用户名: 密码: 验证码:
多组分宽带掺铒玻璃光谱性质及光纤放大特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代通信技术的飞速发展,人们对光纤通信容量和系统集成化的要求大大提高,这使得掺铒光纤放大器(Erbium-doped Fiber Amplifier,EDFA)与波分复用(Wavelength Division Multiplexing,WDM)技术的联合运用成为实现多波长和超长距离传输必不可少的条件。其中,EDFA已是提高WDM系统信道数和光纤通信容量的关键部件。目前,主要工作在C波段(1530-1565nm)区域并得到广泛应用的传统石英基EDFA已不能满足系统的发展需求。因此,开发具有宽带放大能力和极高单位长度增益的非石英基EDFA,直接实现C+L波段(1530~1610nm)区域宽带无缝放大,这对于WDM系统光纤通信容量的扩展以及系统集成化具有非常重要的实际意义。
     本论文结合当前光纤通信技术的发展需求,选择多组分宽带碲酸盐和铋酸盐重金属氧化物玻璃作为研究对象,基于自主实现从“宽带掺铒玻璃→宽带掺铒玻璃光纤→宽带掺铒玻璃光纤放大器”整个流程的研究考虑,围绕多组分宽带掺铒玻璃光谱性质的改性研究、多组分宽带掺铒玻璃光纤的研制和光谱性质测试、宽带掺铒玻璃光纤稳态和瞬态放大特性的理论研究三方面内容开展工作。论文的主要研究工作如下:
     1.开展了单掺稀土铒离子对于碲酸盐玻璃光谱特性的影响研究
     WDM系统的集成化趋势,需要尽可能地提高光纤放大器增益介质中的稀土铒离子(Er~(3+))掺杂浓度以便得到高的单位长度增益,但过高的铒离子掺杂也会带来一些负面效应,影响到光纤放大器的性能指标。因此,本文首先开展了稀土铒离子掺杂对于组分为TeO_2-ZnO-La_2O_3(Na_2O)碲酸盐玻璃光谱特性的影响研究,深入研究了1.53μm波段荧光谱、荧光强度和荧光寿命随铒离子掺杂浓度的变化关系。为此,论文运用Lorentz线型函数对测量到的荧光光谱进行了拟合分解,建立了一个等效四能级模型分析了各谱线成分相对强度随铒离子掺杂浓度的变化关系,剖析了1.53μm波段荧光谱的展宽及其荧光主峰转移现象。同时,基于Forster-Dexter能量转移理论,结合荧光俘获效应的影响,系统分析了激发态~4I_(13/2)能级上铒离子无辐射能量衰减速率与其掺杂浓度的关系,从而指出了1.53μm波段荧光强度和荧光寿命在高掺杂浓度下发生猝灭的主要影响因素,并从无辐射能量转移机理出发分析对比了玻璃中稀土铒离子溶解性问题,计算得到了稀土铒离子的临界浓度和临界相互作用距离参数,确定了最佳掺杂含量。
     2.开展了多稀土离子共掺对于碲酸盐玻璃光谱特性的改性研究
     工作于1.53μm波段的掺铒光纤放大器通常采用1480或980nm波长进行泵浦。采用980nm波长泵浦,光纤放大器具有低的噪声系数,同时也存在着Er~(3+)离子吸收较弱、上转换发光现象严重而引起的泵浦效率较低缺陷。本文从提高980nm泵浦效率和Er~(3+)离子1.53μm波段荧光特性出发,开展了Er~(3+)、Yb~(3+)(镱)、Ce~(3+)(铈)多稀土离子共掺对于组分为TeO_2-ZnO-La_2O_3-Nb_2O_5碲酸盐玻璃光谱特性的影响研究。论文通过具体分析Yb~(3+)/Er~(3+)离子间能量传递过程,研究了Yb~(3+)离子掺杂对于Er~(3+)离子1.53μm波段荧光和上转换发光的增强作用,并给予了理论模拟。通过分析Er~(3+)/Ce~(3+)离子间的能量传递过程,研究了Ce~(3+)离子掺杂对于1.53μm波段荧光增强和上转换发光的抑制作用。从而指出相对于Er~(3+)/Yb~(3+)双掺形式,Er~(3+)/Yb~(3+)/Ce~(3+)三掺是提高980nm泵浦效率和1.53μm波段荧光强度一种更加有效的组合掺杂方式。在此基础上,论文对基于声子辅助的Er~(3+)/Ce~(3+)离子间能量传递过程,首次提出了通过提高玻璃基质声子能量,减少能量传递过程中的能量失配程度,来进一步提高Er~(3+)/Ce~(3+)离子间能量传递速率的思想,实验结果得到了很好的印证。
     3.开展了单掺铒离子情形下铋酸盐玻璃荧光衰减特性研究
     OH-根离子不仅产生了石英传输光纤中1385nm波长附近的“水吸收峰”,同时也是掺铒玻璃中Er~(3+)离子1.53μm波段荧光的一个主要猝灭中心。本文从测量分析Er~(3+)离子1.53μm波段荧光衰减行为这一角度入手,开展了Bi_2O_3-B_2O_3-GeO_2-Na2O -Er_2O_3铋酸盐玻璃中OH-根离子与Er~(3+)离子相互作用机理以及对Er~(3+)离子荧光特性的影响研究。研究指出,Er~(3+)离子与玻璃中残留的OH-根离子间能量转移导致低掺杂浓度下Er~(3+)离子荧光呈现出明显的非指数衰减特征,运用Inokuti-Hirayama公式拟合得到了Er~(3+)离子与OH-根离子间能量转移参数。同时,在玻璃高温熔融过程中注入干燥氧气进行了除水处理研究,除水处理能明显减少玻璃中残留的OH-根离子含量,从而提高Er~(3+)离子1.53μm波段荧光强度以及掺铒光纤中的信号增益,而其荧光呈现出近似单一的指数衰减特征。
     4.开展了低声子能量掺铒铋酸盐玻璃中激发态吸收的抑制研究
     激发态吸收常发生在980nm泵浦下的一类低声子能量掺铒重金属氧化物玻璃中,它的存在制约了泵浦光转换效率的提高从而影响到Er~(3+)离子1.53μm波段荧光特性。本文通过在组分为Bi_2O_3-GeO_2-Ga_2O_3-Na+2O一类低声子能量掺铒铋酸盐氧化物玻璃中分别引入Ce~(3+)离子和B_2O_3组分,研究比较了这两种措施对于激发态吸收的抑制效果以及对于Er~(3+)离子1.53μm波段荧光的作用。研究发现,适量Ce~(3+)离子或B_2O_3组分的引入,分别通过能量转移和多声子弛豫方式提高了Er~(3+):~4I_(11/2)→~4I_(13/2)能级间无辐射弛豫速率,从而使得~4I_(11/2)能级Er~(3+)离子荧光寿命相应减小,激发态吸收得到有效抑制。同时,Ce~(3+)离子的引入进一步提高了~4I_(13/2)能级Er~(3+)离子总量子效率,增强了1.53μm波段荧光强度。而B_2O_3组分的引入虽在一定程度上削弱了1.53μm波段荧光强度,但进一步展宽了其荧光发射谱。
     5.开展了新型多组分宽带掺铒玻璃光纤研制和光纤光谱性质研究
     在对多组分掺铒玻璃光谱性质改性研究基础上,本文选择合适的玻璃组分配比开展了新型宽带掺铒玻璃光纤的研制工作。论文利用自主的实验条件,采用旋转浇铸法和管棒组合法工艺研制了多组分宽带碲酸盐和铋酸盐玻璃光纤预制棒,拉制出了包层直径为125μm、纤芯直径分别为5.1μm和5.6μm的多组分宽带掺铒碲酸盐和铋酸盐玻璃光纤,并对得到的掺铒光纤进行了传输损耗和放大自发辐射(ASE)谱测试,1310nm波长处的传输损耗分别达到了3.7dB/m和3.4dB/m,ASE谱覆盖了C+L波段区域。在此基础上,论文鉴于多组分掺铒铋酸盐玻璃光纤与石英传输光纤熔化温度相差极大的特点,采用非对称熔接工艺进行了两者的熔接尝试,为下一步研制出高质量宽带掺铒玻璃光纤和光纤放大器积累了一定的工艺基础。
     6.开展了多组分宽带掺铒玻璃光纤稳态和瞬态放大特性的理论研究
     为进一步了解多组分宽带掺铒玻璃光纤的放大特性,同时为后续设计和优化宽带掺铒光纤放大器提供理论依据,本文从稳态和瞬态放大特性两个方面展开了系统的理论研究:1)建立了一个综合考虑Er~(3+)离子能量转移和激发态吸收效应、以铋酸盐玻璃基掺铒光纤作为增益介质的铋基掺铒光纤放大器(Bi-EDFA)理论模型,分析比较了1480和980nm波长泵浦下放大器的稳态增益和噪声特性以及随信号输入功率、光纤长度的变化关系。同时,鉴于放大器内部存在着极大的由放大自发辐射产生的ASE噪声,论文从抑制噪声和再次利用噪声角度出发,对放大器进行了优化设计:①利用光隔离器抑制后向传输的ASE噪声,提高了放大器信号增益并降低了噪声系数。②利用光环形器引导前级放大产生的ASE噪声光泵浦一段后级低掺杂铋酸盐掺铒光纤,显著提高了放大器L波段信号增益;2)对于以碲酸盐玻璃基掺铒光纤作为增益介质的碲基掺铒光纤放大器(Te-EDFA),理论研究了输入状态突变时放大器输出端信号功率的瞬态响应特性以及瞬态响应随信号输入功率、泵浦功率的演变关系。在此基础上,论文从抑制输出信号瞬态响应幅度出发,提出了调理脉冲输入信号阶跃型边沿为渐变型边沿的功率变化方式思想。研究揭示,提出的理论方案可以有效地抑制放大器输出端信号功率的瞬态响应幅度。
     最后,总结了全文研究工作和创新之处,指出了论文不足以及有待进一步深入研究的问题。
With the rapid developments of modern communication technologies, the requests of the fiber communication capacity and system integration are increasingly improved, which makes the joint use between erbium doped fiber amplifier (EDFA) and wavelength division multiplexing (WDM) technology become an indispensable condition to realize the multi-wavelength and ultra-distance transmission. Of which, EDFA has become a key component to improve WDM system channels and communication capacities. However, traditional commonly-used silicate-based EDFA which works mainly in the C-band (1530~1565 nm) region has not satisfied the developing requests so far. Therefore, developing the nonsilicate-based EDFAs with broad amplifying bandwidth and high signal gain per unit length, and directly realizing the seamless amplification of (C+L)-band (1530~1610nm) region has a very important practical significance to the capacity expansion and integration of WDM communication system.
     Based on the developing requests of modern fiber communication technologies, and the considerations to realize the entire research processes, which start from the broadband erbium-doped glass to the broadband erbium-doped glass fiber and finally to the broadband erbium-doped fiber amplifier, the paper chooses the multi-component tellurite- and bismuth-based oxide glasses, and gives them a number of experimental and theoretical studies around the improved spectral characteristics of multi-component broadband erbium-doped glass, the fabrication of multi-component broadband erbium-doped glass fiber, and the steady and transient state theoretical simulations of broadband erbium-doped fiber amplifiers. The main works of the paper are as follows:
     1. The effect study of single-doped rare-earth erbium ion concentration on the spectral characteristics of tellurite-based glass
     The integration of WDM system requires improving the rare-earth erbium-doped concentration in the gain media of fiber amplifier as possible as can in order to obtain a high signal gain per unit length. However, higher erbium-doped concentration can also bring some negative effects and finally affect the performance specifications of fiber amplifier. Therefore, the effect studies of erbium ion doped concentration on the spectral characteristics of tellurite-based glasses with the compositions of TeO_2-ZnO- La_2O_3(Na2O) are presented in this paper, and the 1.53μm band fluorescence spectra, fluorescence intensities and lifetimes have been detailed investigated as a function of erbium-doped concentration. To this end, the measured 1.53μm band fluorescence spectra are decomposed and fitted with Lorentz line-style function, the relative intensity variation of each spectral component are analyzed with a proposed equivalent four-level model, and the 1.53μm band spectral expansion and the emission peak shift with erbium-doped concentration are investigated. Meanwhile, the non-radiative energy transfer mechanism in the erbium-doped tellurite-based glass is studied according to the Forster-Dexter theory, and the main effect factor resulting in the quenching of 1.53μm band fluorescence intensity and fluorescence lifetime under the higher erbium-doped concentration is pointed out. Also, the rare-earth solubility in tellurite-based glasses with different compositions is compared, and the critical concentration and critical interaction distance of Er~(3+) ion are calculated based on the non-radiative energy transfer mechanism. Finally, the optimal doped content is determined.
     2. The improved study of the spectral characteristics for multi-rare earth ions co-doped tellurite-based glass
     Optical pumping of 1480 or 980nm wavelength is generally applied in 1.53μm band EDFA. EDFA has a low noise figure (NF) pumped at 980nm, but it also has a low pumping efficiency due to the weak absorption of Er~(3+) ion and the strong upconversion emission. To improve the 980nm pumping efficiency and 1.53μm band spectral characteristics, the Yb~(3+) and Ce~(3+) ions are respectively introduced into the erbium-doped tellurite-based glasses with the compositions of TeO_2-ZnO-La_2O_3-Nb_2O_5 in this paper. The enhanced effects of Yb~(3+) ions on the 1.53μm band fluorescence and upconversion luminescence of Er~(3+), which are in good agreements with the theoretical simulations, are investigated by analyzing the energy transfer process of Yb~(3+)/Er~(3+), while the enhanced effects of Ce~(3+) ions on the 1.53μm band fluorescence and the suppressed effects of Ce~(3+) ions on the upconversion luminescence are investigated by analyzing the energy transfer process of Er~(3+)/Ce~(3+). It is concluded that Er~(3+)/Yb~(3+)/Ce~(3+) tri-doped is a more effective scheme to improve the 980nm pumping efficiency and 1.53μm band spectral characteristics than Er~(3+)/Yb~(3+) co-doped. Based on these, the paper also proposed a scheme for the first time to further improve the energy transfer rate from Er~(3+) to Ce~(3+), which is a phonon assisted energy transfer process, by increasing the host phonon energy and decreasing the energy mismatch between Er~(3+) and Ce~(3+) relevant transitions, and it is well illustrated by the experimental results.
     3. The study of fluorescence decaying characteristics for single erbium-doped bismuth-based glass
     It is known that OH- groups incorporated in the glass are responsible for the hydroxyl absorption at about 1385nm in silicate-based transmission fiber, and are also one of the dominant quenching centers of 1.53μm band fluorescence of Er~(3+). Based on the measured 1.53μm band fluorescence decaying behavior, the interaction mechanism between OH- groups and Er~(3+) ions, and the effects of OH~- groups on Er~(3+) fluorescence in bismuth-based glass with the compositions of Bi_2O_3-B_2O_3-GeO_2-Na_2O are investigated in this paper. It is shown that the energy transfer from Er~(3+) ions to OH~- groups results in an evident non-exponential decaying behavior for glasses with low Er~(3+)-doped concentration, and the energy transfer microparameters from Er~(3+) ions to OH~- groups are obtained by fitting the decaying curves with Inokuti-Hirayama equation. Furthermore, a removing OH- group treatment by pouring dry oxygen gas into the high-temperature glass melting is investigated. Removing OH- group treatment can dramatically decrease the OH- group content in the glass, and hence improve the 1.53μm band fluorescence intensity, while the fluorescence decaying reveals a nearly exponential behavior.
     4. The suppressed study of excited-state absorption for erbium-doped bismuth-based glass with low phonon energy
     The excited-state absorption is generally occurred in 980nm pumped erbium-doped oxide glasses with low phonon energy, it limits the pumping conversion efficiency and hence 1.53μm band fluorescence intensity. Therefore, the Ce~(3+) ion and B_2O_3 component are respectively introduced into erbium-doped bismuth-based glass with low phonon energy, which has the compositions of Bi_2O_3-GeO_2-Ga_2O_3-Na2O. The effects of two suppressed schemes on the excited-state absorption and 1.53μm band fluorescence are investigated and compared. It is found that both a proper Ce~(3+) ion or B_2O_3 component content introduction into the glass increases the non-radiative relaxation rate from Er~(3+):~4I_(11/2) to ~4I_(13/2) levels by the means of energy transfer or multi-phonon relaxation and decreases the Er~(3+):~4I_(11/2) level lifetime, and hence the excited-state absorption is suppressed effectively. Meanwhile, the introduction of Ce~(3+) ions further improves the total quantum efficiency of Er~(3+):~4I_(13/2) level and 1.53μm band fluorescence intensity, whereas the introduction of B_2O_3 component further broadens the 1.53μm band fluorescence spectrum, however, its intensity is somewhat weakened.
     5. The study of multi-component broadband erbium-doped glass fiber fabrication and its spectral property
     Based on the above improved studies of the spectral properties for multi-component erbium-doped glasses, the fabrication studies of multi-component tellurite- and bismuth-based erbium-doped glass fibers are presented in this paper. Relying on the independent experimental conditions, the fiber performs are fabricated with the combined rotation-casting and tube-rode techniques, and the multi-component tellurite- and bismuth-based erbium-doped fibers with the cladding diameter of 125μm and the core diameter of 5.1μm and 5.6μm, respectively, are drawn. The transmission loss and the amplified spontaneous emission (ASE) spectra of broadband erbium-doped fiber are measured. The measured transmission losses at 1310nm are 3.7dB/m and 3.4dB/m for tellurite- and bismuth-based erbium-doped fibers, respectively, and both ASE spectra coverage the C+L band. Finally, considering the high melting temperature difference between the bismuth-based glass fiber and silicate-based transmission fiber, the splice between them is tried by non-symmetric splicing technique, and it is of a practical significance to accumulate a number of technique experiences in fabricating high-quality broadband erbium-doped fiber and EDFA.
     6. The theoretical study of steady and transient characteristics for multi-component broadband erbium-doped glass fiber amplifier
     In order to understand the amplifying process and provide theoretical basis for the design of broadband EDFA, both the steady and transient state characteristics are investigated theoretically in this paper. 1) For the bismuth-based EDFA, a theoretical model considering the energy transfer among Er~(3+) ions and excited-state absorption is proposed, the steady-state signal gain, noise figure (NF) and their variations as a function of input power and fiber length pumped at 1480nm and 980nm wavelength, respectively, are stimulated and compared. Meanwhile, due to the large amplified spontaneous emission (ASE) noise, the optimal design of Bi-EDFA is studied by suppressing or utilizing ASE noise, respectively. It is found that by suppressing the backward ASE of Bi-EDFA with an optical isolator inserted in the bismuth-based erbium-doped fiber, the signal gain is increased and the NF is decreased. While an optical circulator is utilized to direct the unwanted ASE of the former Bi-EDFA to pump an un-pumped bismuth-based erbium-doped fiber, the L-band signal gain is enhanced evidently. 2) For the tellurite-based EDFA, the transient response and its variations as a function of input power and pumping power are investigated theoretically when EDFA is inputted with a pulse signal. Furthermore, in order to suppress transient excursion of the output signal, a novel scheme to modify the step edge of pulse signal into a slowly changed edge waveform signal is proposed for the first time. Compared to the pulse signal with step edge, it is shown that the transient excursion of Te-EDFA output power is reduced effectively when a properly designed, slowly changed edge signal is inputted.
     Finally, the paper works and innovation points are summarized, and some problems that are needed to be investigated further are pointed out.
引文
[1]张宝富,刘忠英,万谦,等编.现代光纤通信与网络教程[M].人民邮电出版社, 2002: 1-5.
    [2] Maiman T H. Stimulated optical radiation in ruby [J], Nature, 1960, 187 (4736): 493-494.
    [3] Kao K C, Hockham G A. Dielectric-fiber surface waveguide for optical frequencies [C]. Proceedings of the IEEE, 1966, 113: 1151-1158.
    [4] Hecht J. City of Light: the story of fiber optics [M]. Oxford University Press, New York, 1999: 3-12.
    [5]孙青卉编.通信技术基础[M].人民邮电出版社, 2008: 77-78.
    [6] Hiroshi N, Takao N, Kenichi T, et al. 1.05 Tbit/s WDM transmission over 8186 km using distributed Raman amplifier [C], OFC’01, 2001: TuF6.
    [7] Onaka H, Miyata H, Ishikawa G, et al. 1.1 Tbit/s WDM transmission over a 150 km 1.3μm zero-dispersion single-mode fiber [C], OFC’96, 1996: Paper PD19.
    [8] Chraplyvy A R, Gnauck A H, Tkach R W, et al. 1-Tb/s transmission experiment. Photonics Technology Letters [J], 1996, 8(9): 1264-1266.
    [9] Morioka T, Takara H, Kawanishi S, et al. 1Tbit/s (100 Gbit×10 channel) OTDM/WDM transmission using a single super-continuum WDM source [J]. Electronics Letters, 1996, 32(10): 906-907.
    [10] Flood F A. L-band erbium-doped fiber amplifiers [C]. OFC'2000, 2000: Paper WG1-2.
    [11] Taga H. Long distance transmission experiments using the WDM technology [J]. Journal of Lightwave Technology, 1996, 14(6): 1287-1298.
    [12] Taga H, Suzuki M, Edagawa N, et al. Long-distance WDM transmission experiments using the dispersion slope compensator [J]. IEEE Journal of Quantum Electronics, 1998, 34(11): 2055-2063.
    [13] Taga H, Edagawa N, Suzuki M, et al. Wavelength division multiplexing technology for undersea system applications [J]. IEICE Transactions on Electronics, 1998, E81-C(8): 1276-1284.
    [14] Sudo S. Progress in optical fiber amplifiers [J]. International Journal of High Speed Electronics and Systems, 1996, 7(1): 1-35.
    [15] Mears R J, Reekie L, Jauncey I M, et al. Low-noise erbium doped fibre amplifier operating at 1.54μm [J]. Electronics Letters, 1987, 23(19): 1026-1028.
    [16] Pedersen B, Bjarklev A, Povlsen J H, et al. The design of erbium doped fiber amplifiers [J]. Journal of Lightwave Technology, 1991, 9(9): 1105-1112.
    [17] Mersali B, Gelly A, Accard A, et al. 1.55μm high-gain polarisation-insensitive semiconductor travelling wave amplifier with low driving current [J]. Electronics Letters, 1990, 26(2): 124-125.
    [18] Agrawal G P. Nonlinear Fiber Optics (Third Edition) [M]. Academic Press, 2002: 179-182.
    [19]刘红林,张在宣,金尚忠,等.光纤拉曼放大器技术的进展[J],中国计量学院学报, 2001, 12(3): 51-56.
    [20]戴世勋,杨建虎,徐时清,等.用于WDM系统的掺稀土玻璃光纤[J].光纤与光缆及其应用技术, 2003, 1: 7-11.
    [21] Dorren H J S, Lenstra D, Yong L, et al. Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories [J]. IEEE Journal of Quantum Electronics, 2003, 39(1): 141-148.
    [22]张成云,何振江,徐慧梁,等.光通信技术的发展现状和趋势[J].激光与光电子学进展, 2004, 41(3): 26-29.
    [23]蒙红云,袁树忠,董新永,等.掺铥光纤放大器及其研究进展[J].光子技术, 2001, 1(3): 167-171.
    [24] Buxens A, Poulsen H N, Clausen A T, et al., Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section [J]. Electronic Letters, 2000, 36(9): 821-823.
    [25] Hansen K P, Nielsen M D, Bjarldev A. Design optimization of erbium doped fibers for use in L-band amplifiers [J]. Electronic Letters, 2000, 36(20): 1685-1686.
    [26] Yamada M, Ono H, Kanamori T, et al. Broadband and gain flattened amplifier composed of a 1.55μm band and a 1.58μm band Er-doped fiber amplifier in a parallel configuration [J]. Electronic Letters, 1997, 33(8): 710-712.
    [27] Ielsen T N. 3.28 Tbit/s (82×40Gbit/s) transmission over 3×100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/Erbium doped in line amplifiers [C]. Proc. of OFC'2000, 2000: paper PD23.
    [28]厉鹏,刘俭辉.宽带、超宽带光纤放大器研究进展[J].激光与光电子学进展, 2008, 45(6): 67-72.
    [29]王衍勇,李世忱,隋展,等.宽带与超宽带光纤放大器研究进展及展望[J].激光与光电子学进展, 2004, 41(3): 19-26.
    [30] Keshk M M, Aly M H, Okaz A M, et al. Erbium doped fiber amplifier in WDM systems using different glass hosts [J]. Photonics and Its Application, The Fifth Workshop, 2005: 51-60.
    [31] Altuneu A, Basgumus A. Gain enhancement in L-band loop EDFA through C-band signal injection [J]. Photonics Technology Letters, IEEE. 2005, 17(7): 1402-1404.
    [32]谭莉,王衍勇,李世忱,等. L波段EDFA研究及其进展[J].激光与光电子学进展, 2003, 40(1): 40-46.
    [33]刘俭辉,金鸣镝.宽带增益平坦掺铒光纤放大器实验研究[J].辽东学院学报(自然科学版), 2005, 12(1): 8-11.
    [34] Chien H Y, Chien C L, Chi S. 120nm bandwidth erbium-doped fiber amplifier in parallel configuration [J]. IEEE Photonic Technology Letters, 2004, 16(7): 1637-1639.
    [35] Muro R D, Lowe D, Wilson S. Broad band amplification using a novel amplifier topology [J]. IEEE Photonics Technology Letters, 2001, 13(10): 1073-1075.
    [36] Sun Y, Sulhoff J W, Srivastava A K, et al. An 80 nm ultra-wideband EDFA with low noise figure and high output power [C]. ECOC'97, 1997: 69-72.
    [37] Sun Y, Sulhoff J W, Srivastava A K, et al. 80nm ultra-wideband Er-doped silica fiber amplifier [J]. Electronic Letters, 1997, 33(23): 1965-1967.
    [38] Lewis S A E, Chernikov S V, Taylor J R, et al. Triple wavelength pumped silica-fiber Raman amplifiers with 114 nm bandwidth [J]. Electronic Letters, 1999, 35(20): 1761-1762.
    [39] Emori Y, Akasaka Y, Namiki S. Broadband lossless DCF using Raman amplification pumped by multi-channel WDM laser diodes [J]. Electronic Letters, 1998, 34(22): 2145-2146.
    [40] Emori Y, Tanaka K, Namiki S. 100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM laser diode unit [J]. Electronic Letters, 1999, 35(16): 1355-1356.
    [41] Mori A, Masuda H, Shikano K, et al. Ultra-wide band tellurite-based fiber Raman amplifiers [J]. Electronic Letters, 2001, 37(24): 1442-1444.
    [42] Bayart D, Baniel P, Bergonzo A, et al. Broadband optical fiber amplification over 17.7THz range [J]. Electronic Letters, 2000, 36(18): 1569-1571.
    [43] Yang C. Design and simulation of gain-flattened ultra wideband fiber amplifiers covering S-, C-, and L-band [D]. The University of North Carolina, 2004: 5112.
    [44] Xie Y, Pan Z, Willner A E, et al. Spectrally-efficient C+L band EDFA having a seamless interband channel region using sampled FBGs [J]. Electronic Letters, 2001, 13(5): 436-438.
    [45] Ellison A J G, Goforth D E, Samson B N, et al. Extending the L-band to 1620 nm using MCS fiber [C]. OFC 2001: TuA2.
    [46] Tanaka S, Imai K, Yazaki T, et al. Ultra-wideband L-band EDFA using phosphorus co-doped silica fiber [C]. OFC 2001: ThJ3.
    [47] Millar C A, Brierley M C, France P W. Optical amplification in an Erbium-dopedfluorozirconate fiber between 1480nm and 1600nm [C]. ECOC'88: 66-69.
    [48] Mori A, Ohishi Y, Sudo S. Erbium-doped Tellurite glass fiber laser and amplifier [J]. Electronic Letters, 1997, 33(10): 863-864.
    [49] Kuroiwa Y, Sugimoto N, Ochiai K, et al. Fusion spliceable and high efficient Bi2O3 based EDF for short length and broadband application pumped at 1480nm [C]. OFC’2001, TuI5-1: 1-3.
    [50] Mori A, Ohishi Y, Yamada M, et al. 1.5μm boradband amplification by tellurite-based EDFAs [C]. OFC'97, 1997: Paper PD-1.
    [51] Hayashi H, Sugimoto N, Tanabe S, et al. Effect of hydroxyl groups on erbium-doped bismuth-oxide-based glasses for fiber amplifiers [J]. Journal of Applied Physics, 2006, 99: 093105-8.
    [52] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices [J]. Optical Materials, 1994, 3: 187-203.
    [53] Yamada M, Mori A, Kobayashi K, et al. Gain flattened tellurite based EDFA with a flat amplification bandwidth of 76 nm [J]. IEEE Photonic Technology Letters, 1998, 10(9): 1244-1246.
    [54] Ono H, Mori A, Shikano K, et al. A low noise and broad-band erbium-doped tellurite fiber amplifier with a seamless amplification band in the C- and L-bands [J]. IEEE Photonic Technology Letters, 2002, 14(8): 1073-1076.
    [55] Kani J I, Suzuki H, Teshima M, et al. Triple wavelength band WDM transmission technologies [C]. OFC’2002, TuR5: 122-123.
    [56] Tanabe S, Sugimoto N, Ito S, et al. Broadband 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier [J]. Journal of Luminescence, 2000, 87&89: 670-672.
    [57] Guan B O, Tam H Y, and Liu S Y, et al., Ultrawide-band La-codoped Bi2O3-based EDFA for L-Band DWDM systems [J]. IEEE Photonic Technology Letters, 2003, 15(11): 1525-1527.
    [58] Ohara S, Sugimoto N, Ochiai K, et al. Ultra-wideband amplifiers based on Bi2O3-EDFAs [J]. Optical Fiber Technology, 2004, 10(2): 283-295.
    [59] Hayashi H, Sugimoto N, Tanabe S. High-performance and wideband amplifier using bismuth-oxide-based EDF with cascade configurations [J]. Optical Fiber Technology, 2006, 12(3): 282-287.
    [60] Sugimoto N. Erbium doped fiber and highly non-linear fiber based on bismuth-based oxide glasses [J]. Journal of Non-Crystalline Solids, 2008, 354(12-13): 1205-1210.
    [61] Zhang J J, Dai S X, Xu S Q, et al. Fabrication and amplified spontaneous emission spectrumof Er~(3+)-doped tellurite glass fiber with D-shape cladding [J]. Journal of Alloys and Compounds, 2005, 387(1-2): 308-312.
    [62]华南理工大学.省科技厅项目“全波放大器光纤”[Z].成果鉴定单位:广东省科技厅, 2005年5月25日
    [63]陈东丹,张勤远,杨中民,等.掺铒碲基单模光纤的制备及其放大自发辐射光谱[J].无机材料学报, 2007, 22(6): 1095-1098.
    [64]朱茂华,张淑芳,谷彤昭.掺Er~(3+)钨碲玻璃光纤放大器的特性研究[J].电子学报, 2007, 35(9): 1706-1709.
    [65] Jin L, Ma D, Ding Y Q, et al. Theoretical analysis of gain characteristics of Er~(3+)-Tm~(3+)-codoped tellurite fiber amplifier [J]. IEEE Photonics Technology Letters, 2006, 18(3): 460-462.
    [66] Zhou Y X, Wang J, Dai S X, et al. Improvement of Er~(3+):4I11/2→Ce~(3+):2F5/2 energy transfer rate in Er~(3+)/Ce~(3+) co-doped TeO2-ZnO-Na2O-Nb2O5 glasses [J]. Journal of Luminescence, 2009, 129(1): 1-5.
    [67] Zhou Y X, Dai S X, Wang J, et al. Spectroscopic properties of Er~(3+):4I13/2 level in Bi2O3-B2O3-GeO2-Na2O glasses [J]. Journal of Alloys and Compounds, 2008 (in press)
    [68]周亚训,王俊,戴世勋,等. Yb~(3+)对掺铒碲酸盐玻璃红外和上转换发光的影响[J].中国激光, 2007, 34(12): 1688-1693.
    [69]周亚训,陈芬,徐铁峰,等.宽带放大器用碲基掺铒光纤结构参量的设计考虑[J].光子学报,2006, 35(7): 1038-1041.
    [70] Auzel F, Goldner P. Towards rare-earth clustering control in doped glasses [J]. Optical Materials, 2001, 16(1): 93-103.
    [71] El-Moneim A A. DTA and IR absorption spectra vanadium tellurite glasses [J]. Materials Chemistry and Physics, 2002, 73(2/3): 318-322.
    [72] Naftal Y M, Shen S, Jha A. Tm~(3+)-doped tellurite glass for a broadband amplifier at 1.47μm [J]. Applied Optics, 2000, 39(27): 4979-4984.
    [73] Kikuchi K, Taira K, Sugimoto N, et al. Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing [J]. Electronics Letters, 2002, 38(4): 166-167.
    [74] Shen S, Jha A, Liu X, et al. Tellurite glasses for broadband amplifiers and integrated optics [J]. Journal of the American Ceramic Society, 2002, 85(6): 1391-1395.
    [75] Liu Z, Qi C, Dai S, et al. Spectra and laser properties of Er~(3+), Yb~(3+) phosphate glasses [J]. Optical Materials, 2003, 21(4): 789-794.
    [76] Porque J, Jiang S, Hwang B C, et al. Fluorescence properties of erbium doped germanate glasses [C]. Proc. SPIE 2000, 3492: 60-67.
    [77]北京大学化学系仪器分析教学组.仪器分析教程(第一版) [M].北京:北京大学出版社, 1997: 25-28.
    [78]高晓明,邱克辉,赵改青,等.光致发光材料的研究与进展[J].科技进步与对策, 2003, S1: 275-277.
    [79]洪标编.无机非金属材料实验(第一版)[M].北京:化学工业出版社, 2002: 195-198.
    [80]张建华,彭太平,胡孟春,等. YAP:Ce闪烁晶体的光致激发荧光衰减常数测量[J].人工晶体学报, 2006, 35(5): 1057-1060.
    [81]徐叙溶,苏勉曾.发光学与发光材料[M].北京:化学工业出版, 2004.
    [82] Judd B R. Optical absorption intensities of rare-earth ions. Physics Review, 1962, 127:750-761.
    [83] Ofelt G S. Intensities of crystal spectra of rare earth ions [J]. Journal of Chemical Physics, 1962, 37(3): 511-520.
    [84] Krupke W F. Optical absorption and fluorescence intensities in several rare earth-doped Y2O3 and LaF3 single crystals [J]. Physics Review, 1966, 145: 325-337.
    [85] Carnall W T, Fields P R, Wybourne B G.. Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr~(3+), Nd~(3+), Er~(3+), Tm~(3+), and Yb~(3+) [J]. The Journal of Chemical Physics, 1965, 42(11): 3797-3806.
    [86] Carnall W T, Fields P R, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr~(3+), Nd~(3+), Pm~(3+), Sm~(3+), Dy~(3+), Ho~(3+), Er~(3+), and Tm~(3+) [J]. The Journal of Chemical Physics, 1968, 49(10): 4424-4442.
    [87] Wybourne B G.. Spectroscopic Properties of rare earths [J]. Wiley, New York, 1965: Chapter 3.
    [88] Weber M J. Selective excitation and decay of Er~(3+) fluorescence in LaF3 [J]. Physics Review, 1967, 156(2): 231-241.
    [89] Sanz J, Cases R, Alcala R. Optical properties of Tm~(3+) in fluorozirconate glass [J]. Journal of Non-Crystalline Solids, 1987, 93(2-3): 377-386.
    [90] Tanimura K, Shinn M D, Sibley W A. Optical transitions of Ho~(3+) ions in fluorozirconate glass [J]. Physical Review B, 1984, 30(5): 2429-2437.
    [91] Jacobs R R, Weber M J. Dependence of the 4F3/2→4I11/2 induced emission cross section for Nd~(3+) on glass composition [J]. IEEE Journal of Quantum Electronics, 1976, QE-12: 102-111.
    [92] Weber M J, Varitimos T E, Matsinger B H. Optical intensities of rare earth ions in yttrium orthoaluminate [J]. Physical Review B, 1973, 8(1): 47-53.
    [93] Scheps R. Upconversion laser processes [J]. Progress in Quantum Electronics, 1996, 20(4): 271-358.
    [94] Dai S X, Xiang W D, Xu T F, et al. Effect of radiation trapping on the emission properties of Er~(3+): 4I13/2→4I15/2 transition in oxide glasses [J]. Optical Materials, 2008, 30(9): 1355-1360.
    [95] Miniscalco W J, Quimby R S. General procedure for the analysis of Er~(3+) cross sections [J]. Optics Letters, 1991, 16(4): 258-260.
    [96] McCumber D E. Theory of phonon-terminated optical masers [J]. Physical Review, 1964, 134(2A): A299-A306.
    [97] Zou X, Izumitani T. Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er~(3+)-doped glasses [J]. Journal of Non-Crystalline Solids, 1993, 162(1-2): 68-80.
    [98] Mori A, Sakamoto T, Kobayashi K, et al. 1.58-μm broad-band erbium-doped tellurite fiber amplifier [J]. Journal of Lightwave Technology, 2002, 20(5): 798-799.
    [99] Mori A, Kobayashi K, Yamada M, et al. Low noise broadband tellurite-based Er~(3+)-doped fiber amplifiers [J]. Electronic Letters, 1998, 34(9): 887-888.
    [100] Snoeks E, Kik P G, Polman A. Concentration quenching in erbium implanted alkali silicate glasses [J]. Optical Materials, 1996, 5(3): 159-167.
    [101] Choi Y G, Kim K H. Spectroscopic properties of and energy transfer in PbO-Bi2O3-Ga2O3 glass doped with Er2O3 [J]. Journal of the American Ceramic Society, 1999, 82(10): 2762-2768.
    [102]张龙,林凤英,胡和方.掺Yb~(3+)磷酸盐玻璃的光谱性质[J].物理学报, 2001, 50(7): 1378-1384.
    [103] Dai S X, Yu C L, Zhou G, et al. Concentration quenching in erbium-doped tellurite glasses [J]. Journal of Luminescence, 2006, 117(1): 39-45.
    [104]戴世勋,杨建虎,戴能利,等.荧光捕获效应对Yb~(3+)掺杂磷酸盐玻璃光谱性质的影响[J].物理学报, 2003, 52(6): 1533-1539.
    [105] Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media [J]. Optics Letters, 1994, 19(17): 1343-1345.
    [106] Yamauchi H, Murugan G S, Ohishi Y. Optical properties of Er~(3+) and Tm~(3+) ions in a tellurite glass [J]. Journal of Applied Physics, 2005, 97(4): 043505.1-043505.8.
    [107] Dominiak-Dzlk G, Golab S, Prncka I, et al. Spectroscopic properties and excited-state relaxation dynamics of Er~(3+) in LiNbO3 [J]. Applied Physics A, 1994, 58(6): 551-555.
    [108] Tanabe S, Suzuki K, Soga N, et al. Mechanisms and concentration dependence of Tm~(3+) blue and Er~(3+) green up-conversion in codoped glasses by red-laser pumping [J]. Journal of Luminescence, 1995, 65(5): 247-255.
    [109]杨祥林编.光纤放大器及其应用(第1版)[M].北京:电子工业出版社, 2000: 4-6.
    [110] Ehrmann P R, Campbell J H. Nonradiative energy losses and radiation trapping in neodymium-doped phosphate laser glasses [J]. Journal of the Americqn Ceramic Society, 2002, 85(5): 1061-1069.
    [111] Schuurmans M F H, Van Dijk J M F. On radiative and non-radiative decay times in the weak coupling limit [J]. Physica B & C, 1984, 123(2): 131-155.
    [112] Forster T. Energy transfer and fluorescence between molecules [J]. Annalen der Physik, 1948, 2: 56-75.
    [113] Dexter D L. A theory of sensitized luminescence in solids [J]. Journal of the Chemistry and Physics, 1953, 21: 836-850.
    [114] Kumar G A, De La Rosa E, Desirena H. Radiative and non radiative spectroscopic properties of Er~(3+) ion in tellurite glass [J]. Optical Communication, 2005, 260(2): 601-606.
    [115] Hu Y, Jiang S, Sorbello G, et al. Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass [J]. Journal of the Optical Society of America B, 2001, 18(12): 1928-1934.
    [116] Taccheo S, Sorbello G, Longhi S, et al. Measurement of the energy transfer and upconversion constants in Er-Yb-doped phosphate glass [J]. Optical and Quantum Electronics, 1999, 31(3): 249-262.
    [117] Snoeks E, Den Hoven G N V, Polman A, et al. Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides [J]. Journal of the Optical Society of America B, 1995, 12(8): 1468-1474.
    [118] Bixt P, Nilsson J, Carlnas T, et al. Concentration-dependent upconversion in Er~(3+)-doped fiber amplifiers: experiment and modeling [J]. IEEE Photonics Technology, 1991, 3(6): 996-998.
    [119] Powell R C. Physics of solid-state laser materials [M]. Springer-Verlag, New York, 1998
    [120] Choi Y G, Lim D S, Kim K H, et al. Enhanced 4I11/2→4I13/2 transition rate in Er~(3+)/Ce~(3+) -codoped tellurite glasses [J]. Electronic Letters, 1999, 35(20): 1765-1767.
    [121] Hocde S, Jiang S, Peng X, et al. Er~(3+) doped boro-tellurite glasses for 1.5μm broadband amplification [J]. Optical Materials, 2004, 25(2): 149-156.
    [122] Xu T F, Li G P, Nie Q H, et al. Study of upconversion fluorescence property of novel Er~(3+)/Yb~(3+) co-doped tellurite glasses [J]. Spectrochimica Acta Part A, 2006, 64(3): 560-563.
    [123] Shen S, Richards B, Jha A. Enhancement in pump inversion efficiency at 980nm in Er~(3+), Er~(3+)/Eu~(3+) and Er~(3+)/Ce~(3+) doped tellurite glass fibers [J]. Optics Express, 2006, 14(12): 5050-5054.
    [124] Nagamatsu K, Nagaoka S, Higashihata M, et al. Influence of Yb~(3+) and Ce~(3+) codoping on fluorescence characteristics of Er~(3+)-doped fluoride glass under 980 nm excitation [J]. OpticalMaterials, 2004, 27(2): 337-342.
    [125] Slack G A, Dole S L, Tsoukala V, et al. Optical absorption spectrum of trivalent cerium in Y2O3, Ba2GdTaO6, ThO2 and related compounds [J]. Journal of the Optical Society of America B, 1994, 11(6): 961-974.
    [126] Qiu J, Shimizugawa Y, Iwabuchi Y, et al. Photostimulated luminescence of Ce~(3+)-doped alkali borate glasses [J]. Applied Physics Letters, 1997, 71(1): 43-45.
    [127] Inokuti M, Hirayama F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. Journal of Chemical Physics, 1965, 43(6): 1978-1989.
    [128] Huang L H, Liu X R, Xu W, et al. Infrared and visible luminescence properties of Er~(3+) and Yb~(3+) ions codoped Ca3Al2Ge3O12 glass under 978 nm diode laser excitation [J]. Journal of Applied Physics, 2001, 90(11): 5550-5553.
    [129] Hu Y D, Jiang S B, Sorbello G, et al. Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass [J]. Journal of the Optical Society of America B, 2000, 18(12): 1928-1934.
    [130] Hwang B C, Jiang S B, Luo T, et al. Cooperative upconversion and energy transfer of new high Er~(3+) and Yb~(3+)-Er~(3+) doped phosphate glasses [J]. Journal of the Optical Society of America B, 2000, 17(5): 833-839.
    [131] Choi Y G, Kim K H. Comparative study of energy transfers from Er~(3+) to Ce~(3+) in tellurite and sulfide glasses under 980nm excitation [J]. Journal of Applied Physics, 2000, 88(7): 3832-3839.
    [132] Strohhofer C, Polman A. Enhancement of Er~(3+):4I13/2 population in Y2O3 by energy transfer to Ce~(3+) [J]. Optical Materials, 2001, 17(4): 445-451.
    [133] Meng Z, Yoshimura T, Nakata Y, et al. Improvement of fluorescence characteristics of Er~(3+) doped fluoride glass by Ce~(3+) codoping [J]. Japan Journal of Applied Physics, 1999, 38(Part 2, 12A): L1409-L1411.
    [134] Shen X, Nie Q H, Xu T F, et al. Effect of Ce~(3+) on the spectroscopic properties in Er~(3+) doped TeO2-GeO2-Nb2O5-Li2O glasses [J]. Journal of Luminescence, 2007, 126(2): 273-277.
    [135] Kosuge T, Benino Y, Dimitrov V, et al. Thermal stability and heat capacity changes at the glass transition in K2O–WO3–TeO2 glasses [J]. Journal of Non-Crystalline Solids, 1998, 242(2-3): 154-164.
    [136] Blaszczak K, Jelonek W, Adzmczyk A. Infrared studies of glasses in the Li2O–B2O3– GeO2(SiO2) systems [J]. Journal of Molecular Structure, 1999, 511-512: 163-166.
    [137] Blaszczak K, Adzmczyk A. Infrared studies of devitrification of glasses in the Li2O–B2O3–GeO2 system [J]. Journal of Molecular Structure, 2001, 596(1-3): 61-68.
    [138] Petit L, Cardinal T, Videau J J, et al. Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses [J]. Journal of Non-Crystalline Solids, 2002, 298(1): 76-88.
    [139] Nie Q H, Lu L J, Xu T F, et al. Effect of hydroxyl groups on Er~(3+) doped Bi2O3–B2O3–SiO2 glasses [J]. Journal of Physics and Chemistry of Solids, 2007, 68(4): 477-481.
    [140] Jha A, Joshi P, Shen S X, et al. Spectroscopic characterization of signal gain and pump ESA in short-lengths of RE-doped tellurite fibers [J]. Journal of Non-Crystalline Solids, 2007, 353(13-15): 1407-1413.
    [141] Cho D H, Choi Y G, Kim K H. Improvement of 4I11/2→4I13/2 transition rate and thermal stabilities in Er~(3+)-doped TeO2-B2O3 (GeO2)-ZnO-K2O glasses [J]. ETRI Journal, 2001, 23(4): 151-157.
    [142] Wang X S, Nie Q H, Xu T F, et al. Optical spectroscopy and energy transfer of Er~(3+)/Ce~(3+) in B2O3-doped bismuth-silicate glasses [J]. Journal of the Optical Society of America B, 2007, 24(2): 972-978.
    [143] Feng X S, Tanabe S, Hanada T. Hydroxyl groups in erbium-doped germanotellurite glasses [J]. Journal of Non-Crystalline of Solids, 2001, 281(1-3): 48-54.
    [144] Yan Y C, Faber A J, Waal H D. Luminescence quenching by OH groups in highly Er-doped phosphate glasses [J]. Journal of Non-Crystalline of Solids, 1995, 181(3): 283-290.
    [145]李仲伢,陈泽兴,张军昌.掺钕磷酸盐玻璃中残余水分对激光性质的影响[J].光学学报, 1984, 4(6): 562-565.
    [146] Nemec L, Gotz J. Infrared absorption of OH? in E glass [J]. Journal of the American Ceramic Society, 1970, 53(9): 526-526.
    [147] Weber M J. Luminescence decay by energy migration and transfer: Observation of diffusion-limited relaxation [J]. Physical Review B, 1971, 4(9): 2932-2939.
    [148] Burshtein A I. Hoping mechanism of energy transfer [J]. Sov. Phys. JETP, 1972, 35: 882-885.
    [149] Shen S, Jha A, Zhang E, et al. Tm~(3+)–Ho~(3+) and Tm~(3+)–Tb~(3+) energy transfer in tellurite glass [J]. Journal of Luminescence, 2007, 126(2): 434-440.
    [150] Chen Y, Huang Y, Huang M, et al. Spectroscopic properties of Er~(3+) ions in bismuth borate glasses [J]. Optical Materials, 2004, 25(3): 271-278.
    [151]杨建虎,戴世勋,戴能利,等.掺铒铋酸盐玻璃的荧光光谱分析[J].光谱学与光谱分析, 2003, 23(6): 1065-1068.
    [152]杨建虎,戴世勋,戴能利,等.掺铒铋酸盐玻璃光谱性质的混和形成体效应[J].无机材料学报, 2003, 18(4): 751-758.
    [153] Man S Q, Pun E Y B, and Chung P S. Upconversion luminescence of Er~(3+) in alkali bismuth gallate glasses [J]. Applied Physics Letters, 2000, 77(4): 483-485.
    [154] Kumar G A, Martinez A, Mejia E, et al. Fluorescence and upconversion spectral studies of Ho~(3+) in alkali bismuth gallate glasses [J]. Journal of Alloys and Compounds, 2004, 365(1-2): 117-120.
    [155]杨建虎,戴世勋,胡丽丽,等. Ce~(3+)离子对掺Er~(3+)碲酸盐玻璃光谱性质的影响[J].中国激光, 2003, 30(3): 267-270.
    [156] Sun H T, Xu S Q, Dai S X, et al. Efficient frequency upconversion emission in Er~(3+)-doped novel strontium lead bismuth glass [J]. Journal of Non-Crystalline Solids, 2005, 351(3): 288-292.
    [157] Hehlen M P, Cockroft N J, Gosnell T R, et al. Spectroscopic properties of Er~(3+)- and Yb~(3+)-doped soda-lime silicate and aluminosilicate glasses [J]. Physical Review B, 1997, 56(15): 9302-9318
    [158] Hwa L G, Chang Y R, Szu S P. Optical and physical properties of lanthanum gallogermanate glasses [J]. Journal of Non-Crystalline Solids, 1998, 231(3): 222-226.
    [159] Shen X, Nie Q H, Xu T F, et al. Effect of B2O3 on luminescence of erbium doped tellurite glasses [J]. Spectrochim. Acta Part A, 2007, 66(2): 389-393.
    [160] Miyakawa T, Dexter D L. Phonon sidebands, multi-phonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids [J]. Physics Review B 1, 1970: 2961-2969.
    [161] Xu J, Su L B, Li H J, et al. High quantum fluorescence yield of Er~(3+) at 1.5μm in an Yb~(3+), Ce~(3+)-codoped CaF2 crystal [J]. Optical Materials, 2007, 29(8): 932-935.
    [162] Feng X, Tanabe S, Hanada T. Spectroscopic properties and thermal stability of Er~(3+)-doped germanotellurite glasses for broadband fiber amplifiers [J]. Journal of the American Ceramic Society, 2001, 84(1): 165-171.
    [163] Murugan G S, Ohishi Y. TeO2–BaO–SrO–Nb2O5 glasses: a new glass system for waveguide devices applications [J]. Journal of Non-Crystalline Solids, 2004, 341(1-3): 86-92.
    [164] Tran D C, Fisher C F, Sigel G H. Fluoride glass preforms prepared by a rotational casting process [J]. Electronics Letters, 1982, 18: 657-658.
    [165]俞包廷,程肇天,安健,等.旋转浇铸法小芯径掺杂氟化物玻璃光学预制棒的研制[J].硅酸盐通报, 1994, 2(1): 12-14.
    [166] Zhang J, Dai S, Xu S, et al. Fabrication and amplified spontaneous emission spectrum of Er~(3+) -doped tellurite glass fiber with D-shape cladding [J[. Journal of Alloys and Compounds, 2005, 387(1-2): 308-312.
    [167]施可彬,盛秋琴,杨秀峰,等.掺铒光纤放大器光谱特性和噪声特性研究[J].中国激光, 2000, 27(3): 193-196.
    [168] Wang J, Li W. Method of angle fusion splicing silica fiber with low-temperature non-silica fiber [P]. United States Patent No.US6866429 B2, March 15, 2005.
    [169] Jiang S, Wang J. Method of fusion splicing silica fiber with low-temperature multi-component glass fiber [P]. United States Patent No.US6705771, March 16, 2004.
    [170] Jiang S, Wang J. Method of fusion splicing silica fiber with low-temperature multi-component glass fiber [P]. United States Patent Application Publication No. US2003/0059179 A1, Mar.27, 2003.
    [171]纪越峰.光波分复用系统[M].北京邮电大学出版社, 2001.
    [172] Shimizu M. Yamada M, and Horiguchi M, et al. Erbium-doped fibre amplifiers with an extremely high gain coefficient of 11.0 dB/mW [J]. Electronics Letters, 1990, 26(20): 1641-1643.
    [173]曾小青,林凤英,袁绥华.掺稀土离子玻璃的光放大效应[J].功能材料, 2002, 33(4): 366-370.
    [174] Hu Y, Jiang S, Sorbello G, et al. Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass [J]. Journal of the Optical Society of America B, 18(12): 1928-1934.
    [175] Hayashi H, Tanabe S, Sugimoto N. Quantitative analysis of optical power budget of bismuth oxide-based erbium-doped fiber [J]. Journal of Luminescence, 2008, 128(2): 333-340.
    [176] Giles C R, Desurvire E. Propagation of signal and noise in concatenated erbium-doped amplifiers [J]. Journal of Lightwave Technology, 1991, 9(2): 147-154.
    [177] Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers [J]. Journal of Lightwave Technology, 1991, 9(2): 271-283.
    [178] Nilsson J, Sun S Y, Hwang S T, et al. Long-wavelength erbium-doped fiber amplifier gain enhanced by ASE end-reflectors [J]. IEEE Photonics Technology Letters, 1998, 10(11): 1551-1553.
    [179] Lee J, Ryu U C, Ahn S J, et al. Enhancement of power conversion efficiency for L-band EDFA with a secondary pumping effect in the un-pumped EDF section [J]. IEEE Photonics Technology Letters, 1999, 11(1): 42-44.
    [180] Mahdi M A, Ahmad H. Gain enhanced L-band Er~(3+)-doped fiber amplifier utilizing unwanted backward ASE [J]. IEEE Photonics Technology Letters, 2001, 13(10): 1067-1069.
    [181] Yeniay A, Gao R. Single stage high power L-band EDFA with multiple C-band seeds [C]. In: OFC, 2002, THJ2:457-458.
    [182] Chong W Y, Harun S W, Ahmad H. Enhancement of gain in L-band bismuth-based erbium-doped fibre amplifier using an un-pumped EDF and midway isolator [J]. ChinesePhysics Letters, 2004, 21(12): 2452-2453.
    [183] Wang L L, Hwang B C, Yang L M, et al. Gain transient in copumped and counterpumped Raman amplifiers [J]. IEEE Photonics Technology Letters, 2003, 15(5): 664-666.
    [184] Tian C, Kinoshita S. Analysis and control of transient dynamics of EDFA pumped by 1480- and 980-nm lasers [J]. Journal of Lightwave Technology, 2003, 21(8): 1728-1734.
    [185] Lopez-baraero A P, Areliano-espinoza W A, Fragnito H L, et al. Tellurite-based optical fiber amplifier analysis using the finite-element method [J]. Microwave and Optical Technology Letters, 2000, 25(2): 103-107.
    [186]周亚训,周灵,陈芬.碲基掺铒光纤放大器对于渐变输入信号的瞬态响应[J].光子学报, 2007, 36(11): 2066-2070.
    [187]陈冬严,林斌,陈钰清.一维PSD瞬态响应特性的有限差分方法研究[J].光子学报,2004, 33(10): 1159-1162.
    [188]池灏.双折射光子晶体光纤传输特性分析[J[.光学学报, 2004, 24(11): 1552-1556.
    [189]杨祥林.光纤放大器及其应用(第1版)[M].北京:电子工业出版社, 2000: 43-47.
    [190] Desurvire E. Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers [J]. IEEE Photonics Technology Letters, 1989, 1(8): 196-199.
    [191] Srivastava A K, Sun Y, Zyskind J L, et al. EDFA transient response to channel loss in WDM transmission system [J]. IEEE Photonics Technology Letters, 1997, 9(3): 386-388.
    [192] Ko K Y, Demokan M S, Tam H Y. Transient analysis of erbium-doped fiber amplifiers [J]. IEEE Photonics Technology Letters, 1994, 6(12): 1436-1438.
    [193] Tian C, Kinoshita S. Analysis and control of transient dynamics of EDFA pumped by 1480- and 980-nm lasers [J]. Journal of Lightwave Technology, 2003, 21(8): 1728-1734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700