. Most interestingly, both Ni2+ and Fe3+ are paramagnetic metal ions, which are known as fluorescence quenchers and are rarely targeted with turn-on fluorescence probes. This result suggests that PDTs are favorable fluorophores for a "turn-on" fluorescence probe for paramagnetic transition metal ions because of the high oxidation potential.
     4-amino-1,8-naphthalimide derivatives are also excellent fluorescence dyes like PDIs. Due to their remarkable luminiscent properties, they have found increasing applications in a number of areas including colouration of polymers, fluorescent solar energy collectors, liquid-crystal additives, electro-optically sensitive materials, fluorescent markers in medicine and biology and ion probes. Especially, they absorb and emit in the visible range with large Stokes'shift, high fluorescence quantum yield, and they have the advantages of high photostability, simple structure and easy approaches to modification, which are favorable properties for the design of fluorescent chemosensors.
     In the second part of our research, based on the strategy of intramolecuar charge transfer (ICT) two novel fluorescent probes using 4-amino-1,8-naphthalimide as fluorophore and dipicolylamine as receptor for metal cations were successfully synthesized and characterized through 1H NMR,13C NMR, ESI-MS and MALDITOF-MS. Both of them showed high selectivity towards Cu2+ in acetonitrile-aqueous (8:2) mixture at room temperature. Addition of Cu2+ to Nal-1 or NaI-2, a 80 nm blue shift of the absorption maximum produced because of complexation between probes and copper ions, which resulted in the reduced ICT effect. The fluorescence of fluorophore was almost quenched in stark contrast to other metal ions. The results of DFT calculation based on B3LYP/6-31G* level indicated the charge transfer from the excited naphthalimide moiety to Cu2+ center was responsible for the remarkable fluorescence quench. Via Job's plots and non-linear least square fitting of the absorption titration curves,1:1 and 1:2 stoichiometry were found for the complex formed by Nal-1 and Cu2+, Nal-l and Cu2+, respectively. The binding constant Ka and Ka' were determined to be 4.5×104 M-1 and 3.12×109 M-2, respectively through Benesi-Hildebrand analysis.
     Based on the results of part 2, new compound N-p-(N'-2-(N",N"-di(2-pyridylmethyl) amino-ethylene) aniline)-4-N"'-di (2-pyridylmethyl) amino-1,8-naphthalimide (NaI-3) was successfully synthesized and characterized through 'H NMR,13C NMR and ESI MS. Addition of Zn2+ to NaI-3 in acetonitrile produced a 50 nm blue shift of absorption maximum, while the fluorescence quantum yieldΦduring the titration of zinc ions was remarkablely increased from 0.09 to 0.60. Both of them attributed to the formation of a NaI-3/Zn2+ complex, which resulted in a decreasing ICT effect and the inhibited PET process. On the other hand, addition of Cu2+ to NaI-3 in acetonitrile produced an 80 nm hypsochromic shift of absorption maximum, while the fluorescence quantum yieldΦwas dramastically decreased from 0.09 to 0.01, which was caused by the reduced ICT effect and ligand to metal charge transfer (LMCT) process, respectively. While addition of the equal equivalence of Cu2+ to the NaI-3/Zn2+ complex system, the quantum yield of fluorescence decreased from 0.6 to 0.2. Compound NaI-3 described here could be considered to perform an integrated circuit function with one AND and one NOT, which could be interpreted by a two-input INHIBIT logic gate. The present results demonstrated an efficient way for elaborating and transmitting information at a single molecular level and will be useful for further molecular design to mimic the function of the complex logic gates.
引文
[1]a) A. W. Czarnik, Fluorescent Chemosensors for Ion and Molecule Recognition, A.C.S., Washington DC,1992;
    b) A. P. de Silva, H. Q.N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev.1997,97,1515-1566;
    (c)A. P. de Silva, D. B. Fox, A. J. M. Huxley, T. S. Moody, Combining luminescence, coordination and electron transfer for signalling purposes, Coord. Chem. Rev.2000,205,41-57;
    d) L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, Luminescent chemosensors for transition metal ions, Coord. Chem. Rev.2000,205,59-83; i) P. Jiang, Z. Guo, Coord. Chem. Rev.2004,248,205-229;
    e) J. F. Callan, A. P. de Silva, D. C. Magri, Luminescent sensors and switches in the early 21st century, Tetrahedron 2005,61.8551-8588;
    f) J. S. Kim, D. T. Quang, Calixarene-Derived Fluorescent Probes, Chem. Rev.2007,107, 3780-3799.
    [2]a) A. P. de Silva, T. Gunnlaugsson, T. E. Rice, Recent evolution of luminescent photoinduced electron transfer sensors. A review, Analyst,1996,121,1759-1762;
    b) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, C. P. McCoy, P. R. S. Maxwell, J. T. Rademacher, T. E. Rice, Photoionic devices with receptor-functionalized fluorophores, Pure & Appl. Chem.1996,68, 1443-1448;
    c) A. P. de Silva, H. Q. N. Gunaratne, C. P. McCoy, Direct visual indication of pH windows:'off-on-off' fluorescent PET (photoinduced electron transfer) sensors/switches, Chem. Commun.1996,2399-2400.
    [3]a) R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, E. G. E. M. Maguire, C. P. McCoy, K. R. A. S. Sandanayake, Molecular fluorescent signalling with'fluor-spacer-receptor' systems:approaches to sensing and switching devices via supramolecular photophysics, Chem. Soc. Rev.1992,21,187-195;
    b) S. L. Wiskur, H. Ait-Haddou, J. J. Lavigne, E. V. Anslyn, Teaching Old Indicators New Tricks, Acc. Chem. Res.2001,34,963-972.
    [4]B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coordination Chemistry Reviews,2000,205,3-40.
    [5]A. J. Bryan, A.P. de Silva, S. A. De Silva, R. A. D. D. Rupasinghe, K. R. A. S. Sandanayake, Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations, Biosensors,1989,4,169-179.
    [6]A.P. de Silva, S.A. de Silva, Fluorescent signalling crown ethers:'switching on'of fluorescence by alkali metal ion recognition and binding in situ, J. Chem. Soc. Chem. Commun. 1986,1709-1710.
    [7]S. Yoon, A. E. Albers, A. P. Wong, C. J. Chang, Screening Mercury Levels in Fish with a Selective Fluorescent Chemosensor,J. Am. Chem. Soc.,2005,127,16030-16031.
    [8]Q. He, E. W. Miller, A. P. Wong, and C. J. Chang, A Selective Fluorescent Sensor for Detecting Lead in Living Cells,J. Am. Chem. Soc.,2006,128,9316-9317.
    [9]T. Cheng, Y. Xu, S. Zhang, W. Zhu, X. Qian, L. Duan, A Highly Sensitive and Selective OFF-ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell,J. Am. Chem. Soc.,2008,130,16160-16161.
    [10]S. H. Lee, H. J. Kim, Y. O. Lee, J. Vicens and J. S. Kim, Fluoride sensing with a PCT-based calix[4]arene, Tetrahedron Letters,2006,47,4373-4376.
    [11]T. Gunnlaugsson, P. E. Kruger, T. C. Lee, R. Parkesh, F. M. Pfeffer, G. M. Hussey, Dual responsive chemosensors for anions:the combination of fluorescent PET (Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule, Tetrahedron Letters,2003,44, 6575-6578.
    [12]M. Baruah, W. Qin, R. A. L. Vallee, D. Beljonne, T. Rohand, W. Dehaen, N. Boens, A Highly Potassium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light, Org. Lett.2005,7,4377-4380.
    [13]S. Atilgan, T. Ozdemir, E. U. Akkaya, A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Distyryl-Bodipy Fluorophore, Org. Lett.2008,10, 4065-4067.
    [14]K. Komatsu, Y. Urano, H. Kojima, T. Nagano, Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc,J. Am. Chem. Soc, 2007,129,13457-13454.
    [15]E. Ballesteros, D. Moreno, T. Gomez, T. Rodriguez, J. Rojo, M. Garcia-Valverde, T. Torroba, A New Selective Chromogenic and Turn-On Fluorogenic Probe for Copper(Ⅱ) in Water-Acetonitrile 1:1 Solution, Org. Lett.2009,11,1269-1272.
    [16]H. Jung, P. Kwon, J. Lee, J. Kim, C. Hong, J. Kim, S.Yan, J. Lee, J. Lee,T. Joo, and J. Kim, Coumarin-Derived Cu2+-Selective Fluorescence Sensor:Synthesis, Mechanisms, and Applications in Living Cells, J. Am. Chem. Soc.,2009,131,2008-2012.
    [1.7]M. Yuan, Y. Li, J. Li, C. Li, X. Liu, J. Lv, J. Xu, H. Liu, S. Wang, D. Zhu, A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule, Org. Lett.2007,9,2313-2316.
    [18]A. X. Trautwein, Bioionorganic Chemistry, Wiley-VCH, Weinlieim,1997.
    [19]a) S. K. Kim, S. H. Kim, H.J.Kim, S. H. Lee, S.W. Lee, J. Ko, R. A. Bartsch, J. S. Kim, Indium(III)-Induced Fluorescent Excimer Formation and Extinction in Calix[4]arene-Fluoroionophores, Inorg. Chem.2005,44,7866-7875;
    b) F. D. Lewis, Y. Zhang, R. L. Letsinger, Bispyrenyl Excimer Fluorescence:A Sensitive Oligonucleotide Probe,J. Am. Chem. Soc.1997,119,5451-5452;
    c) Y. Suzuki, T. Morozumi, H. Nakamura, M. Shimomura, T. Hayashita, R. A. Bartsh, New Fluorimetric Alkali and Alkaline Earth Metal Cation Sensors Based on Noncyclic Crown Ethers by Means of Intramolecular Excimer Formation of Pyrene, J. Phys. Chem. B 1998,102,7910-7917;
    d) S. K. Kim, S. H. Lee, J.Y. Lee, J. Y. Lee, R. A. Bartsch, J. Seung Kim, An Excimer-Based, Binuclear, On-Off Switchable Calix[4]crown Chemosensor,J. Am. Chem. Soc.,2004,126,16499-16506;
    e) H. N. Lee, Z. Xu, S. K. Kim, K. M. K. Swamy, Y. Kim, S. Kim, J. Yoon, Pyrophosphate-Selective Fluorescent Chemosensor at Physiological pH: Formation of a Unique Excimer upon Addition of Pyrophosphate, J. Am. Chem. Soc.,2007,129, 3828-3829;
    f) S. H. Kim, J. S. Kim, S. M.Park, S. Chang, Hg2+-Selective OFF-ON and Cu2+-Selective ON-OFF Type Fluoroionophore Based upon Cyclam, Org. Lett.2006,8,371-374.
    [20]J. Xie, M. Mnand, S. Maisonneuve, R. Mtivier, Synthesis of Bispyrenyl Sugar-Aza-Crown Ethers as New Fluorescent Molecular Sensors for Cu(Ⅱ),J. Org. Chem.,2007,72,5980-5985.
    [21]S. Moon, N. J. Youn, S. M. Park, S. Chang Diametrically Disubstituted Cyclam Derivative Having Hg2+-Selective Fluoroionophoric Behaviors,J. Org. Chem.,2005,70,2394-2397.
    [22]S. Y. Park, J.H.Yoon, C. S. Hong, R. Souane, J. S. Kim, S. E. Matthews, J. Vicens, A Pyrenyl-Appended Triazole-Based Calix[4]arene as a Fluorescent Sensor for Cd2+ and Zn2+,J. Org. Chem.,2008,73,8212-8218.
    [23]M. Licchelli, A. O. Biroli, A.Poggi, A Prototype for the Chemosensing of Ba2+ Based on Self-Assembling Fluorescence Enhancement, Org. Lett.2006,8,915-918.
    [24]H.J. Kim, J. Hong, A. Hong, S. Ham, J. H. Lee, J. S. Kim, Cu2+-Induced Intermolecular Static Excimer Formation of Pyrenealkylamine,Org. Lett.,2008,10,1963-1966.
    [2.5]H. N. Lee, Z. Xu, S. K. Kim, K. M. K. Swamy, Y. Kim, S. Kim, and J. Yoon, Pyrophosphate-Selective Fluorescent Chemosensor at Physiological pH:Formation of a Unique Excimer upon Addition of Pyrophosphate,J. Am. Chem. Sac.,2007,129,3828-3829.
    [26]H. Rhee, C. Lee, S. Cho, M. Song, M. Cashel, H. E. Choy, Y. Seok,J. Hong, Selective Fluorescent Chemosensor for the Bacterial Alarmone (p)ppGpp, J. Am. Chem. Soc.,2008,130, 784-785.
    [27]a) W. Shi, S. Sun, X. Li, H.Ma, Imaging Different Interactions of Mercury and Silver with Live Cells by a Designed Fluorescence Probe Rhodamine B Selenolactone, Inorg. Chem.2010,49, 1206-1210;
    b) Z. Wang. Y. Xing, H. Shao, P. Lu, and W. P. Weber, Synthesis and Characterization of 9-(Cycloheptatrienylidene)fluorine Derivatives:Acid-Triggered "Switch on" of Fluorophores, Org. Lett.2005,7,87-90;
    c) J. H. Do, H. N.. Kim, J. Yoon, J. S. Kim, H. Kim, A Rationally Designed Fluorescence Turn-On Probe for the Gold(III) Ion, Org. Lett.2010,12,932-934;
    d) M. G. Choi, D. H. Ryu, H. L. Jeon, S. Cha, J. Cho, H. H.Joo, K. S. Hong, C. Lee, S. Ahn, S.Chang, Chemodosimetric Hg2+-Selective Signaling by Mercuration of Dichlorofluorescein Derivatives, Org. Lett.,2008,10,3717-3720;
    e) G Zhang, D. Zhang, S. Yin, X. Yang, Z. Shuaia, D. Zhu, 1,3-Dithiole-2-thione derivatives featuring an anthracene unit:new selective chemodosimeters for Hg(Ⅱ) ion, Chem. Commun.,2005,2161-2163.
    [28]a) A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(Ⅱ), Y. Shiraishi, S. Sumiya, Y. Kohno, T. Hirai, J. Org. Chem.,2008,73, 8571-8574;
    b) Highly Sensitive and Selective Chemosensor for Hg2+ Based on the Rhodamine Fluorophore, M. H. Lee, J, Wu, J. W.Lee, J. H. Jung, J. S. Kim, Org. Lett.,2007,9,2501-2504;
    c) X. Chen, S. Nam, M. J. Jou, Y. Kim, S. Kim, S. Park, J. Yoon, Hg2+ Selective Fluorescent and Colorimetric Sensor:Its Crystal Structure and Application to Bioimaging, Org. Lett.,2008,10, 5235-5238;
    d) D.Wu, W. H., C. Duan, Z. Lin, Q. Meng, Highly Sensitive Fluorescent Probe for Selective Detection of Hg2+ in DMF Aqueous Media, Inorg. Chem.2007,46,1538-1540;
    e) Y. Yang, K. Yook,J.Tae, A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media, J. Am. Chem.Soc. 2005,127,16760-16761; f) S. Ko, Y. Yang, J. Tae, I. Shin, In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe, J. Am. Chem. Soc.2006,128,14150-14155.
    [29]a) D. Ray, P. K. Bharadwaj, A Coumarin-Derived Fluorescence Probe Selective for Magnesium, Inorg. Chem.,2008,47,2252-2254:
    b) J. Wu, W. Liu, X. Zhuang, F. Wang, P. Wang, S. Tao, X. Zhang, S. Wu, S. Lee, Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization, Org. Lett.,2007,9,33-36; c) W.Liu,L. Xu,.R. Sheng, P. Wang, H. Li, S. Wu, A Water-Soluble "Switching On" Fluorescent Chemosensor of Selectivity to Cd2+, Org. Lett.,2007,9,3829-3832.
    [30]K. C. Song, J. S. Kim, S. M. Park, K. Chung, Fluorogenic Hg2+-Selective Chemodosimeter Derived from 8-Hydroxyquinoline, S.Ahn, S. Chang, Org. Lett.,2006,8,3413-3416.
    [31]M. Kardos, Ger. Pat. Appl., DE 275220A,1913
    [32]G. Geissler, H. Remy Ger. Pat. Appl., DE 1130099,1959
    [33]H. E. Katz, Z. Bao, S. L. Gilat, Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors, Acc. Chem. Res.2001,34,359-369.
    [34]a) M. A. Angadi, D. Gosztola, M. R. Wasielewski, Organic light emitting diodes using poly(phenylenevinylene) doped with perylenediimide electron acceptors. Mater. Sci. Eng. B. 1999,63,191-194;b) P. Ranke, I. Bleyl, J. Simmerer, D. Haarer, A. Bacher, H. W. Schmidt, Electroluminescence and electron transport in a perylene dye. Appl. Phys. Lett.1997,71, 1332-1334.
    [35]K.-Y.Law, Organic photoconductive materials:recent trends and developments. Chem. Rev. 1993,93,449-486.
    [36]a) B. A. Gregg, R. A. Cormier, Doping Molecular Semiconductors:n-Type Doping of a Liquid Crystal Perylene Diimide. J. Am. Chem. Soc.2001,123,7959-7960;
    b)A. J. Breeze,; A. Salomon,; D. S. Ginley,; B. A. Gregg,; H. Tillmann,; H. H. Horhold, Polymer-perylene diimide heterojunction solar cells. Appl. Phys. Lett.2002,81,3085-3087.
    [37]a) R. T. Hayes, M. R. W.asielewski, D. Gosztola, Ultrafast Photoswitched Charge Transmission through the Bridge Molecule in a Donor-Bridge-Acceptor System.J. Am. Chem. Soc.2000,122,5563-5567;
    b) W. B. Davis, W. A. Svec, M. A. Ratner, M. R. Wasielewski, Molecular-wire behaviour in p-phenylenevinylene oligomers, Nature.1998,396,60-63.
    [38]a) C. Hippius, F. Schlosser, M.O. Vysotsky, V. Bohmer, F. Wurthner, Energy Transfer in Calixarene-Based Cofacial-Positioned Perylene Bisimide Arrays. J. Am. Chem. Soc.2006,128, 3870-3871;
    b) K. Tornizaki, R. S. Loewe, C. Kirmaier, J. K. Schwartz, J. L. Retsek, D. F. Bocian, D. Holten, J. S. Lindsey, Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments. J. Org. Chem.2002,67,6519-6534.
    [39]F. Yukruk, A. L. Dogan, H. Canpinar, D. Guc, E. U. Akkaya, Water-Soluble Green Perylenediimide (PDI) Dyes as Potential Sensitizers for Photodynamic Therapy. Org. Lett.,2005, 7,2885-2887.
    [40]H. Langhals, J. Karolin, L. B-A. Johansson, Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields.J.Chem. Soc., Faradayrans Transactions. 1998,94,2919-2922.
    [41]M. Sandrai, L. Hadel, R. R. Sauers, S. Husain, K. Krogh-Jespersen, J. D. Westbrook, G. R. Bird, Conformational analysis.19.1,2-Dichlorotetrafluoroethane:molecular structure, composition, anti-gauche energy and entropy differences, and quadratic force field; An electron-diffraction and ab initio study. J. Phys. Chem.1992,96,7988-7996.
    [42]a) Y. Zhao, M. R. Wasielewski,3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors. Tetrahedron Lett.1999,40,7047-7050;
    b) A. S. Lukas, Y. Zhao, S. E. Miller, M. R. Wasielewski, Biomimetic Electron Transfer Using Low Energy Excited States:A Green Perylene-Based Analogue of Chlorophyll a.J. Phys. Chem. B. 2002,106,1299-1306;
    c) A. Rademacher, S. Markle, H. Langhals, Perylen-Fluore-szenzfarbstoffe rnit hoher Photostabilitiit. Chem. Ber.1982,115,2927-2934;
    d) F. Wurthner, C. Thalacker, S. Diele, C. Tschierske, Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes. Chem. Eur. J.2001,7,2245-2253;
    e) F. Wurthner, C. Thalacker (BASF AG), Ger.Pat. Appl., DE 10039232 Al,2000 (Chem. Abstr.,2002,136, 185323).
    [43]P. Rajasingh, R. Cohen, E. Shinnan, L. J. W. Shimon, B. Rybtchinski, Selective Bromination of Perylene Diimides under Mild Conditions. J. Org. Chem.2007,72,5973-5979.
    [44]S.-Y. Chen, Y.-Q. Liu, W.-F. Qiu, X.-B. Sun, Y.-Q. Ma, D.-B. Zhu, Oligothiophene-Functionalized Perylene Bisimide System:Synthesis, Characterization, and Electrochemical Polymerization Properties. Chem. Mater.2005,17,2208-2215
    [45]R. Gvishi, R. Reisfeld, Z. Burshtein, Spectroscopy and laser action of the "red perylimide dye" in various solvents. Chem. Phys. Lett.1993,213,338-344.
    [46]M. J. Ahrens, M. J. Fuller, M. R. Wasielewski, Cyanated Perylene-3,4-dicarboximides and Perylene-3,4:9,10--bis(dicarboximide):Facile Chromophoric Oxidants for Organic Photonics and Electronics. Chem. Mater.2003,15,2684-2686.
    [47]S. Prathapan, S. I. Yang, J. Seth, M. A. Miller, D. F. Bocian, D. Holten, J. S. Lindsey, Synthesis and Excited-State Photodynamics of Perylene-Porphyrin Dyads.1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker.J.Phys. Chem. B.2001,105,8237-8248.
    [48]M.P. O'Neil, M. P. Niemczyk, W. A. Svec, D. Gosztda, G. L. Gaines, Wasielewski M. R. Picosecond Optical Switching Based on Biphotonic Excitation of an Electron Donor-Acceptor-Donor Molecule. Science.1992,257,63-66.
    [49]F. Wurthner, P. Osswald, R.Schmidt, T. E. Kaiser, H. Mansikkamaki, M. Konemann, Synthesis and Optical and Electrochemical Properties of Core-Fluorinated Perylene Bisimides. Org. Lett.2006,8,3765-3768.
    [50]X. He, H. Liu, Y. Li, S. Wang, Y Li, N. Wang, J. Xiao, X. Xu, D. Zhu, Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(II) Ions, Adv. Mater.2005, 17,2811-2815.
    [51]X. Guo, D. Zhang, D. Zhu, Logic Control of the Fluorescence of a New Dyad, Spiropyran-Perylene Diimide-Spiropyran, with Lignt, Ferric ion, and. Proton:Construction of a New Three Input AND Logic Gate, Adv. Mater.2004,16,125-130;
    [52]X. Chen, M. J. Jou, J. Yoon, An "Off-On" Type UTP/UDP Selective Fluorescent Probe and Its Application to Monitor Glycosylation Process, Org. Lett.,2009,11,2181-2184.
    [53]a) L. Zang, Y. Che, J. S. Moore, One-Dimensional Self-Assembly of Planar π-Conjugated Molecules:Adaptable Building Blocksfor Organic Nanodevices, Ace. Chem. Res,2008, 41,1596-1608;
    b) Ya. Che, X. Yang, S. Loser, L. Zang, Expedient Vapor Probing of Organic Amines Using Fluorescent Nanofibers Fabricated from an n-Type Organic Semiconductor, Nano Lett.2008,8,2219-2223.
    [54]a) E. Martin, J.L. G. Coronado, J.J. Cammacho, et al. Experimental and theoretical study of the intramolecular charge transfer on the derivatives 4-methoxy and 4-acetamide 1, 8-naphthalimide N-substituted.J. Photochem. Photobio.A:Chem.,2005,175,1-7;
    b)Y. Gao,R. A. Marcus, Theoretical Investigation of the Directional Electron Transfer in 4-Aminonaphthalimide Compounds,J. Phys.Chem. A,2002,106,1956-1960;
    c) J. Gan, Q. Song, X. Hou, K. Chen, H. Tian,1,8-Naphthalimides for non-doping OLEDs:the tunable emission color from blue, green to red,J. Photochem Photobiology A,2004,162,399-406;
    d) D. Kolosov, V. Adamovich, P. Djurovich, M. E. Thompson, C. Adachi,1,8-Naphthalimides in Phosphorescent Organic LEDs:The Interplay between Dopant, Exciplex, and Host Emission, J.Am.Chem.Soc., 2002,124,9945-9954.
    [55]a) D. Staneva,I. Grabchev, J. Souinillion, V. Bojinov, A new fluorosensor based on bis-1,8-naphthalimide for metal cations and protons, J. Photochem & Photobio. A:Chemistry, 2007,189,192-197;
    b) V. B. Bojinov, T. N. Konstantinova, Fluorescent 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer, Sensors and Actuators B,2007,123,869-876;
    c)H. He, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz, J. K. Tusa, A Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer Anal. Chem.,2003,75,549-555;
    d) X. Guo, X. Qian, L. Jia, A Highly Selective and Sensitive FluorescentChemosensor for Hg2+in Neutral Buffer Aqueous Solution J. Am. Chem. Soc.,2004,126,2272-2273;
    e) Z. Xu, Y. Xiao, X. Qian, J. Cui, D. Cui, Ratiometric and Selective Fluorescent Sensor for CuⅡ Based on Internal Charge Transfer (ICT), Org. Lett.2005,7,889-892;
    f) J. Wang, Y. Xiao,Z. Zhang, X. Qian, Y. Yang, Q. Xu, A pH-resistant Zn(Ⅱ) sensor derived from 4-aminonaphthalimide:design, synthesis and intracellular applications,. J. Mater. Chem.2005,75,2836-2839;
    g) Z. Xu, X. Qian, J. Cuia, R. Zhang, Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission, Tetrahedron,2006,62,10117-10122;
    h) T. Gunnlaugsson, P. E. Kruger, T. C. Lee, R. Parkesh, F. M. Pfeffera, G. M. Husseya, Dual responsive chemosensors for anions:the combination of fluorescent PET (Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule, Tetrahedron Lett.,2003,44, 6575-6578;
    i) T. Gunnlaugsson, P. E. Kruger, T. C. Lee, R. Parkesh, F. M. Pfeffera, G:M. Husseya, Simple naphthalimide based anion sensors:deprotonation induced colour changes and CO2 fixation, Tetrahedron Lett.,2003,44,8909-8913;
    j)H. Ali, G. M. Hussey, Colorimetric "Naked Eye" Sensing of Anions in Aqueous Solution,J. Org. Chem.2005,70,10875-10878;
    k)D. Cui, X. Qian, F. Liu, R. Zhang, Novel Fluorescent pH Sensors Based on Intramolecular Hydrogen Bonding Ability of Naphthalimide, Org. Lett.2004,6,2757-2760;
    1) Z. Xu, X. Qian, J. Cui, Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission: Cu(II)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore, Org. Lett.2005,7,3029-3032;
    m) J. Wang, X. Qian, Two regioisomeric and exclusively selective Hg(Ⅱ) sensor molecules composed of a naphthalimide flnuorophore and an o-phenylenediamine derived triamide receptor, Chem. Commun.,2006, 109-111.
    [1]a) A. W. Czarnik, Fluorescent Chemosensors for Ion and Molecule Recognition, A.C.S., Washington DC,1992;
    b) C. D. Geddes,J. R. Lakowicz, Advanced Concepts in Fluorescence Sensing Part A:Small Molecule Sensing, Springer, New York,2005;
    c) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev.1997,97, 1515-1566;
    (d)A. P. de Silva, D. B. Fox, A. J. M. Huxley, T. S. Moody, Combining luminescence, coordination and electron transfer for signalling purposes, Coord. Chem. Rev.2000,205,41-57;
    (e) C. Bargossi, M. C. Fiorini, M. Montalti, Prodi L. Prodi, N. Zaccheroni, Recent developments in transition metal ion detection by luminescent chemosensors, Coord. Chem. Rev.2000,208,17-32;
    f) L. F. Bolletta, M. Montalti, N. Zaccheroni, Luminescent chemosensors for transition metal ions, Coord. Chem. Rev.2000,205,59-83;
    g) D. T. McQuade, A. E. Pullen, T. M. Swager, Conjugated Polymer-Based Chemical Sensors, Chem. Rev.2000,100,2537-2574;
    h) K. Rurack, Flipping the light switch'ON'-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions, Spectrochim. Acta Part A,2001,57, 2161-2195;
    i) P. Jiang, Z. Guo, Coord. Chem. Rev.2004,248,205-229;
    j) J. F. Callan, A. P.de Silva, D. C. Magri, Luminescent sensors and switches in the early 21st century, Tetrahedron 2005, 61,8551-8588;
    (k)T. Gunnlaugsson, M. Glynn, G. M. Tocci (nee Hussey), P. E. Kruger, F. M. Pfeffer, Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors, Coord. Chem. Rev.2006,250,3094-3117;
    1) J. S. Kim, D. T. Quang, Calixarene-Derived Fluorescent Probes, Chem. Rev.2007,107,3780-3799;
    m) E. M. Nolan, S. J. Lippard, Tools and Tactics for the Optical Detection of Mercuric Ion, Chem. Rev.2008,108, 3443-3480.
    [2]a) A. P. de Silva, T. Gunnlaugsson, T.E. Rice, Recent evolution of luminescent photoinduced electron transfer sensors. A review, Analyst,1996,121,1759-1762;
    b) A. P. de Silva, H. Q.N. Gunaratne, T. Gunnlaugsson, C. P. McCoy, P. R. S. Maxwell, J.T. Rademacher, T. E. Rice, Photoionic devices with receptor-functionalized fluorophores, Pure & Appl. Chem.1996,68, 1443-1448;
    c) A. P. de Silva, H. Q. N. Gunaratne, C. P. McCoy, Direct visual indication of pH windows:'off-on-off' fluorescent PET (photoinduced electron transfer) sensors/switches, Chem. Commun.1996,2399-2400;
    d) R. Kramer, Fluorescent Chemosensors for Cu2. Ions:Fast, Selective, and Highly Sensitive, Angew. Chem. Int. Ed.1998,37,772-773;
    e)L. Fabbrizzi, M. Licchelli, L. Parodi, A. Poggi, A, Tagliettil, The Molecular Design of Fluorescent Sensors for Ionic Analytes, J. Fluor.1998,8,263-271;
    f) S. L. Wiskur, H. Ait-Haddou, J. J. Lavigne, E. V. Anslyn, Teaching Old Indicators New Tricks, Ace. Chem. Res.200.1,34,963-972.
    [3]a) R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, E. G. E. M. Maguire, C. P. McCoy, K. R. A. S. Sandanayake, Molecular fluorescent signalling with'fluor-spacer-receptor' systems:approaches to sensing and switching devices via supramolecular photophysics, Chem. Soc.Rev.1992,21,187-195;
    b) R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, E. G. E. M. Maguire, C. P. McCoy, K. R. A. S. Sandanayake, Fluorescent PET (photoinduced electron transfer) sensors, Top. Curr. Chem.1993,168,223-264;
    c) A. P. de Silva, H. Q.N. Gunaratne, C. P. McCoy,Molecular Photoionic AND Logic Gates with Bright Fluorescence and "Off-On" Digital Action,J. Am. Chem. Soc.1997,119,7891-7892;
    d) A. J. Bryan, A. P. de Silva, S. A. De Silva, R. A. D. D. Rupasinghe, K. R. A. S. Sandanayake, Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations, Biosensors,1989,4, 169-179;
    e) A. P. de Silva, S. A. de Silva, A. S. Dissanayake, K. R. A. S. Sandanayake, Compartmental fluorescent pH indicators with nearly complete predictability of indicator parameters; molecular engineering of pH sensors, J.Chem. Soc.Chem. Commun.1989, 1054-1056;
    f) A. W. Czarnik, Chemical Communication in Water Using Fluorescent Chemosensors, Acc. Chem. Res.1994,27,302-308;
    g) L. Prodi, F. Bolletta, N.Zaccheroni, C. I. F. Watt, N. J. Mooney, A fluorescent sensor for magnesium ions, Chem. Eur. J.1998,4,1090-1094;
    h) K. A. Mitchell, R. G. Brown,
    D. Yuan, S.-C. Chang, R. E. Utecht, D. E. Lewis, A fluorescent sensor for Cu2+ at the sub-ppm level, J. Photochem. Photobiol. A:Chem.1998,115,157-161; i) C.-T. Chen, W.-P. Huang, A Highly Selective Fluorescent Chemosensor for Lead Ions,J. Am. Chem. Soc.2002,124,6246-6247;
    j) H. He, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz, J. K. Tusa, A Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer, Anal. Chem.2003,75,549-555;
    k) S. Aoki, S. Kaido, H. Fujioka, E. Kimura, A New Zinc(II) Fluorophore 2-(9-Anthrylmethylamino)ethyl-Appended 1,4,7,10-Tetraazacyclododecane, Inorg. Chem.2003,42,1023-1030;
    1) X. Guo, X. Qian, L. Jia, A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+ in Neutral Buffer Aqueous Solution,J. Am. Chem. Soc.2004, 126,2272-2273;
    m) T. Schwarze, H. Muller, C. Dosche, T. Klamroth, W. Mickler, A. Kelling, H.-G. Lohmannsroben, P. Saalfrank, H.-J. Holdt, Luminescence detection of open-shell transition-metal ions by photoinduced electron transfer controlled by internal charge transfer of a receptor, Angew. Chem. Int. Ed.2007,46,1671-1674;
    n)J. S. Kim, D. T.Quang, Calixarene-derived fluorescent probes, Chem. Rev.2007,107,3780-3799;
    o) E. M. Nolan, S. J. Lippard, Tools and tactics for the optical detection of mercuric ion, Chem. Rev.2008,108, 3443-3480;
    p) J. Huang, Y. Xu, X. Qian, A Rhodamine-Based Hg2+ Sensor with High Selectivity and Sensitivity in Aqueous Solution:A NS2-Containing Receptor, J. Org. Chem.2009,74, 2167-2170;
    q) N. C. Lim, S. V. Pavlova, C. Bruckner, Squaramide Hydroxamate-Based Chemidosimeter Responding to Iron(Ⅲ) with a Fluorescence Intensity Increase, Inorg. Chem. 2009,48,1173-1182.
    [4]a) M. R. Wasielewski, Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis, J.Org. Chem.2006,71,5051-5066;
    b) J. A. A. W. Elemans, R. van Hameren, R. J. M. Nolte, A. E. Rowan, Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes, Adv. Mater.2006,18,1251-1266;
    c) H. Langhals, Control of the Interactions in Multichromophores:Novel Concepts. Perylene Bis-imides as Components for Larger Functional Units, Helv. Chim. Act.2005,88,1309-1343;
    d) F. Wtirthner, Chem. Commun.2004,1564-1579.
    [5]a) J. Feng, B. Liang, D. Wang, L. Xue, X. Li, Novel Fluorescent Dyes with Fused Perylene Tetracarboxlic Diimide and BODIPY Analogue Structures, Org. Lett. 2008,10,4437-4440;
    b)C. Zhao, Y. Zhang, R. Li, X. Li, J. Jiang, Di(alkoxy)-and Di(alkylthio)-Substituted Perylene-3,4;9,10-tetracarboxy Diimides with Tunable Electrochemical and Photophysical Properties,J.Org. Chem.2007,72,2402-2410;
    c) W. Xu, H. Chen, Y. Wang, C. Zhao, X. Li, S. Wang, Y. Weng, Photoinduced Electron and Energy Transfer in Dyads of Porphyrin Dimer and Perylene Tetracarboxylic Diimide, ChemPhysChem,2008,9,1409-1415;
    d) B. A. Jones, M. J. Ahrens, M.-H. Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, High-Mobility Air-Stable n-Type Semiconductors with Processing Versatility: Dicyanoperylene-3,4:9,10-bis(dicarboximides), Angew. Chem. Int. Ed.2004,43,6363-6366;
    e) K. Muthukumaran, R. S. Loewe, C. Kirmaier, E. Hindin, J. K. Schwartz, I. V. Sazanovich, J. R. Diers, D. F. Bocian, D. Holten, J. S. Lindsey, Synthesis and Excited-State Photodynamics of A Perylene-Monoimide-Oxochlorin Dyad.A Light-Harvesting Array,J. Phys. Chem. B 2003,107, 3431-3442;
    f) C. Kinnaier, E. Hindin, J. K. Schwartz, I. V. Sazanovich, J.R. Diers, K. Muthukumaran, M. Taniguchi, D. F. Bocian, J. S. Lindsey, D. Holten Synthesis and Excited-State Photodynamics of Perylene-Bis(Imide)-Oxochlorin Dyads. A Charge-Separation Motif,J. Phys. Chem.B 2003,107,3443-3454.
    [6]a) X. Guo, D. Zhang, D. Zhu, Logic Control of the Fluorescence of a New Dyad, Spiropyran-Perylene Diimide-Spiropyran, with Lignt, Ferric ion, and Proton:Construction of a New Three Input AND Logic Gate, Adv. Mater.2004,16,125-130;
    b) Y. Li, N. Wang, H. Gan, H. Liu, H. Li, Y. Li, X. He, C. Huang, S. Cui, S. Wang, D. Zhu, Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyl)-1,2,4-triazole Functionalzed Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly,J. Org. Chem.2005,70,9686-9692;
    c) Y. Li,H. Zheng, Y. Li, S. Wang, Z. Wu, P. Liu, Z. Gao, H. Liu, D. Zhu, Photonic Logic Gates Based on Control of FRET by a Solvatochromic Perylene Bisimide,J. Org. Chem.2007,72,2878-2885;
    d) X. He, H. Liu, Y. Li, S. Wang, Y. Li, N. Wang, J. Xiao, X. Xu, D. Zhu, Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(Ⅱ) Ions, Adv. Mater.2005,17,2811-2815.
    [7]a) H.-W. Rhee, C.-R. Lee, S.-H. Clio, M.-R. Song, M. Cashel, H. E. Choy, Y-J. Seok, J.-I. Hong, Selective Fluorescent Chemosensor for the Bacterial Alarmone (p)ppGpp,J. Am. Chem. Soc.2008,130,784-785;
    b) H. M. Kim, M. S. Seo, M. J. An, B. R. Cho, Two-Photon Fluorescent Probes for Intracellular Free Zinc Ions in Living Tissue, Angew. Chem.2008,120,5245-5248;
    c) X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells,J. Am. Chem. Soc.2007,129,1500-1501;
    d) J. Y. Kwon, Y. J. Jang, Y. J. Lee, K. M. Kim, M. S. Seo, W. Nam, J. Yoon, A Highly Selective Fluorescent Chemosensor for Pb2+, J. Am. Chem. Soc.2005,127,10107-10111;
    e) K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano, T. Nagano, Selective Zinc Sensor Molecules with Various Affinities for Zn2+, Revealing Dynamics and Regional Distribution of Synaptically Released Zn2+ in Hippocampal Slices,J. Am. Chem. Soc.2005,127,10197-10204;
    f) A. Ojida, Y. Mito-oka, K. Sada, I Hamachi, Molecular Recognition and Fluorescence Sensing of Monophosphorylated Peptides in. Aqueous Solution by Bis(zinc(Ⅱ)-dipicolylamine)-Based Artificial Receptors,J. Am. Chem. Soc.2004,126,2454-2463;
    g) T. Hirano, K. Kikuchi, Y. Urano, T. Nagano, Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs,J. Am. Chem. Soc.2002,124,6555-6562;
    h) S. C. Burdette, G.K. Walkup, B. Spingler, R. Y. Tsien, S. J. Lippard, Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform:Synthesis, Properties and Intracellular Distribution,J. Am. Chem. Soc.2001, 123,7831-7841;
    i) T. Hirano, K. Kikuchi, Y Urano, T. Higuchi, T. Nagano, Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications, J. Am. Chem. Soc.2000,122, 12399-12400;
    j) Z. Liu, C. Zhang, Y Li, Z. Wu, F. Qian, X. Yang, W. He, X. Gao, Z. Guo, A Zn2+ Fluorescent Sensor Derived from 2-(Pyridin-2-yl)benzoimidazole with Ratiometric Sensing Potential, Org. Lett.2009,11,795-798;
    k) E. Ballesteros, D. Moreno, T. Gomez, T. Rodriguez,J. Rojo, M. Garcia-Valverde, T. Torroba, A New Selective Chromogenic and Turn-On Fluorogenic Probe for Copper(Ⅱ) in Water-Acetonitrile 1:1 Solution, Org. Lett.2009,11,1269-1272;
    l) S. Atilgan, T. Ozdemir, E. U. Akkaya, A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Distyryl-Bodipy Fluorophore, Org. Lett.2008,10,4065-4067;
    m) J. D. Amilan, M. Sandhya, G. Amrita, Colorimetric Sensor for ATP in Aqueous Solution, Org. Lett.2007,9,1979-1982;
    n) X. Zhang, K. S. Lovejoy, A. Jasanoff, S. J. Lippard, Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing, Proc. Nati. Acad. Sci. U.S.A.2007,104,10780-10785;
    o) S. A. de Silva, A. Zavaleta, D. E. Baron, O. A., Edward, V. Isidor, N. Kashimura, J. M. Percarpio, A Fluorescent Photoinduced Electron Transfer Sensor for Cations with an Off-On-Off Proton Switch, Tetrahedron Lett.1997,38, 2237-2240;
    p) P. Arslan, F. D. Virgilio, M. Beltrame, R.Y. Tsien, T. Pozzan, Cytosolic Ca2+ Homeostasis in Ehrlich and Yoshida Carcinomas,J. Biol. Chem.1985,260,2719-2727;
    q)G. Anderegg, F. Wenk, Pyridinderivate als Komplexbildner VIII Die Herstellung je eines neuen vier-und sechszahnigen Liganden, Helv. Chim. Acta,1967,50,2330-2332;
    r) S. Banthia, A. Samanta, A two-dimensional chromogenic sensor as well as fluorescence inverter:selective detection of copper(Ⅱ) in aqueous medium, New J. Chem.2005,29,1001-1010;
    s) R. Trokowski,J. Ren, F. K. Kalman, and A. D. Sherry, Selective Sensing of Zinc Ions with a PARACEST Contrast Agen, Angew. Chem. Int. Ed.2005,44,6920-6923.
    [8]Free energy calculation for the photoinduced electron transfer from DPA to PDI:The Rehm-Weller equation AGpET= Eox0-Ered0-Es-e2/εr, where the Eox0 is the oxidation potential of the electron donor (amino group), the Ered0 is the reduction potential of the electron acceptor (PDI unit), Es is the energy of the lowest excited singlet state of the PDI, and the part-e2/εr corresponds to the energy of stabilization of the solvent to the ion pair. The values of the Eox0 Ered0, Es and e2/sr were 0.97 eV,-0.72 eV,2.07 eV and -0.12 eV, respectively,
    a) B. Rybtchinski, L.E. Sinks, M. R.Wasielewski, Photoinduced Electron Transfer in Self-Assembled Dimers of 3-Fold Symmetric Donor-Acceptor Molecules Based on Perylene-3,4:9,10-bis(dicarboximide),J. Phy. Chem.A,2004,108,7497-7505.b) R. Zhang, Z. Wang, Y. Wu, H. Fu, J. Yao, A Novel Redox-Fluorescence Switch Based on a Triad Containing Ferrocene and Perylene Diimide Units, Org. Lett.,2008,10,3065-3068.
    [9]R. H. Goldsmith, L. E. Sinks, R. F. Kelley, L. J. Betzen, W. Liu, E. A. Weiss, M. A. Ratner, M. R. Wasielewski, Wire-like charge transport at near constant bridge energy through fluorene oligomers, Proc. Natl.Acad.Sci. U.S.A.2005,102,3540-3545.
    [10]M. G Ferlin, L. Dalla Via, O. M. Gia,Synthesis and antiproliferative activity of some new DNA-targeted alkylating pyrroloquinolines, Bioorg.& Medi. Chem.2004,12,771-777.
    [11]C.-C. Chao, M.-K. Leung, O. Y. Su, K.-Y. Chiu, T.-H. Lin, S.-J. Shieh, S.-C. Lin, Photophysical and Electrochemical Properties of 1,7-Diaryl-Substituted Perylene Diimides. J. Org. Chem.2005,70,4323-4331.
    [12]a) Z. Chen, V. Stepanenko, V. Dehm, P. Prins, L. D. A. Siebbeles, J.Seibt, P. Marquetand, V. Engel, F. Wurthner, Effect of Core Twisting on Self-Assembly and Optical Properties of Perylene Bisimide Dyes in Solution and Columnar Liquid Crystalline Phases, Chem. Eur. J.2007,13,436 449;b) F. Wurthner, C. Thalacker, S. Diele, C. Tschierske, Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes, Chem. Eur.J.2001,7, 2245-2253.
    [13]L. Fan, Y. Xu, H. Tian 1,6-Disubtitued perylene bisimide:concise synthesis and characterization as near-infrared floresxent dyes, Tetrahedron Lett.2005,46, 4443-4447.
    [14]J. Feng, Y. Zhang, C. Zhao, R. Li, W. Xu, X. Li, J. Jiang, Cyclophanes of Perylene Tetracarboxylic Diimide with Different Substituents at Bay Positions, Chem. Eur. J.2008,14, 7000-7010.
    [15]J. Wang, Y. Xiao, Z. Zhang, X. Qian, Y. Yang, Q. Xu, A pH-resistant Zn(II) sensor derived from 4-aminonaphthalimide:design, synthesis and intracellular applications,J. Mater. Chem. 2005,15,2836-2839.
    [16]a) J. Feng, B. Liang, D. Wang, H. Wu, L. Xue, X. Li, Synthesis and Aggregation Behavior of Perylenetetracarboxylic Diimide Trimers with Different Substituents at Bay Positions, Langmuir 2008,24,11209-11215;
    b) T. E. Kaiser, H. Wang, V. Stepanenko, F. Wurthner, Supramolecular Construction of Fluorescent J-Aggregates Based on Hydrogen-Bonded Perylene Dyes, Angew. Chem.2007,119,5637-5640;
    c) Pascal. Jonkheijm, N. Stutzmann, Z. Chen, D. M. de Leeuw, E. W. Meijer, A. P. H.J. Schenning, F. Wurthner, Control of Ambipolar Thin Film Architectures by Co-Self-Assembling Oligo (p-phenylenevinylene)s and Perylene Bisimides, J. Am. Chem. Soc. 2006,128,9535-9540;
    d) F. Wurthner, Z. Chen, F. J. M. Hoeben, P. Osswald, C.-C. You, P. Jonkheijm, J. V. Herrikhuyzen, A. P. H. J. Schenning, P. P. A. M. van der Schoot, E. W. Meijer, E. H. A. Beckers, S. C. J. Meskers, R. A. J. Janssen, Supramolecular p-n-Heterojunctions by Co-Self-Organization of Oligo(p-phenylene Vinylene) and Perylene Bisimide Dyes,J. Am. Chem. Soc.2004,126,10611-10618;
    e) F. Wurthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chem. Commun.2004,1564-1579.
    [17]R. Gvishi, R. Reisfeld, Z. Burshtein, Spectroscopy and laser action of the "red perylimide dye" in various solvents, Chem. Phys. Lett.1993,213,338-344.
    [18]a) T. L. Banfield, D. Husain, Electronic energy transfer from triplet state acridine to paramagnetic ions, Trans. Faraday Soc.1969,65,1985-1991;
    b) A. W. Varnes, R. B. Dodson, E. L. Wehry, Interactions of transition-metal ions with photoexcited states of flavines. Fluorescence quenching studies,J. Am. Chem. Soc.1972,94,946-950.
    [19]J. K. Romary, J. D. Barger, J. E. Bunds, New multidentate.alpha.-pyridyl ligand. Coordination of bis(2-pyridylmethyl)amine with transition metal ions, Inorg. Chem.1968,7, 1142-1145.
    [20]a) S. Foxon,.1. Xu, S. Turba, M. Leibold, F. Hemipel, F. W. Heinemann,O. Walter, C. Wurtele, M. Holthausen, S. Schindler, Syntheses, Characterization and Reactivity of Iron(II), Nickel(Ⅱ), Copper(II) and inc(II) Complexes of the Ligand N,N,N',N'-Tetrakis(2-pyridylmethyl)-benzene-1,3-diamine (1,3-tpbd) and Its Phenol Derivative 2,6-Bis[bis(2-pyridylmethyl)am.ino]-p-cresol (2,6-tpcd),Eur:J. Inorg. Chem.2007,429-443;
    b)A. Hazell, C. J. McKenzie, L. P. Nielsen, Mono-, di-and poly-nuclear transition-metal complexes of a bis(tridentate) ligand:towards p-phenylenediamine-bridged co-ordination polymers, J. Chem. Soc. Dalton Trans.1998,1751-1756.
    [21]A. Hazell, C. J. McKenzie, L. P. Nielsen, Synthesis, structural characterisation and electronic behaviour of iron(II) and nickel(II) complexes of N,N-bis(2-pyridylmethyl)aniline, Polyhedron, 2000,1333-1338.
    [22]a) H. A. Benesi, J. H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons,J. Am. Chem. Soc.1949,71,2703-2707;
    b) W. Qin, M. Baruah, M. Sliwa, M. V. der Auweraer, W. M. De Borggraeve, D. Beljonne, B. V. Averbeke, N. Boens, Ratiometric, Fluorescent BODIPY Dye with Aza Crown Ether Functionality: Synthesis, Solvatochrom.ism, and Metal Ion Complex Formation, J. Phys. Chem. A 2008,112,6104-6114;
    c) Y. Shiraishi, S. Sumiya, Y. Kohno, T. Hirai. A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II), J. Org. Chem.2008,73,8571-8574.
    [23]a) B. Ramachandram, A. Samanta, Modulation of metal-fluorophore communication to develop structurally simple fluorescent sensors for transition metal ions, Chem. Comm.1997, 1037-1038;
    b) S. Banthia, A. Samanta, Photophysical and Transition-Metal Ion Signaling Behavior of a Three-Component System Comprising a Cryptand Moiety as the Receptor, J. Phy. Chem. B 2002,106,5572-5577.
    [24]K. Rurack, U. Resch-Genger, Rigidization, preorientation and electronic decoupling-the 'magic triangle'for the design of highly efficient fluorescent sensors and switches, Chem. Soc. Rev.2002,31,116-127
    [25]P. Ghosh, P. K. Bharadwaj, S. Mandal, S. Ghosh, Ni(II), Cu(II), and Zn(II) Cryptate-Enhanced Fluorescence of a Trianthrylcryptand:A Potential Molecular Photonic OR Operator, J. Am. Chem. Soc.1996,118,1553-1554.
    [26]X. Zhang, Y. Shiraishi, T. Hirai, Cu(II)-Selective Green Fluorescence of a Rhodamine-Diacetic Acid Conjugate, Org. Lett. 2007,9,5039-5042.
    [27]a) J. L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Buschel, A. I. Tolmachev, J. Daub, K. Rurack, On the Development of Sensor Molecules that Display FeⅢ-amplified Fluorescence,J. Am. Chem. Soc.2005,127,13522-13529;
    b) Y. Xiang, A. Tong, A New Rhodamine-Based Chemosensor Exhibiting Selective FeⅢ-Amplified Fluorescence, Org. Lett.2006,8,1549-1552;
    c) J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan, W. Liu, Tuning the Selectivity of Two Chemosensors to Fe(Ⅲ) and Cr(III), Org. Lett.2007,9,4567-4570;
    d) X. Zhang, Y. Shiraishi, T. Hirai, Fe(III)-and Hg(Ⅱ)-selective dual channel fluorescence of a rhodamine-azacrown ether conjugate, Tetrahedron Lett.2008,49,4178-4181;
    e) N. C. Lim, S. V. Pavlova, C. Bruckner, Squaramide Hydroxamate-Based Chemidosimeter Responding to Iron(III) with a Fluorescence Intensity Increase, Inorg.Chem.2009,48,1173-1182;
    f) W. Lin, L. Long, L. Yuan, Z. Cao, J. Feng, A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore, Anal. Chim. Act.2009,634,262-266.
    [1]V. Balzani, Supermolecular Photoehemistry Foreword. New J Chem.1996,20,723-724.
    [2]V. Ramamurthy, S. SehanzeKirk, Optical Sensors and Switches Molecular and Photochemistry, 7, New York,Marcel Dekker, Int,2001.
    [3]H. He, M, A. Mortellaro. M. J. P. Leiner, S.T.Young, R. J. Fraatz, J.K.A.Tusa, Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer, Anal.Chem.2003,75, 549-555.
    [4]L.Prodi, C.Bargossi,M. Montalti, N. Zaeeheroni, N. Su, J. S. Bradshaw, R. M. Izatt,P. B. Savage, An Effective Fluorescent Chemosensor for Mercury Ions. J. Am. Chem. Soc.2000, 122,6769-6770.
    [5]H.Tong, L. Wang, X.Jing, F. Wang, Highly Selective Fluorescent Chemosensor for Silver(l) Ion Based on Amplified Fluoreseenee Quenching of Conjugated Polyquinoline,Macromolecules, 2002,35,7169-7171.
    [6]M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, A digital fluorescent molecular photoswitch,Nature,2002,420,759-760
    [7]A. X. Trautwein, Bioinorganic chemistry, Wiley-VCH, Weinheim,1997.
    [8]E. Merian, Metals and their Compounds in the Environment, Wiley-VCH, Weinheim,1991.
    [9]S. D. Lytton, B. Mester, J. Libman, A. Shanzer, Z. I. Cabantehik, Monitoring of Iron (III) Removal from Biological Sources Using a Fuorescent Siderophore, Anal. Biochem.1992,205, 326-333.
    [10]J.-L. H. Jiwan, C. Branger, J.-P. Soumillion, B.Valeur,JPhotochem. and Photobio. A:Chem. 1998,116,127-133.
    [11]D. Wu, W.Huang, C. Duan, Z. Lin, and Q. Meng, Highly Sensitive Fluorescent Probe for Selective Detection of Hg2+ in DMF Aqueous Media, Inorg. Chem.2007,46,1538-1540.
    [12]S. C. Burdette, C. J. Frederickson, W. Bu, and S. J. Lippard, ZP4, an Improved Neuronal Zn2+ Sensor of the Zinpyr Family,J.Am. Chem. Soc.,2003,125,1778-1787.
    [1.3]W. Qin, M. Baruah, M. Sliwa, M. V. der Auweraer, W. M. D. Borggraeve, D. Beljonne, B. V. Averbeke, N. Boens, Ratiometric, Fluorescent BODIPY Dye with Aza Crown Ether Functionality: Synthesis, Solvatochromism, and Metal Ion Complex Formation, J. Phys. Chem. A 2008,112, 6104-6114.
    [14]W. W. Stewart, Lucifer Dyes-Fluorescent Dyes for Biological Tracing, Nature,1981,292, 17-21.
    [15]X. Qian, Z. Zhu, K. Chen, The Synthesis, Application and Prediction of Stocks Shift in Fluorescent Dyes Derived from 1,8-Naphthalic Anhydride, Dyes and Pigm.1989,11,13-20.
    [16]A. T. Peters, M. J. Bide, Amino Derivatives of 1,8-Naphthalic Anhydride and Derived Dyes for Synthetic-Polymer Fibers, Dyes and Pigm.1985,6,349-375.
    [17]X. Poteau, A. I. Brown, R. G.Brown, C. Holmes, D. Matthew, Fluorescence Switching in 4-Amino-1,8-Naphthalimides:"on-off-on" Operation Controlled by Solvent and Cations, Dyes and Pigment.2000,47,91-105.
    [18]H. Tian, T. Xu, Y. Zhao, K. Chen, Two-Path Photo-induced Electron Transfer in Naphthalimide-based model compound, J Chem. Soc. Perking 2.1999,545-549.
    [19]X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells,J. Am. Chem. Soc.2007,129,1500-1501.
    [20]F. Qian, C. Zhang, Y. Zhang, W. He, X. Gao, P. Hu, Z. Guo, Visible Light Excitable Zn2+ Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in. Vivo Application, J. Am. Chem. Soc.2009,131,1460-1468.
    [21]E. Ballesteros, D. Moreno, T. Gomez, T. Rodriguez, J. Rojo, M. Garcia-Valverde, T. Torroba, A New Selective Chromogenic and Turn-On Fluorogenic Probe for Copper(II) in Water-Acetonitrile 1:1 Solution, Org. Lett.2009,11,1269-1272.
    [22]Z. Xu, Y. Xiao, X. Qian, J. Cui, D. Cui, Ratiometric and Selective Fluorescent Sensor for CuⅡ Based on Internal Charge Transfer (ICT), Org. Lett.2005,7,889-892.
    [23]V. B. Bojinov, N. I. Georgiev, P. S. Nikolov, Design and synthesis of core and peripherally functionalized with 1,8-naphthalimide units fluorescent PAMAM dendron as light harvesting antenna,J.Photochem. Photobiol.A:Chem.2008,197,281-289.
    [24]Y. Hu, B. Wang and Z. Su, Synthesis and photophysical properties of a novel green fluorescent polymer for Fe3+ sensing, Polym. Int.2008,57,1343-1350.
    [25]Z. Xu, X. Qian, J. Cuia, R. Zhang, Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission, Tetrahedron,2006,62,10117-10122.
    [26]J. Feng, Y. Zhang, C. Zhao, R. Li, W. Xu, X. Li, J. Jiang, Cyclophanes of Perylene Tetracarboxylic Diimide with Different Substituents at Bay Positions, Chem. Eur.J.2008,14, 7000-7010.
    [27]H. Wang, D. Wang, Q. Wang, X. Li, C. A. Schalley, Nickel(II) and iron (III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide,Org. Biomol. Chem., 2010,8,1017-1026.
    [28]S. Banthia, A. Samanta, A two-dimensional chromogenic sensor as well as fluorescence inverter:selective detection of copper(II) in aqueous medium, New J. Chem.2005,29,1001-1010.
    [29]M. Yuan, Y. Li, J. Li, C. Li, X. Liu, J.Lv, J. Xu, H.Liu, S. Wang, D. Zhu, A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule, Org. Lett.2007,9,2313-2316.
    [30]J. Wang, X. Qian, and J. Cui, Detecting Hg2+ Ions with an ICT Fluorescent Sensor Molecule: Remarkable Emission Spectra Shift and Unique Selectivity, J. Org. Chem.,2006,71,4308-4311.
    [31]R. T. Bronson, J. S. Bradshaw, P. B. Savage, S.Fuangswasdi, S. C. Lee, K. E. Krakowiak, R. M. Izatt, Bis-8-hydroxyquinoline-Armed Diazatrithia-15-crown-5 and Diazatrithia-16-crown-5 Ligands:Possible Fluorophoric Metal Ion Sensors, J. Org. Chem.,2001,66,4752-4758.
    [32]A. P. de Silva,H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,; C. P. McCoy, J. T. Rademacher, T. E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches, Chem.ReV.1997,97,1515-1566.
    [33]H. A. Benesi, J. H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J.Am. Chem. Soc.1949,.71,2703-2707.
    [34]M. Zhu, M. Yuan, X. Liu, J, Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang, and D. Zhu, Visible Near-Infrared Chemosensor for Mercury Ion, Org. Lett.2008,10,1481-1484.
    [35]Y. Shiraishi, S. Sumiya, Y Kohno, T. Hirai, A Rhodamne-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(Ⅱ), J. Org. Chem.2008,73,857.1-8574.
    [36]Y. Weng, F. Yue, Y. Zhong, B. Ye, A Copper(Ⅱ) Ion-Selective On-Off-Type Fluoroionophore Based on Zinc Porphyrin-Dipyridylamino, Inorg. Chem.2007,46,7749-7755.
    [37]M. Yuan, W. Zhou, X. Liu, M. Zhu, J. Li, X. Yin, H. Zheng, Z. Zuo, C. Ouyang, H. Liu, Y Li, and D. Zhu, A Multianalyte Chemosensor on a Single Molecule:Promising Structure for an Integrated Logic Gate,J. Org. Chem.2008,73,5008-5014.
    [38]D. Wu, W. Huang, C. Duan. Z. Lin, and Q.Meng, Highly Sensitive Fluorescent Probe for Selective Detection of Hg2+ in DMF Aqueous Media, Inorg. Chem.2007,46,1538-1540.
    [39]H. Wang, D. Wang, Q. Wang, X. Li, C. A. Schalley, Nickel(II) and iron(Ⅲ) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide, Org. Biomol. Chew., 2010,8,1017-1026.
    [40]Y. Zheng, J. Orbulescu, X. Ji, F. M. Andreopoulos, S.M. Pham, and R. M. Leblanc, Development of Fluorescent Film Sensors for the Detection of Divalent Copper,J. Am. Chem. Soc. 2003,125,2680-2686.
    [41]H. Jung, P. Kwon,J.Lee, J. Kim, C. Hong, J. Kim, S.Yan, J. Lee, J. Lee, T. Joo, and J. Kim, Coumarin-Derived Cu2+-Selective Fluorescence Sensor:Synthesis, Mechanisms, and Applications in Living Cells,J.Am. Chem. Soc.,2009,131,2008-2012.
    [42]C.Yang, L. Liu, T.-W. Mu, Q.-X. Guo, The Performance of the Benesi-Hildebrand Method in Measuring the Binding Constants of the Cyclodextrin Complexation, Anal. Sci.2000.16, 537-539.
    [43]M. I. Rodriguez-Caceres, R. A. Agbaria, I. M. Warner, Fluorescence of Metal-Ligand Complexes of Mono-and Di-Substituted Naphthalene Derivatives,J. Fluoresc.2005,15, 185-190.
    [1]Y. Gao, R. A. Marcus, Theoretical Investigation of the Directional Electron Transfer in 4-Aminonaphthalimide Compounds,J.Phys.Chem.A,2002,106,1956-1960.
    [2]J. Gan, Q. Song, X. Hou, K. Chen, H. Tian,1,8-Naphthalimides for non-doping OLEDs:the tunable emission color from blue, green to red,J. Photochem. Photobiology A,2004,162, 399-406.
    [3]D. Kolosoy, V Adamovich, P. Djurovich, M. E. Thompson, C. Adachi,1,8-Naphthalimides in Phosphorescent Organic LEDs:The Interplay between Dopant, Exciplex, and Host Emission, J.Am.Chem.Soc.,2002,124,9945-9954.
    [4]D. Redeout, R. Schinazi, C. D. Pauza, K. Lovelace, L.C. Chiang, J. H. Elder, J. CellBiochem.,1993,51,446-44.9.
    [5]W.W. Stewart, Lucifer dyes-highly fluorescent dyes for biological tracing, Nature,.1981,292, 17-21..
    [6]A. P. de Silva, T. E. Rice, A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC), Chem. Commun.,1999,163-164.
    [7]W. Zhu, C. Hu, K. Chen, H. Tian, Luminescent properties of copolymeric dyad compounds cont aining 1,8-naphthalimide and 1,3,4-oxadiazole, Synth. Met.,1998,96,151-154.
    [8]X. Poteau, A. Brown, R. Brown, C. Holmes; D. Matthew, Fluorescence switching in 4-amino-1,8-naphthalimides:"on-off-on" operation controlled by solvent and cations, Dyes Pigments,2000,47,91-105.
    [9]D. Staneva, I. Grabchev,J. Soumillion, V. Bojinov, A new fluorosensor based on bis-1,8-naphthalimide for metal cations and protons,J.Photochem.& Photobio. A:Chemistry, 2007,189,192-197.
    [10]V. B. Bojinov, T. N. Konstantinova, Fluorescent 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer, Sensors and Actuators B,2007,123,869-876.
    [11]H. He, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz, J. K. Tusa, A Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer Anal. Chem.,2003,75, 549-555.
    [12]X. Guo, X. Qian, L. Jia, A Highly Selective and Sensitive FluorescentChemosensor for Hg2+ in Neutral Buffer Aqueous Solution J. Am. Chem. Soc.,2004,126 (8),2272-2273.
    [13]Z. Xu, Y. Xiao, X. Qian, J. Cui, D. Cui, Ratiometric and Selective Fluorescent Sensor for CuⅡ Based on Internal Charge Transfer (ICT), Org. Lett.2005,7,889-892.
    [14]J. Wang, Y. Xiao, Z. Zhang, X. Qian, Y. Yang, Q. Xu, A pH-resistant Zn(II) sensor derived from 4-aminonaphthalimide:design, synthesis and intracellular applications, J. Mater. Chem. 2005,15,2836-2839.
    [15]Z. Xu, X. Qian, J. Cuia, R. Zhang, Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission, Tetrahedron,2006,62,10117-10122.
    [16]T. Gunnlaugsson, P. E. Kruger, T. C. Lee, R. Parkesh, F. M. Pfeffera, G.M. Husseya, Dual responsive chemosensors for anions: the combination of fluorescent PET (Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule, Tetrahedron Lett.,2003,44, 6575-6578.
    [17]T. Gunnlaugsson, P. E. Kruger, T. C. Lee, R. Parkesh, F. M. Pfeffera, G. M. Husseya, Simple naphthalimide based anion sensors:deprotonation induced colour changes and CO2 fixation, Tetrahedron Lett.,2003,44,8909-8913.
    [18]H. All, G. M. Hussey, Colorimetric "Naked Eye" Sensing of Anions in Aqueous Solution,J. Org. Chem.2005,70,10875-10878.
    [19]P. R. Ashton, V. Balzani, J. Becher, A. Credi, M. C. T. Fyfe, G. Mattersteig, S. Menzer, M. B. Nielsen, F. M. Raymo, J. F. Stoddart, M. Venturi, D. J. Williams, A Three-Pole Supramolecular Switch,J. Am. Chem. Soc.,1999,121,3951-3957.
    [20]D. J. Cardenas, D. J. Collin, P. Gavina, J. P. Sauvage, A. De Cian, J. Fischer, N. Armaroli, L. Flamigini, V. Vicinelli and V. Balzani, Synthesis, X-ray Structure, and Electrochemical and Excited-State Properties of Multicomponent Complexes Made of a [Ru(Tpy)2]2+ Unit Covalently Linked to a [2]-Catenate Moiety. Controlling the Energy-Transfer Direction by Changing the Catenate Metal Ion,J. Am. Chem. Soc.,1999,121,5481-5488.
    [21]V. Balzani, M. GomezLopez, J. F. Stoddart, Molecular Machines, Acc.Chem. Res.,1998,31, 405-414.
    [22]A. Harriman, R. Ziessel, Building photoactive molecular-scale wires Coord. Chem. Rev., 1998,171,331-339.
    [23]C. D. Mao, W. Q. Sun, Z. Y. Shen,N. C. Seeman, A nanomechanical device based on the B-Z transition of DNA, Nature,1999,397,144-146.
    [24]N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada and B. L. Feringa, Light-drivenmonodirectional molecular rotor,.Nature,1999,401,152-155.
    [25]X. Guo, D. Zhang, Y. Zhou, D. Zhu, Synthesis and Spectral Investigations of a New Dyad with Spiropyran and Fluorescein Units:Toward Information Processing at the Single Molecular Level, J. Org. Chem.2003,68,5681-5687.
    [26]A. Coskun, E. Deniz, E. U. Akkaya, Effective PET and ICT Switching of Boradiazaindacene Emission:A Unimolecular, Emission-Mode, Molecular Half-Subtractor with Reconfigurable Logic Gates, Org. Lett.2005,7,5187-5189.
    [27]J. Andreasson, G. Kodis, Y. Terazono, P. A. Liddell, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, D. Gust, Molecule-Based Photonically Switched Half-Adder, J. Am. Chem. Soc.2004, 126,15926-15927.
    [28]D. Margulies, C. E. Felder, G. Melman, A. Shanzer, A Molecular Keypad Lock:A Photochemical Device Capable of Authorizing Password Entries, J. Am. Chem. Soc.2007,129, 347-354.
    [29]K. Szacilowski, W. Macyk, G. Stochel, Light-Driven OR and XOR Programmable Chemical Logic Gates,J.Am. Chem. Soc.2006,128,4550-4551.
    [30]D. H. Qu, Q. C. Wang, H. Tian, AHalf Adder Based on a Photochemically Driven [2]Rotaxane,Angew.Chem., Int. Ed.2005,44,5296-5297.
    [31]Y. Tang, F. He, S. Wang, Y. Li, D. Zhu, G. C. Bazan, Multiply Configurable Optical-Logic Systems Based on Cationic Conjugated Polymer/DNA Assemblies, Adv. Mater.2006,18, 2105-2110.
    [32]M. Suresh, A. Ghosh, A. Das, A simple chemosensor for Hg2+ and Cu2+ that works as a molecular keypad lock, Chem. Commu.,2008,3906-3908.
    [33]D. Zhang, J. Su, X. Ma, H. Tian, An efficient multiple-mode molecular logic system for pH, solvent polarity, and Hg2+ ions, Tetrahedron,2008,64,8515-8521.
    [34]D. C. Magri, T. P. Vance, A. P. de Silva, From complexation to computation:Recent progress in molecular logic, Inorg. Chim. Acta,2007,360,751-764.
    [35]A.P. de Silva, N.D. McClenaghan, Molecular-Scale Logic Gates, Chem. Eur.J.2004,10, 574-586.
    [36]S. Alves, F. Pina, M.T. Albelda, E. Garcia-Espagna, C. Soriano, S.V. Luis, Open-Chain Polyamine Ligands Bearing an Anthracene Unit-Chemosensors for Logic Operations at the Molecular Level, Eur. J. Inorg. Chem,2001,405-412.
    [37]H.-W, Rhee, C.-R. Lee, S.-H.Cho, M.-R. Song, M. Cashel, H. E. Choy, Y.-J. Seok, J.-I. Hong, Selective Fluorescent Chemosensor for the Bacterial Alannone (p)ppGpp,J. Am. Chem. Soc.2008, 130,784-785:
    [38]H. M. Kim, M. S. Seo, M.J. An, B. R. Cho, Two-Photon Fluorescent Probes for Intracellular Free Zinc Ions in Living Tissue, Angew. Chem.2008,120,5245-5248.
    [39]X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells, J. Am. Chem. Soc.2007,129,1500-1501.
    [40]K. Komatsu, K. Kikuchi, H. Kojima, Y Urano, T. Nagano, Selective Zinc Sensor Molecules with Various Affinities for Zn2+, Revealing Dynamics and Regional Distribution of Synaptically Released Zn2+ in Hippocampal Slices,J.Am. Chem. Soc.2005,127,10197-10204.
    [41]A. Ojida, Y. Mito-oka, K. Sada, I. Hamachi, Molecular Recognition and Fluorescence Sensing of Monophosphorylated Peptides in Aqueous Solution by Bis(zinc(Ⅱ)-dipicolylamine)-Based Artificial Receptors, J. Am. Chem. Soc.2004,126, 2454-2463.
    [42]T. Hirano, K. Kikuchi, Y. Urano, Tetsuo Nagano, Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs,J. Am. Chem. Soc.2002,124,6555-6562.
    [43]S. C. Burdette, G.K. Walkup, B. Spingler, R. Y. Tsien, S. J. Lippard, Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform:Synthesis, Properties and Intracellular Distribution, J. Am. Chem. Soc.2001,123,7831-7841.
    [44]T. Hirano, K. Kikuchi, Y. Urano, T. Higuchi, T. Nagano, Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications, J. Am. Chem. Soc. 2000,122, 12399-12400.
    [45]E. Ballesteros, D. Moreno, T. Gomez, T. Rodriguez, J. Rojo, M. Garcia-Valverde, T. Torroba, A New Selective Chromogenic and Turn-On Fluorogenic Probe for Copper(II) in Water-Acetonitrile 1:1 Solution, Org. Lett.2009,11,1269-1272.
    [46]S. Atilgan, T. Ozdemir, E. U. Akkaya, A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Distyryl-Bodipy Fluorophore, Org. Lett.2008,10, 4065-4067.
    [47]J. D. Amilan, M. Sandhya, G. Amrita, Colorimetric Sensor for ATP in Aqueous Solution, Org. Lett.2007,9,1979-1982.
    [48]X. Zhang, K. S. Lovejoy, A. Jasanoff, S. J.Lippard, Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing, Proc. Nati. Acad. Sci. U.S.A.2007,104,.10780-10785.
    [49]S. A. de Silva, A. Zavaleta, D. E. Baron, O. A., Edward, V. Isidor, N. Kashimura, J. M. Percaipio, A Fluorescent Photoinduced Electron Transfer Sensor for Cations with an Off-On-Off Proton Switch, Tetrahedron Lett.1997,38,2237-2240.
    [50]S. Banthia, A. Samanta, A two-dimensional chromogenic sensor as well as fluorescence inverter:selective detection of copper(II) in aqueous medium, New J. Chem.2005, 29,1001-1010.
    [51]H. Wang, D. Wang, Q. Wang, X. Li, C. A. Schalley, Nickel(ll) and iron(Ⅲ) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide, Org. Biomol. Chem., 2010,8,1017-1026.
    [52]J. Feng, Y.Zhang, C. Zhao, R. Li, W. Xu, X. Li,J. Jiang, Cyclophanes of Perylene Tetracarboxylic Diimide with Different Substituents at Bay Positions, Chem.Eur.J.2008,14, 7000-7010.
    [53]R. A. Velapoldi, H. H. Tonnesen, Corrected Emission Spectra and Quantum Yields for a Series of Fluorescent Compounds in the Visible Spectral Region, Journal of Fluorescence,2004, 14,465-472.
    [54]T. Gunnlaugsson, J. P. Leonard, N. S. Murray, Highly Selective Colorimetric Naked-Eye Cu(Ⅱ) Detection Using an Azobenzene Chemosensor, Org. Lett.2004,6,1557-1560.
    [55]H. Sakamoto, J. Ishikawa, S. Nakao, H. Wada, Excellent mercury(Ⅱ) ion selective fluoroionophore based on a 3,6,12,15-tetrathia-9-azaheptadecane derivative bearing a nitrobenzoxadiazolyl Moiety, Chem. Commun.2000,2395-2396.
    [56]M.Yuan, Y Li, J. Li, C. Li, X. Liu, J. Lv, J. Xu, H. Liu, S. Wang, D. Zhu, A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule, Org. Lett.2007,9,2313-2316.
    [57]M. Baruah, W. Qin, R. A. L. Vallee, D. Beljonne, T. Rohand, W. Dehaen, N. Boens, A Highly Potassium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light, Org. Lett.2005,7,4377-4380.
    [58]C. Zhao, Y. Zhang, R. Li, X. Li, J. Jiang, Di(alkoxy)-and Di(alkylthio)-Substituted Perylene-3,4;9,10-tetracarboxy Diimides with Tunable Electrochemical and Photophysical Properties, J. Org. Chem.2007,72,2402-2410.
    [59]M. R. Wasielewski, Energy, Charge, and Spin Transport in Molecules and Self-Assembled Nanostructures Inspired by Photosynthesis, J. Org. Chem.2006,71,5051-5066.
    [60]M. Boiocchi, L. Fabbrizzi, M. Licchelli, D. Sacchi, M. Vazquez, C. Zampa, A two-channel molecular dosimeter for the optical detection of Copper(Ⅱ), Chem. Commun.2003,1812-1813.
    [61]Y. Weng, F. Yue, Y. Zhong, B. Ye, A Copper(II) Ion-Selective On-Off-Type Fluoroionophore Based on Zinc Porphyrin-Dipyridylamino, Inorg. Chem.2007,46,7749-7755.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700