可视化功能荧光染料的合成及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子和离子识别是化学、生物学和材料科学中一个至关重要的现象,是超分子化学研究的基础。分子识别发生在一个为人们不能直接感知的微观世界里,因此想了解和研究分子间的识别行为,需要通过具有特殊性质的分子探测器件输出可观测的宏观信号。在这些信号中,最为直接的方式是以光信号的形式表达出来,即可视化。将经过特殊设计的荧光分子探针引入到待测体系中,能够将分子识别的信息转换成荧光信号传递给外界,从而使人与分子间的对话成为可能,架起宏观世界和微观世界联系的桥梁,是当前分子离子探针研究中的重点和热点。本论文包含以下几方面研究内容:
     1.活体细胞中Cu2+的PET荧光探针:顺磁性的Cu2+对荧光分子激发态的淬灭性质,使得高选择性和灵敏度的荧光增强型的Cu2+荧光探针的设计成为一项富有挑战性的工作。本论文设计合成了三个Cu2+荧光探针。探针L1(2-羟基-1-萘醛和联苯二腙的双臂化合物)以荧光淬灭的方式选择性地识别Cu2+,但Hg2+有干扰;探针L2(丁基萘酐肼和叔丁基苯酚二醛的双臂化合物)通过荧光淬灭高选择性地识别Cu2+,Hg2+对其无干扰,并且能够应用于活体细胞荧光成像。在此探针分子研究的基础上,通过电化学测量和量子化学理论计算,精心选择了与Cu2+的氧化还原电位相匹配的电子给体和受体组分,合成了具有合适前线轨道能级的探针分子L3(7-N,N-二乙基氨基香豆醛和联苯二腙的双臂化合物)。L3本身荧光极其微弱,和Cu2+配位后,由于轨道能级的合理匹配,其分子内的光诱导电子转移过程(PET)被阻断,荧光显著增加75倍。L3荧光探针具有高选择性、高灵敏度、良好的水溶性等优点。L3和Cu2+的活体细胞共聚焦荧光成像表明L3是一个非常优良的可用于生命体系的Cu2+荧光探针。
     2.FRET的比率荧光探针和全光谱荧光分子的设计合成:利用能量匹配的荧光基团之间的荧光共振能量转移(FRET)设计合成具有多个荧光通道的分子是目前荧光探针和荧光材料研究中的热点。本论文中的探针分子RC1和RC2分别由罗丹明6G(绿色荧光)或罗丹明B(红色荧光)与7-N,N-二乙基氨基香豆酰氯(蓝色荧光)荧光团通过乙二胺桥联而成,选择性和竞争性实验表明这两个荧光探针能通过FRET以比率荧光选择性地识别Cu2+离子。CRB和CR6G由罗丹明B或者罗丹明6G与7-N,N-二乙基氨基香豆醛通过肼基桥联而成,这两个荧光探针以紫外可见光谱和荧光光谱双通道同时识别水溶液中的Cu2+和Hg2+。在这些双荧光基团分子探针的研究基础上,本论文进一步将具有锐线发射光谱的稀土离子引入,合成具有三荧光通道的荧光材料:单分子荧光材料材料RC1-Eu, RC1-Eu由RC1(包含蓝色和绿色荧光基团)和Eu(发射红色荧光)通过配位反应合成。通过控制其中的能量转移过程和效率,RC1-Eu能分别发射蓝、绿、红三原色荧光,并且在合适的激发波长处同时发射蓝、绿、红三原色荧光而形成白光。
     3.基于金属配合物的生物小分子荧光探针的设计合成:单糖、氨基酸、核糖核酸等生物小分子荧光探针在生命科学、医学等方面具有重要应用价值。在纯有机荧光探针分子的研究基础上,本论文设计合成了一系列具有荧光活性的铱、铕、钌等金属配合物的生物小分子荧光探针。探针Ir-OH(邻菲啰啉苯硼酸的铱配合物)在各种单糖中以荧光淬灭的方式选择性地识别果糖。Ir-CHO(邻菲啰啉醛的铱配合物)和Eu-CHO(邻菲啰啉醛的铕配合物)在和谷胱甘肽相关的氨基酸中选择性地识别谷氨酸和含有此片段的谷胱甘肽和金属硫蛋白。Ru-N,N (N,N-二甲基邻菲啰啉的钌配合物)的CH3CN:H2O溶液(9:1,v/v)在12种核糖核酸中以荧光增强的方式选择性地识别ATP。
Molecules and ions recognition is an important phenomenon in chemistry, biology and the materials science, and is the basical concept of supramolecular chemistry. The crucial recognition events occur in a much smaller world than that we are accustomed to. Therefore it needs to output the macroscopic signals with the special designed molecular detectors in order to understand and investigate the intermolecular act of recognition. In these signals, the most direct way is expressed by the light signal form, namely visualization. By introducing the special designed fluorescence probes into the target system, it will be able to transform the molecular recognition information into the fluorescence signals to transmit the outside world, thus will cause the communication between the human and the molecular possible and put up a bridge connecting the macrocosm and the microcosm, which is the key point and the hot spot in the current molecule-ion probe research field. The present paper contains following several aspects:
     1. Cu2+ PET fluorescence probes in living cells:owing to the quenching nature of paramagnetism Cu2+ to the fluorescence molecule excited state, it is a challenging work to design the high selective and sensitive fluorescence enhancement Cu2+ fluorescence probe. The present paper designed and synthesized three Cu2+ fluorescence probes. Probe L1 (bis(2-hydroxyl-naphthalene-carboxaldehyde) benzil dihydrazone) could selectively recognize Cu2+ by the fluorescence quenching way, but Hg2+ had disturbance. Probe L2 was synthesized from the reaction of 6-hydrazino-benzo [de] isoquinoline-1,3-diones with 4-tert-Butyl-2,6-diformyl-phenol. L2 could selectively distinguish Cu2+, and Hg2+ did not disturb it. L2 could be applied in the living cell fluorescence image. As a advancement of such research, by virtue of the electrochemistry survey and the quantum chemistry theoretical calculation, the electronic donor and the acceptor component which match with the Cu2+ redox potential was carefully chosen. The third probe L3, with appropriate front track energy level, was synthesized from the reaction of 7-diethylaminocoumarin-3-aldehyde with benzyl-dihydrazone. The fluorescence of L3 itself was extremely weak. After the Cu2+ coordinating, owing to the orbital energy level reasonable match, the photo induced electron transfer (PET) was blocked. As a result, the fluorescence of L3 obviously increased 75 times. L3 had many merits such as high selectivity, high sensitivity, good water-solubility, and so on. The focuse fluorescence image of living cell of L3 binding Cu2+ indicated L3 was an excellent Cu2+ fluorescence probe in the life system.
     2. The design and synthesis of FRET ratio fluorescence probes and entire spectrum fluorescence molecules:It is currently a hot spot in fluorescence sensors research field to design and synthesis dual channel fluorescence probes based on fluorescence resonance energy (FRET) by virtue of fluorescence groups that energy match. In present paper, probes RC1 and RC2 were linked by rhodamine 6G (green fluorescence) or rhodamine B (red fluorescence) group as energy accepter with coumarin (blue fluorescence) group as energy donor through the ethylene diamine group. The selective and competitive experiments indicated the two probes could distinguish Cu2+ through FRET ratio fluorescence. CRB and CR6G were linked by rhodamine B or rhodamine 6G with coumarin through hydrazine group. Such two fluorescence probes could simultaneously distinguish Cu2+ and Hg2+ in aqueous solution by the UV-vis and fluorescence spectra double channels. Based on these probes linked by two fluorophores, the rare earth ion with sharp line emission spectrum was introduced to develop the three fluorescence channel. Single molecule compound RC1-Eu, containing RC1 (containing blue and green fluorophores) and Eu (launching red fluorescence), was synthesized through coordination reaction. By subtly regulating energy transfer process and the efficiency, RC1-Eu could separately launched blue, green and red three-primary colors, and could simultaneously emit blue, green, and red three-primary colors to produce white light when excitated at appropriate wavelength.
     3. The design and synthesis of fluorescence probes based on metal complexes target biological small molecules:Fluorescence probes target small biological molecules such as monosaccharides, amino acids, ribonucleic acids have important applications in life science and medicine. Based on the pure organic fluorescence probes research, the present paper designed and synthesized a series of fluorescence probes based on fluorescence active Ir, Eu and Ru complexes coordinated with phenanthroline derivatives. Probe Ir-OH (phenanthroline benzene boric acid Ir complex) could selectively recognize fructose in several mono-saccharides by fluorescence quenching approach. Ir-CHO (phenanthroline aldehyde Ir complex) and Eu-CHO (phenanthroline aldehyde Eu complex) could selectively recognize glutamic acid, glutathione and metallothionein by interacting with the particular fragments of them by the N-terminal acylation approach. Ru-N,N (N,N-dimethyl-phenanthroline Ru complex) could selectively distinguish ATP in twelve kinds of ribonucleic acid in CH3CN: H2O (9:1, v/v) solution by fluorescence enhancement response.
引文
[1]Lehn J M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization [J]. Angew. Chem. Int. Ed.,1990,29:1304-1319.
    [2]Lehn J M,沈兴海,超分子化学-概念和展望[M].北京:北京大学出版社,2002.
    [3]Lourdes B D, Reinhoudt D N, Mercedes C C, Design of fluorescent materials for chemical sensing [J]. Chem. Soc. Rev.,2007,36:993-1017.
    [4]De Silva A P, Gunatatne H Q N, Gunnlauggson T, et al. Signaling Recognition Event with Fluorescent Sensors and Switches [J]. Chem. Rev.,1997,97:1515-1566.
    [5]刘育,尤长城,张衡益,超分子化学-合成受体的分子识别和组装[M].南开大学出版社,2001年.
    [6]吴世康,超分光化学导论一基础与应用[M].北京科学出版社,2005年.
    [7]B. Valeur and I. Leray, Design principles of fluorescent molecular sensors for cation recognition [J]. Coord. Chem. Rev.,2000,205:3-40.
    [8]Eduardo B, Daniel M, Gómez T, et al. A New Selective Chromogenic and Turn-On Fluorogenic Probe for Copper(II) in Water-Acetonitrile 1:1 Solution [J]. Org. Lett. 2009,11:1269-1272.
    [9]吴世康,荧光化学传感器研究中的光化学与光物理问题[J].化学进展,2004,16:174-183.
    [10]Lakowicz J R. Principles of fluorescence spectroscopy [M].2nd. ed., Kluwer/Plenum, New York,1999.
    [11]Zhang X L, Xiao Y, Qian X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells [J]. Angew. Chem. Int. Ed.2008,47:8025-8029.
    [12]黄春辉,李富友,黄岩谊,光电功能超薄膜[M].北京大学出版社,2001年.
    [13]Zheng L, Pralle A, Isacoff E Y, et al. A Selective Turn-On Fluorescent Alknylation of Unsaturated Aldehydes [J]. J. Am. Chem. Soc.,2006,128:10-11.
    [14]Luca P, Fabrizio B, Marco M, etal. Luminescent chemosensors for transition metal ions [J]. Coord. Chem. Rev.,2000,205:59-83.
    [15]Peng X J, Du J J, Fan J L, et al. A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells [J]. J. Am. Chem. Soc.,2007,129:1500-1501.
    [16]Yoon S H, Miller E W, He Q W, et al. A Bright and Specific Fluoresent Sensor for Mercury in Water, Cells, and Tissue [J]. Angew. Chem. Int. Ed.,2007,46:6658-6661.
    [17]He Q W, Miller E W, Wong A P, et al. A Selective Fluorescent Sensor for Detecting lead in Living Cells [J]. J. Am. Chem. Soc.,2006,128:9316-9317.
    [18]Ko S K, Yang Y K, Tae J, et al. In vivo Monitoring of mercury Ions Using a Rhodamine-Based molecular Probe [J]. J. Am. Chem. Soc.,2006,128:14150-14155.
    [19]Kim H N, Lee M H, Kim H J, et al. A New Trend in Rhodamine-based Chemosensors: Application of Spirolactam Ring-opening to Sensing ions [J]. Chem. Soc. Rev.,2008, 37:1465-1472.
    [20]Nolan E M, Lippard S J. Tools and Tactics for the Optical Deection of Mercuric Ion [J]. Chem. Rev.,2008,108:3443-3480.
    [21]Barceloux D G. Copper [J]. J. Toxicol., Clin. Toxicol.,1999,37:217-230.
    [22]Tapiero H, Townsend D M, Tew K D. Trace elements in human physiology and pathology [J]. Biomed. Pharmacother.,2003,57(9):386-398.
    [23]Huffman D L, OHalloran T V. Function, structure, and mechanism of intracellular copper trafficking proteins [J]. Annu. Rev. Biochem.,2001,70:677-701.
    [24]Field L S, Luk E, Culotta V C. Copper chaperones:Personal escorts for metal ions [J]. J. Bioenerg. Biomembr.,2002,34(5):373-379.
    [25]Mercer J F B. The molecular basis of copper-transport diseases [J]. Trends Mol. Med.,2001,7(2):64-69.
    [26]Harrison M D, Dameron C T. Moleeular mechanisms of copper metabolism and the role of the Menkes disease protein [J]. J. Biochem. Mol. Toxicol.,1999,13(2):93-106.
    [27]Strausak D, Mercer J F B, Dieter H H, et al. Copper in disorders with neurological symptoms:Alzheimer's, Menkes, and Wilson diseases [J]. Brain Res. Bull.,2001, 55(2):175-185.
    [28]Waggoner D J, Bartnikas T B, Gitlin J D. The role of copper in neurodegenerative disease [J]. Neurobiol. Dis.,1999,6(4):221-230.
    [29]Kramer R. Fluorescent Chemosensors for Cu2+ Ions:Fast, Selective, and Highly Sensitive [J]. Angew. Chem. Int. Ed.1998,37:772-773.
    [30]Fabbrizzi L, Licchelli M, Pallavicini P, etal. Fluorescent Sensors for Transition Metals Based on Electron-Transfer and Energy-Transfer Mechanisms [J]. Chem. Eur. J.1996,2:75-82.
    [31]Fabbrizzi L, Licchelli M, Pallavicini P, et al.An Anthracene-Based Fluorescent Sensor for Transition Metal Ions [J]. Angew. Chem. Int. Ed.,1994,33:1975-1977.
    [32]Arthur W V, Dodson R B, Wehry E L. Interactions of Transition-Metal Ions with Photoexcited States of Flavins. Fluorescence Quenching Studies [J]. J. Am. Chem. Soc.,1972,94:946-950.
    [33]Massimo B, Fabbrizzi L G, Maurizio L, etal. A two-channel molecular dosimeter for the optical detection of copper(Ⅱ) [J]. Chem. Comm.,2003,1812-1813.
    [34]Li Y, Yang C, A rationally designed novel receptor for probing cooperative interaction between metal ions and bivalent tryptophan side chain in solution [J]. Chem. Comm.,2003,2884-2885.
    [35]Alicia T, Grant K, Barbara I. Exploiting Polypeptide Motifs for the Design of Selective Cu(Ⅱ) Ion Chemosensors [J]. J. Am. Chem. Soc.,1998,120:609-610.
    [36]Li G K, Xu Z X, Chen C F. A highly efficient and selective turn-on fluorescent sensor for Cu2+ ion based on calix[4]arene bearing four iminoquinoline subunits on the upper rim [J]. Chem. Comm.,2008,1774-1776.
    [37]Virginie D, Francis F, Anthony W. C. A Long-Wavelength Selective for Cu(Ⅱ) Ion in Water [J]. J. Am. Chem. Soc.,1997,119:7386-7387.
    [38]Wu Q Y, Anslyn E V. Catalytic Signal Amplification Using a Heck Reaction. An Example in the Fluorescence Sensing of Cu (Ⅱ) [J]. J. Am. Chem. Soc.,2004,126:14682-14683.
    [39]Royzen M, Zhao H D, Canary J W. Ratiometric Displacement Approach to Cu (Ⅱ) Sensing by Fluorescence [J]. J. Am. Chem. Soc.,2005,127:1612-1613.
    [40]Liu J W, Lu Y, A DNA zyme Catalytic Beacon Sensor for Paramagnetic Cu2+ Ions in Aqueous Solution with High Sensitivity and Selectivity [J]. J. Am. Chem. Soc.,2007, 129:9838-9839.
    [41]Xu Z C, Qian X H, Cui J N. Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission:Cu(Ⅱ)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore [J]. Org. Lett.,2005,7:3029-3032.
    [42]Yu X, Tong A J, Jin PY, et al. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(Ⅱ) with High Selectivity and Sensitivity [J]. Org. Lett.,2006,8:2863-2866.
    [43]Zhang X, Shiraishi Y, Takayuki H, Cu(Ⅱ)-Selective Green Fluorescence of a Rhodamine-Diacetic Acid Conjugate [J]. Org. Lett.,2007,9:5039-5042.
    [44]Jung H S, Kwon P S, Lee J W, et al. Coumarin-Derived Cu2+ -Selective Fluorescence Sensor:Synthesis, Mechanisms, and Applications in Living Cells [J]. J. Am. Chem. Soc.,2009,131:2008-2012.
    [45]Yu M X, Shi M, Chen Z G, et al. Highly Sensitive and Fast Responsive Fluorescence Turn-On Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging [J]. Chem. Eur. J.,2008,14:6892-6900.
    [46]Swamy K M K, Ko S K, Yoon J Y, et al. Boronic acid-linked fluorescent and colorimetric probes for copper ions [J]. Chem. Comm.,2008,5915-5917.
    [47]Callan J F, Silva A P, Magri D C. Luminescent sensors and switches in the early 21st century [J]. Tetrahedron,2005,61 (36):8551-8588.
    [48]Kawanishi Y, Kikuchi K, Takakusa H, et al. Design and synthesis of intramolecular resonance-energy transfer probes for use in ratiometric measurements in aqueous solution [J]. Angew. Chem. Int. Ed.2000,39 (19):3438-3440.
    [49]Woodroofe C C, Lippard S J. A novel two-fluorophore approach to ratiometric sensing of Zn2+ [J]. J. Am. Chem. Soc.2003,125 (38):11458-11459.
    [50]Mello J V, Finney N S. Dual-signaling fluorescent chemosensors based on conformational restriction and induced charge transfer [J]. Angew. Chem. Int. Ed. 2001,40 (8):1536-1538.
    [51]Kubo Y, Yamamoto M, Ikeda M, et al. A colorimetric and ratiometric fluorescent chemosensor with three emission changes:fluoride ion sensing by a triarylborane-porphyrin conjugate [J]. Angew. Chem. Int. Ed.2003,42 (18):2036-2040.
    [52]Banthia S, Samanta A. A new strategy for ratiometric fluorescence detection of transition metal ions [J]. J. Phys. Chem. B,2006,110 (13):6437-6440.
    [53]Zhao C X, Xiao Y, Qian X H, et al. Ratiometric and Selective Fluorescent Sensor for CuII Based on Internal Charge Transfer (ICT) [J]. Org. Lett.,2005,7:889-892.
    [54]van der Meer B W, Coker G, Simon S Y, Resonance Energy Transfer, Theory and Data [M].VCH:Weinheim,1994.
    [55]Adams S R, Harootunian A T, Buechler Y J, et al. Fluorescence ratio imaging of cyclic AMP in single cells [J]. Nature,1991,349:694-697.
    [56]Lee M H, Quang D T, Jung H S, et al. Ion-Induced FRET On-Off in Fluorescent Calix[4]arene [J]. J. Org. Chem.2007,72:4242-4245.
    [57]Lee S Y, Kim H J, Wua J S, et al. Metal ion-induced FRET modulation in a bifluorophore system [J]. Tetra. Lett.,2008,49:6141-6144.
    [58]Serin J M, Brousmiche D W, Frechet J M. A FRET-Based Ultraviolet to Near-Infrared Frequency Converter [J]. J. Am. Chem. Soc.2002,124:11848-11849.
    [59]Dichtel W R, Serin J M, Carine E, et al. Singlet Oxygen Generation via Two-Photon Excited FRET [J]. J. Am. Chem. Soc,2004,126:5380-5381.
    [60]Shimon Weiss. Fluorescence Spectroscopy of Single Biomolecules [J]. Science 1999, 283:1676-1683.
    [61]Allen M D, Zhang J. A Tunable FRET Circuit for Engineering Fluorescent Biosensors [J]. Angew. Chem. Int. Ed.2008,47:500-502.
    [62]Lee M H, Kim H J, Yoon S, et al. Metal Ion Induced FRET OFF-ON in Tren/Dansyl-Appended Rhodamine [J].Org. Lett.,2008,10:213-216.
    [63]Albers A E, Okreglak V S, Chang C J. A FRET-Based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide [J]. J. Am. Chem. Soc.,2006, 128:9640-9641.
    [64]Kazuya K, Hideo T, Tetsuo N. Recent advances in the design of small molecule-based FRET sensors for cell biology [J]. Trends Anal. Chem.,2004,6:407-415.
    [65]Zheng G H, Guo Y M, Li W H. Photoactivatable and Water Soluble FRET Dyes with High Uncaging Cross Section [J]. J. Am. Chem. Soc.,2007,129:10616-10617.
    [66]Othman A B, Lee J W, Wu J S, et al. Calix[4]arene-Based, Hg2+-Induced Intramolecular Fluorescence Resonance Energy Transfer Chemosensor [J]. J. Org. Chem.,2007,72: 7634-7640.
    [67]Zhou Z G, Yu M X, Yang H, et al. FRET-based sensor for imaging chromium(Ⅲ) in living cells [J]. Chem. Commun.,2008,3387-3389.
    [68]Anthoni U, Carsten C, Nielsen P H, et al.Structure of Red and Orange Fluorescein [J]. Struct. Chem.,1995,6(3):161-165.
    [69]Wu D Y, Huang W, Duan C Y, et al. A Highly Sensitive Fluorescent Probe for Selective Detection of Hg2+ in DMF queous Media [J]. Inorg. Chem.2007,46:1538-1540.
    [70]Wu J S, Hwang I C, Kim K S, et al. Rhodamine-Based Hg2+-Selective Chemodosimeter in Aqueous Solution:Fluorescent OFF-ON [J]. Org. Lett.,2007,9:907-910.
    [71]Lee M J, Wu J S, Lee J W, et al. Highly Sensitive and Selective Chemosensor for Hg2+ Based on the Rhodamine Fluorophore [J]. Org. Lett.,2007,9:2501-2504.
    [72]Komatsu H, Citterio D, Fujiwara Y, et al. Single Molecular Multianalyte Sensor: Jewel Pendant Ligand [J]. Org. Lett.,2005,7:2857-2859.
    [73]Rurack K, Kollmannsberger M, Ute R G, et al. A Selective and Sensitive Fluoroionophore for HgII , AgI, and CuII with Virtually Decoupled Fluorophore and Receptor Units [J]. J. Am. Chem. Soc.,2000,122:968-969.
    [74]Hirokazu K, Takahiro M, Daniel C, et al. Single Molecular Multianalyte (Ca2+, Mg2+) Fluorescent Probe and Applications to Bioimaging [J]. J. Am. Chem. Soc.,2005,127: 10798-10799.
    [75]Magri D C, Brown G J, McClean G D, et al. Communicating Chemical Congregation: A Molecular AND Logic Gate withThree Chemical Inputs as a "Lab-on-a-Molecule" Prototype [J]. J. Am. Chem. Soc.,2006,128:4950-4951.
    [76]Navneet K, Subodh K, Single molecular colorimetric probe for simultaneous estimation of Cu2+ and Ni2+ [J]. Chem. Comm.,2007,3069-3070.
    [77]Schmittel M, Lin H W. Quadruple-Channel Sensing:A Molecular Sensor with a Single Type of Receptor Site for Selective and Quantitative Multi-Ion Analysis [J]. Angew. Chem. Int. Ed.,2007,46:893-896.
    [78]de Silva A P Sense and versatility [J]. Nature,2007,445:178-179.
    [79]Caballero A, Espinosa A, Tárraga A, et al. Ferrocene-Based Small Molecules for Dual-Channel Sensing of Heavy-and Transition-Metal Cations [J]. J. Org. Chem.2008, 73:5489-5497.
    [80]Yuan M J, Zhou W D, Liu X F, et al. A Multianalyte Chemosensor on a Single Molecule: Promising Structure for an Integrated Logic Gate [J]. J. Org. Chem.2008,73:5008-5014.
    [81]Kido J, Kimura M, Nagai K. Multilayer White Light-Emitting Organic Electro-luminescent Device [J]. Science,1995,267:332-1334.
    [82]Frient R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers [J]. Nature,1999,397:121-128.
    [83]Chen C T, Evolution of Red Organic Light-Emitting Diodes:Materials and Devices [J]. Chem. Mater.,2004,16:4389-4400.
    [84]Di jken A V, Bastiaansen J J A M, Kiggen N M M. Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes:Polymer Hosts for High-EfficiencyLight-Emitting Diodes [J]. J. Am. Chem. Soc.,2004,126:7718-7727.
    [85]Chan L, Lee R, Hsieh C,et al. Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials [J]. J. Am. Chem. Soc.2002,124:6469-6479.
    [86]Abbel R, Grenier C, Pouderoi jen M. J, et al. White-Light Emitting Hydrogen-Bonded Supramolecular Copolymers Based on π-Conjugated Oligomers [J]. J. Am. Chem. Soc., 2009,131:833-843.
    [87]Luo L, Li X, Hou Q, et al. High-Efficiency White-Light Emission from a Single Copolymer:Fluorescent Blue, Green, and Red Chromophores on a Conjugated Polymer Backbone [J]. Adv. Mater.,2007,19:1113-1117.
    [88]Ajayaghosh A, Praveen V K, Srinivasan S, et al. Quadrupolar-Gels:Sol-Gel Tunable Red -Green-Blue Emission in Donor-Acceptor-Type Oligo(p-phenylenevinylene)s [J]. Adv. Mater.,2007,19:411-415.
    [89]Kim J H, Herguth P, Kang M S, et al. Bright white light electroluminescent devices based on a dye-dispersed polyfluorene derivative [J]. Appl. Phys. Lett.,2004,85: 1116-1118.
    [90]Chen C A, Culligan S W, Geng Y, et al. Organic Polarized Light-Emitting Diodes via Forster Energy Transfer Using Monodisperse Conjugated Oligomers [J]. Adv. Mater.,2004,16:783-788.
    [91]Kokuoz B, DiMaio J R, Kucera C J, et al. Color Kinetic Nanoparticles [J]. J. Am. Chem. Soc.,2008,130:12222-12223.
    [92]Su H, Chen H, Fang F, et al. Solid-State White Light-Emitting Electrochemical Cells Using Iridium-Based Cationic Transition Metal Complexes [J]. J. Am. Chem. Soc., 2008,130:3413-3419.
    [93]Yu X, Kwok H, Wong W Y. High-Efficiency White Organic Light-Emitting Devices Based on a Highly Amorphous Iridium(Ⅲ) Orange Phosphor [J]. Chem. Mater.,2006,18: 5097-5103.
    [94]D-Andrade B W, Holmes R J, Forrest S R. Efficient Organic Electrophosphorescent White- Light- Emitting Device with a Triple Doped Emissive Layer [J]. Adv. Mater., 2004,16:624-628.
    [95]Jordan R H, Dodabalapur A, Strukelj M. White organic electroluminescence devices [J]. Appl. Phys. Lett.,1996,68:1192-1194.
    [96]Wang Y Z, Sun R G, Meghdadi F. White luminescence of a system based on poly (9,9-di (ethylhexyl) fluorene) activated by fluorescent dyes [J]. Appl. Phys. Lett.,1999, 74:3613.
    [97]Liu Y, Guo J, Zhang H. Comment on the Communication Highly Efficient White Organic Electroluminescence from a Double-Layer Device Based on a Boron Hydroxyphenylpyridine Complex [J]. Angew. Chem. Int. Ed.,2002,41:182-184.
    [98]Liu J, Cheng Y, Xie Z, et al. White Electroluminescence from a Star-like Polymer with an Orange Emissive Core and Four Blue Emissive Arms [J]. Adv. Mater.,2008, 20:1357-1362.
    [99]Liu J, Xie Z, Cheng Y, et al. Molecular Design on Highly Efficient White Electroluminescence from a Single-Polymer System with Simultaneous Blue, Green, and Red Emission [J].Adv. Mater.,2007,19:531-535.
    [100]Tu G, Mei C, Zhou Q, et al. Highly Efficient Pure-White-Light-Emitting Diodes from a Single Polymer:Polyfluorene with Naphthalimide Moieties [J]. Adv. Funct. Mater.,2006,16:101-106.
    [101]Jiang J, Xu Y, Yang W, et al. High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission [J]. Adv. Mater.,2006, 18:1769-1773.
    [102]Lee S K, Hwang D H, Jung B J, et al. Polymeric White-Light-Emitting Diodes [J]. Adv. Funct. Mater.,2005,15:1647-1655.
    [103]Furuta P T, Deng L, Garon S, et al. Platinum-Functionalized Random Copolymers for Use in Solution-Processible, Efficient, Near-White Organic Light-Emitting Diodes [J]. J. Am. Chem. Soc.,2004,126:15388-15389.
    [104]Li J Y, Liu D, Ma C, et al. White-Light Emission from a Single-Emitting-Component Organic Electroluminescent Device [J]. Adv. Mater.,2004,16:1538-1541.
    [105]Liu Y, Nishiura M, Wang Y, et al. π-Conjugated Aromatic Enynes as a Single-Emitting Component for White Electroluminescence [J]. J. Am. Chem. Soc., 2006,128:5592-5593.
    [106]Yang Y, Lowry M, Schowalter C M, et al. An Organic White Light-Emitting Fluorophore [J]. J. Am. Chem. Soc.,2006,128:14081-14092.
    [107]Zhang X L, Xiao Y, Qian X. H. Highly Efficient Energy Transfer in the Light Harvesting System Composed of Three Kinds of Boron-Dipyrromethene Derivatives [J]. Org. Lett.,2008,10:29-32.
    [108]Hippius C, Schlosser F, Vysotsky M 0. et al. Synthesis and Properties of [2.2] Para cyclophane-Layered Polymers [J]. J. Am. Chem. Soc.,2006,128:3870-3871.
    [109]Glaspell G, Anderson J, R. Wilkins J, et al. Surface Oxidation and Luminescence Properties of m Weblike Agglomeration of Silicon Nanocrystals Produced by a Laser Vaporization-Controlled Condensation Technique [J]. J. Phys. Chem. C,2008,112: 11527-11531.
    [110]Sivakumar S, van Veggel F C J M, Raudsepp M. Bright White Light through Up-Conversion of a Single NIR Source from Sol-Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles [J]. J. Am. Chem. Soc.,2005,127:12464-12465.
    [111]Escribano P, Juliá-López B, Planelles-Aragó J, et al. Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials [J]. J. Mater. Chem.,2008,18:23-40.
    [112]Evans R C, Carlos L D, Douglas P, et al. Tuning the emission colour in mixed lanthanide microporous silicates:energy transfer, composition and chromaticity [J]. J. Mater. Chem.,2008,18:1100-1107.
    [113]Kido J, Okamoto Y. Organo Lanthanide Metal Complexes for Electroluminescent Materials [J]. Chem. Rev.,2002,102:2357-2368.
    [114]Shunmugam R, Polym T G N. Dialing in Color with Rare Earth Metals:Facile Production of True White Light [J]. Adv. Technol.,2007,18:940-945.
    [115]Coppo P, Duati M, Kozhevnikov V N, et al. Zuschrift White-Light Emission from an Assembly Comprising Luminescent Iridium and Europium Complexes [J]. Angew. Chem., 2005,117:1840-1844.
    [116]Coppo P, Duati M, Kozhevnikov V N, et al. White-Light Emission from an Assembly Comprising Luminescent Iridium and Europium Complexes [J]. Angew. Chem. Int. Ed., 2005,44:1806-1810.
    [117]Lindberg S E, Wallschlager D, Prestbo F M, et al. Methylated mercury species in municipal waste landfill gas sampled in Florida USA Atmospheric Environment [J]. 2001,35(23):4011-4015.
    [118]Mallavarapu A, Sawin K, Mitchison T A, Switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe [J]. Current Biology,1999,9(23):1423-1428.
    [119]Imjun S, Lee W J, Sakamoto S, et al. Rotaxane-based molecular switch with fluorescence signaling [J]. Tetra. Lett.,2000,41(4):471-475.
    [120]Davis A P, Warehem R S. Carbohydrate recognition through Noncovalent Interactions: A Challenge for Biomimetic and Supramolecular Chemistry [J]. Angew. Chem. Int. Ed., 1999,38:2978-2996.
    [121]Wilson G S, Enzyme-Based Biosensors for in Vivo Measurements [J]. Chem. Rev.,2000, 100:2693-2704.
    [122]James T D, Samankumara K R A S, Shinkai S. Saccharide Sensing with Molecular Rec eptors Base donoronic Acid [J]. Angew. Chem. Int. Ed.,1996,35:1910-1922.
    [123]Kuivila H G, Keough A H, Soboczenski E J. Areneboronates from Diols and Polyols [J]. J. Org. Chem.,1954,19:780-783.
    [124]Lorand J P, Edwards J D. Complexes and Structure of the Benzeneboronation [J]. J. Org. Chem.,1959,4:769-774.
    [125]Deng G, James T D, Shinkai S. Allosteric Interaction of Metal Ions with Saccharides in a Crowned Diboronic Acid [J]. J. Am. Chem. Soc.,1994,116:4567-4512.
    [126]James T D, Samankumara S. K R A, Shinkai S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. [J]. Nature,1995,27:345-347.
    [127]Sandanayake S K R A, James T D, Shinkai S. Two Dimensional Photoinduced Electron Transfer (PET) Fluorescence Sensor for Saccharides [J]. Chemistry Letters,1995, 24(7):503-508.
    [128]Arimori S, Bell M L, Oh C S, et al. Modular fluorescence sensors for saccharides [J]. Chem. Comm.,2001,1836-1837.
    [129]Arimori S, Bell M L, Oh C S, et al. A Modular Fluorescence Intramolecular Energy Transfer Saccharide Sensor [J]. Org. Lett.,2002,4(24):4249-4251.
    [130]Zhao J Z, Davidson M G, Mahon M F, et al. An Enantioselective Fluorescent Sensor for Sugar Acids [J]. J. Am. Chem. Soc.,2004,126:16179-16186.
    [131]Zhang X, Chi L, Ji S, et al. Rational Design of d-PeT Phenylethynylated-Carbazole Monoboronic Acid Fluorescent Sensors for the Selective Detection of r-Hydroxyl Carboxylic Acids and Monosaccharides [J]. J. Am. Chem. Soc.,2009,131:17452-17463.
    [132]Young H A, Lee J S, Chang Y T, Combinatorial Rosamine Library and Application to in Vivo Glutathione Probe [J]. J. Am. Chem. Soc.,2007,129 (15):4510-4511.
    [133]Zhang M, Li M, Zhao Q, et al. Novel Y-type two-p Hoton active fluorop Hore: synthesis and application in fluorescent sensor for cysteine and homocysteine [J]. Tetra. Lett.,2007,48:2329-2333.
    [134]Chen H, Zhao Q, Wu Y, et al. Selective Phosphorescence Chemosensor for Homocysteine Based on an Iridium(Ⅲ) Complex [J]. Inorg. Chem.,2007,46:11075-11081.
    [135]Kim T K, Lee D N, Kim H J. Highly selective fluorescent sensor for homocysteine and cysteine [J]. Tetra. Lett.,2008,49:4879-4881.
    [136]Yang X F, Liu P, Wang L. A Chemosensing Ensemble for the Detection of Cysteine Based on the Inner Filter Effect Using a Rhodamine B Spirolactam [J]. J. Fluoresc., 2008,18:453-459.
    [137]Wu H P, Huang C C, Cheng T L, et al. Sodium hydroxide as pretreatment and fluorosurfactant -capped gold nanoparticles as sensor for the highly selective detection of cysteine [J]. Talanta,2008,76:347-352.
    [138]Lin W Y, Long L L, Lin Y, et al. A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift [J]. Org. Lett.,2008,10:5577-5580.
    [139]Li H L, Fan J L, Wang J Y, et al. A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine [J]. Chem. Comm.,2009,39: 5904-5906.
    [140]Li C, Numata M, Takeuchi, M, et al. A Sensitive Colorimetric and Fluorescent Probe Based on a Polythiophene Derivative for the Detection of ATP [J]. Angew. Chem., Int. Ed.2005,40:6371-6374.
    [141]Vial L, Dumy P, Fluorescent ADP Sensing in Physiological Conditions Based on Cooperative Inhibition of a Miniature Esterase [J]. J. Am. Chem. Soc.,2007,129: 4884-4885.
    [142]Kwon J Y, Singh N J, Kim H N, et al. Fluorescent GTP-Sensing in Aqueous Solution of Physiological pH [J]. J. Am. Chem. Soc.,2004,126:8892-8893.
    [143]Xu Z, Singh N J, Lim J, et al. Unique Sandwich Stacking of Pyrene-Adenine-Pyrene for Selective and Ratiometric Fluorescent Sensing of ATP at Physiological pH [J]. J. Am. Chem. Soc.,2009,131:15528-15533.
    [144]Zhao M, Wang M, Liu H, et al. Continuous On-Site Label-Free ATP Fluorometric Assay Based on Aggregation-Induced Emission of Silole [J]. Langmuir.,2009,25:676-678.
    [145]Wu H M, He C, Lin Z H, et al. Metallohelical Triangles for Selective Detection of Adenosine Triphosphate in Aqueous Media [J]. Inorg. Chem.,2009,48:408-410.
    [146]Chen X, Jou M J, Yoon J. An "Off-On" Type UTP/UDP Selective Fluorescent Probe and Its Application to Monitor Glycosylation Process [J]. Org. Lett.2009,11:2181-2184.
    [147]Elias B, Mesmaeker A K-D, Photo-reduction of polyazaaromatic Ru(Ⅱ) complexes by biomolecules and possible applications [J]. Coord. Chem. Rev.,2006,250:1627-1641.
    [148]Ryan G J, Quinn S, Gunnlaugsson T, Highly Effective DNA Photocleavage by Novel "Rigid" Ru(bpy)3-4-nitroand-4-amino-1,8-naphthalimide Conjugates [J]. Inorg. Chem.2008,47:401-403.
    [149]Sun B, Guan J-X, Xu L, et al. DNA Condensation Induced by Ruthenium(Ⅱ) Polypyridyl Complexes [Ru(bpy)2(PIPSH)]2+ and [Ru(bpy)2(PIPNH)]2+ [J]. Inorg. Chem.,2009,48: 4637-4639.
    [150]Lecomtet J-P, Mesmaeker A K-D, Ruthenium(Ⅱ) Complexes with 1,4,5,8,9,12-Hexaazatriphenylene and 1,4,5,8-Tetraazaphenanthrene Ligands:Key Role Played by the Photoelectron Transfer in DNA Cleavage and Adduct Formation [J]. Inorg. Chem. 1995,34:6481-6491.
    [151]Rurack K, Kollmannsberger M, Resch-Genger U, et al. A Selective and Sensitive Fluoroionophore for HgII , AgI, and Cull with Virtually Decoupled Fluorophore and Receptor Units [J]. J. Am. chem. Soc.,2000,122:968-969.
    [152]Rurack K, Resch-Genger U, Bricks J L, et al. Cation-triggered‘switching on’of the red/near infra-red (NIR) fluorescence of rigid fluorophore-spacer-receptor ionophores [J]. Chem. Comm.,2000,2103-2104.
    [153]Tamayo A, Lodeiro C, Escriche L, et al. New Fluorescence PET Systems Based on N2S2 Pyridine-Anthracene-Containing Macrocyclic Ligands. Spectrophotometric, Spectrofluorimetric, and Metal Ion Binding Studies [J]. Inorg. Chem.,2005,44: 8105-8115.
    [154]Yang L, McRae R, Henary M. M, et al. Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy [J]. Proc. Natl. Acad. Sci. U. S. A.,2005,102:11179-11184.
    [155]Juris A, Balzani V, Ru(Ⅱ) polypyridine complexes:photophysics, photochemistry, eletrochemistry, and chemiluminescence [J]. Coord. Chem. Rev.,1988,84:85-277.
    [156]Fischer M, Georges J, Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry [J]. Chem. Phys. Lett., 1996,260:115-118.
    [157]Becke A D, Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A,1988,38:3098-3100.
    [158]Becke A D, Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J. Chem. Phys.,1993,98:5648-5652.
    [159]Hay P J, Wadt W R, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys.,1985,82: 270-283.
    [160]Te Velde G T, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF [J]. J. Comput. Chem.,2001,22:931-967.
    [161]Wang J, Xu Z, Zhao Y, et al., Synthesis and characterization of novel fluorescent surfactants [J]. Dyes and Pigments,2007,74:03-107.
    [162]Gan J, Tian H, Wang Z, et al. Synthesis and luminescence properties of novel ferrocene -naphthalimides dyads [J]. J. Organomet. Chem.,2002,645:168-175.
    [163]Lindoy L F, Meehan G V, Svenstrup N, Mono-and Diformylation of 4-Substituted Phenols:A New Application of the Duff Reaction [J]. Synthesis,1998,7:1029-1032.
    [164]Ma Y, Luo W, Quinn, P J, et al., Design, Synthesis, Physicochemical Properties, and Evaluation of Novel Iron Chelators with Fluorescent Sensors [J]. J. Med. Chem., 2004,47:6349-6362.
    [165]Wu J, Liu W, Zhuang X, et al, Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization [J]. Org. Lett. 2007,9:33-36.
    [166]Connors K A, Binding Contants. [M]. John Wiley, New York,1987.
    [167]Young-Keun Y, Keun-Jeong Y, Jinsung T, A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media. [J]. J. Am. Chem. Soc.,2005,127:16760-16761.
    [168]Fahrni C J, Yang L, VanDerveer D G, Tuning the Photoinduced Electron-Transfer Thermodynamics in 1,3,5-Triaryl-2-pyrazoline Fluorophores:X-ray Structures, Photophysical Characterization, Computational Analysis, and in Vivo Evaluation [J]. J. Am. Chem. Soc.,2003,125:3799-3812.
    [169]Rehm D, Weller A, Kinetics of fluorescence quenching by electron and hydrogen-atom transfer [J]. Isr. J. Chem.,1970,8:259-271.
    [170]G. J. Kavarnos, Fundamentals of Photoinduced Electron Transfer [M]. VCH Publishers, New York,1993.
    [171]Lenaerts P, Driesen K, Van Deun, et al. Covalent Coupling of Luminescent Tris (2-thenoyltrifluoroacetonato) lanthanide(Ⅲ) Complexes on a Merrifield Resin [J]. Chem. Mater.,2005,17:2148-2154.
    [172]Regulatory Impact Analysis of the Clean Air Mercury Rule, U.S. EPA:Research Triangle Park, NC,2005, EPA-452/R-05-003.
    [173]Standardization Administration (SA) of the People's Republic of China, Integrated Waste water Discharge Standard, GB 8978,1996.
    [174]CIE http://hyperphysics. phy-astr. gsu. edu/hbase/vision/cie. html#c2.
    [175]Jones G, Jackson W R, Halpern A M, et al, Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes [J]. Chem. Phys. Lett.,1980,72: 391-395.
    [176]Hou Y, Ming C, Zhou D, et al, Fluorescence lifetimes of some laser dyes [J]. Yingyong Huaxue,1987,4(4):53-57.
    [177]Malta 0 L, Brito H F, Menezes J F S, et al, Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model [J]. J. of Lumin.1997,75:255-268.
    [178]Katritzky A R, Tala S R, Abo-Dya N E, et al. Selective Synthesis and Structural Elucidation of S-Acyl-and N-Acylcysteines [J]. J. Org. Chem.,2009,74:7165-7167.
    [179]Grover N, Gupta N, Thorp H H, et al. Stereoselective Covalent Binding of Aquaruthenium(II) Complexes to DNA [J]. J. Am. Chem. Soc.,1992,114:3390-3393.
    [180]Spillane C B, Smith J A, Damian P Buck, et al. Dinuclear ruthenium(Ⅱ) complexes as potential probes for RNA bulge sites [J]. Dalton Trans.,2007,5290-5296.
    [181]Nonat A M, Quinn S J, Gunnlaugsson T, Mixed f-d Coordination Complexes as Dual Visible- and Near-Infrared-Emitting Probes for Targeting DNA [J]. Inorg. Chem., 2009,48:4646-4648.
    [182]Xu L, Zhang D, Huang J, et al. High fluorescence selectivity and visual detection of G-quadruplex structures by a novel dinuclear ruthenium complex [J]. Chem. Comm. 2010, DOI:10.1039/b918045a.
    [183]Olga N, Alexey A N, Christian G H, et al. DNA interactions of dinuclear RuII arene antitumor complexes in cell-free media [J]. Biochem. Pharmacol.,2009,77:364-374.
    [184]Zhao Q, Liu S, Shi M, et al. Tuning Photophysical and Electrochemical Properties of Cationic Iridium(Ⅲ) Complex Salts with Imidazolyl Substituents by Proton and Anions [J]. Organometallics,2007,26:5922-5930.
    [185]Sergey L, Peter D, Drew M, Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J]. Inorg. Chem.,2001,40:1704-1711.
    [186]Chao H, Li R-H, Jiang C-W, et al, Mono-, di- and tetra-nuclear ruthenium(II) complexes containing 2,2'-p-phenylenebis(imidazo[4,5-f]phenanthroline): synthesis, characterization and third-order non -linear optical properties [J]. J. Chem. Soc., Dalton Trans.,2001,1920-1926.
    [187]Sullivan B P, Salmon D J, Meyer T J, Mixed Phosphine 2,2'-Bipyridine Complexes of Ruthenium [J]. Inorg. Chem.,1978,17:3334-3341.
    [188]Chou P T, Chi Y, Phosphorescent Dyes for Organic Light-Emitting Diodes [J]. Chem. Eur. J.,2007,13:380-395.
    [189]Huang C H, Li F Y, Huang W, Introduction to Organic Light-Emitting Materials and Devices [M]. Press of Fudan University, Shanghai,2005.
    [190]Schoevaars A M, Kruizinga W, Zijlstra R W J, et al, Toward a Switchable Molecular Rotor:Unexpected Dynamic Behavior of Functionalized Overcrowded Alkenes [J]. J. Org. Chem.,1997,62:4943-4948.
    [191]Collins J G, Sleeman A D, Aldrich-Wright J R, et al, A 1H NMR Study of the DNA Binding of Ruthenium(Ⅱ) Polypyridyl Complexes [J]. Inorg. Chem.,1998,37:3133-3141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700