水稻谷蛋白囊泡转运及转基因水稻蛋白组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻胚乳是植物繁衍后代时储藏氮源和碳源的主要场所,也是分子医药农业最为理想的宿主之一。在水稻胚乳中存在着四种储藏蛋白,谷蛋白glutelin,球蛋白globulin,醇溶蛋白prolamin和清蛋白albumin,它们总共占胚乳细胞内总蛋白的90%以上。亚细胞定位研究显示谷蛋白和球蛋白在细胞中定位于蛋白贮藏囊泡(Protein Storage Vacuole, PSV),在水稻中也被称为蛋白体II(Protein Body II),而醇溶蛋白则定位于蛋白体Ⅰ。目前对于蛋白质在细胞中的定向转运这一过程的机理,普遍认为是通过存在于蛋白质一级结构中的一小段氨基酸序列组成囊泡转运信号(Vacuolar Sorting Determinant, VSD)或者是基于高级结构而产生的信号介导的,并且这一过程也需要相对应的受体参与。而目前为止,还没有任何关于这些蛋白的囊泡转运信号的报道,储藏蛋白在水稻胚乳细胞中转运机理的研究也较少。我们利用谷蛋白作为研究对象,通过序列缺失和定点突变,在水稻胚乳细胞稳定表达和烟草悬浮细胞系中瞬时表达的方法,研究了谷蛋白在水稻胚乳细胞中定向转运机理。另外,通过同重标签相对绝对定量(isobaric Tags for Relative and Absolute Quantitation, iTRAQ)的方法,我们对表达重组蛋白PDI-IGF的未成熟水稻胚乳细胞的总蛋白以及膜蛋白进行了蛋白组学的研究。主要结果如下:1、通过MacVector软件对谷蛋白β亚基氨基酸序列进行疏水结构的分析,氨基酸序列被分成了三个片段GlutN, GlutM和GlutC,并连接上GFP构建成三个融合蛋白的载体GlutN:GFP, GlutM:GFP和GlutC:GFP。通过农杆菌侵染得到了稳定表达植株后,经两代繁殖后都得到了纯合子。用荧光显微镜观察开花后7天左右的胚乳切片,发现GlutN和GlutM定位到蛋白体Ⅰ中,而GlutC则定位在蛋白体Ⅱ中。2、再将GlutC通过疏水性进一步分为三个片段GlutC-1, GlutC-2和GlutC-3,并构建了三个融合蛋白载体GlutC-1:GFP, GlutC-2:GFP和GlutC-3:GFP,经过转化后得到三个稳定表达的纯合子系。荧光显微镜观察,发现GlutC-1:GFP和GlutC-2:GFP融合蛋白可以定位到蛋白体Ⅱ中,而GlutC-3:GFP定位到蛋白体Ⅰ中。经过分析发现GlutC-1和GlutC-2共同拥有一段六个氨基酸QRLKHN的序列。将QRLKHN融合到GFP蛋白的N端,并在胚乳细胞中稳定表达后,我们发现这六个氨基酸序列可以指导GFP定位到蛋白体Ⅱ中,而单独表达GFP则定位在细胞质中。因此这六个氨基酸QRLKHN被定义为OsVSD (Oryza sativa Vacuolar Sorting Determinant)。
     3、另外,通过分子排阻色潽法(Size Exclusion Chromatography, SEC),我们发现GlutC:GFP融合蛋白存在于一个680KDa的复合体中,而GlutM:GFP则不存在复合体。并且我们发现水稻的RMR蛋白也存在于这个680kDa的复合体中。经过Co-IP验证,我们发现确实OsRMR3与GlutC:GFP是存在于同一复合体中的。通过BiFC鉴定,我们发现OsRMR3可以与GlutC或Glutelinβ亚基Glut相互作用,而不与GlutM相互作用。
     4、为了研究OsRMR3是否在含有OsVSD的蛋白转运中起作用,我们在烟草BY-2悬浮细胞系中表达了一系列的载体进行研究。结果显示在OsRMR3存在的情况下,Glut:GFP和GlutC:GFP都能定位在MVB (Multivesicular Body)中,而不定位在TGN中。GlutM:GFP无论是否与OsRMR3共表达都不能定位在MVB,而会定位在TGN中。因此OsVSD是蛋白转运进入MVB的前提,而OsRMR3则能提高这一转运的效率。
     5、通过对OsVSD六个氨基酸中的亮氨酸和精氨酸定点突变,我们发现两者对OsVSD的功能都很重要,而亮氨酸起到的功能更强大一些。
     6、经过以上结果我们最终总结出了水稻胚乳细胞中蛋白质转运的三条途径,第一条是依赖于VSD的转运途径,蛋白将通过此途径进入到蛋白体Ⅱ中。第二条是不依赖于VSD的默认转运途径,蛋白会从内质网合成后进入内质网膜出芽生成的蛋白体工。最后一条途径是非储藏蛋白的途径,这条途径经常在外源重组蛋白表达的时候观察到。
     7、通过对表达重组蛋白PDI-IGF的未成熟水稻胚乳细胞亚细胞结构的观察,我们发现在高表达量系中细胞由于受到的内质网压力较大,形态结构发生了较大的变化。
     8、通过对未成熟的水稻胚乳细胞的总蛋白进行iTRAQ蛋白组学分析,我们发现表达量最高的系中的显著差异蛋白是11个,上调6个,下调5个。中等表达量系中显著差异蛋白数量是12个,上调8个,下调4个。在表达量最低的系中,显著差异蛋白数量是18个,上调5,下调13个。
     9、对未成熟的水稻胚乳细胞的膜蛋白分析后,在高表达量系中,显著差异蛋白数量是20个,上调11个,下调9个;中等表达量系中,显著差异蛋白数目是18个,上调8个,下调10个;低表达量系中显著差异蛋白数目是23个,上调6个,下调17个。
     10、通过对转基因胚乳的研究,我们发现大量的外源蛋白表达对细胞的亚细胞结构会有很大影响,少量的表达则影响很小。而外源蛋白的表达对蛋白组没有大的影响,仅仅有个别分子伴侣和转录相关的蛋白会有较大的上下调。这为分子医药农业的转基因植株安全性提供了一些证据。
The rice endosperm is the major sources of the nitrogen and carbon that are necessary for plant growth in subsequent generations and a favorite biopharming host for the recombinant protein expression. Four types of proteins, i.e., glutelin, globulin, prolamin, and albumin, account for90%of the storage proteins were found in the rice endosperm. In the rice endosperm, glutelin and globulin localize to the protein storage vacuole (PSV) named protein body Ⅱ (PB-Ⅱ), while prolamin is stored in protein body Ⅰ. The mechanism of intracellular protein sorting was considered to depend on the vacuolar sorting determinant (VSD) or the signals created by tertiary structure, and their corresponding receptors. Neither vacuolar sorting determinant has been reported for those storage proteins, nor the mechanism of trafficking route in rice endosperm cells. By sequential deletion and site-directed mutation, we studied the mechanism of glutelin sorting and trafficking in rice endosperm cells and tobacco B Y-2cells. Besides, the membrane and global proteomics of transgenic rice endosperm cells expressing recombinant PDI-IGF was investigated. The results show as below.
     1, The glutelin oteins, i.e., glutelin, globulin, prolamin, and albumin, account for90%of the storage proteins were found in the rice endosperm. In the rice endosperm, glutelin and globulin localize to tsed in rice endosperm cells. GlutN and GlutM were found in protein body Ⅰ, while the GlutC in protein body Ⅱ.
     2, The GlutC was further divided into three fragments GlutC-1, GlutC-2and GlutC-3. Then three fusion protein GlutC-1:GFP, GlutC-2:GFP and GlutC-3:GFP were expressed in rice endosperm cells. The microscopy results show the GlutC-1:GFP and GlutC-2:GFP were sorted into the protein body Ⅱ,but the GlutC-3:GFP into the protein body Ⅰ.A six amino acids sequence was found both in GlutC-1and GlutC-2.
     3, By size exclusion chromatography method, the GlutC:GFP and OsRMR3were found in a680kDa sorting complex, while no complex in the GlutM.GFP extracts. By Co-IP assay, it was confirmed the OsRMR3and GlutC:GFP were in the same complex. Furthermore, OsRMR3was found to interact with the GlutC or Glut, but not GlutM by BiFC assay.
     4, To investigate the function of OsRMR3in OsVSD-containing protein sorting, transient expression in BY-2cells was employed. The fusion protein was colocalized in the MVB but not TGN in the cells expressing Glut:GFP or GlutC:GFP when co-expressed with OsRMR3. However, GlutM:GFP was found in the TGN but not MVB, when whether co-expressed with OsRMR3or not. Thus, the OsVSD would be the prerequisite for sorting into MVB and the presence of OsRMR3could significantly increase the trafficking efficiency.
     5, The leucine or arginine replaced by glycine would lead to the sorting function polished, while leucine play a more critical role on that, indicating the function of those two residues for OsVSD function.
     6, Based on the results, three routes in rice endosperm cells were proposed. The first one is the VSD-dependent pathway, in this route the protein would be sorted into protein body II; The other pathway is VSD-independent pathway, protein synthesized in ER would be sorted into the ER derived protein body I. The last trafficking route could be independent of the storage vacuole pathway. In this route, endogenous or recombinant proteins are sorted into the intracellular space in storage organs in plant cell. This trafficking route has frequently been observed in transgenic endosperm cells overexpressing recombinant proteins
     7, In the rice endosperm cells highly expressing PDI-IGF, the subcellular structure changed greatly, which was caused by the ER stress.
     8, By the iTRAQ proteomics analysis to the total protein of immature rice endosperm cells,11significant different proteins were found in highly expression line, including six up-regulated and five down-regulated proteins; In the middle expression level line, there were12significant different proteins, while eight proteins were up-regulated, four proteins were down-regulated; And18proteins were significantly changed in the line with lowest expression level, with five proteins up-regulated and13down-regulated.
     9, For the membrane proteins of immature rice endosperm cells,20proteins were significantly changed in the highly expression line, with11proteins up-regulated and nine down-regulated; In the middle expression line,18proteins were significantly changed, with eight proteins up-regulated and10down-regulated; And in the lowest expression line, the significant different protein, up-regulated and down-regulated protein are23, six and17, respectively.
     10, By investigating the transgenic rice expressing the recombinant proteins, we found the high level expressing protein would greatly affect the subcellular organelle structure, while low expressing protein hardly have effect in rice endosperm cells. Besides, the exogenous proteins lead to slight changes to the proteome, just by changing a few chaperones and translation factors. This result can be an evidence for safety genetic modified cereal for biopharming.
引文
1. Muntz, K., Deposition of storage proteins. Plant Mol Biol,1998.38(1-2):p.77-99.
    2. Galili, G., ER-derived compartments are formed by highly regulated processes and have special functions in plants. Plant Physiol,2004.136(3):p.3411-3413.
    3. Shewn/, P.R., J.A. Napier, and A.S. Tatham, Seed storage proteins:structures and biosynthesis. Plant Cell,1995.7(7):p.945-956.
    4. Kawakatsu, T., et al., Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol,2010.154(4):p. 1842-1854.
    5. Palade, G., Intracellular aspects of the process of protein synthesis. Science,1975. 189(4200):p.347-358.
    6. Boston, R.S., P.V. Viitanen, and E. Vierling, Molecular chaperones and protein folding in plants. Plant Mol Biol,1996.32(1-2):p.191-222.
    7. Hammond, C. and A. Helenius, Quality control in the secretory pathway. Curr Opin Cell Biol,1995.7(4):p.523-529.
    8. Boevink, P., et al., Stacks on tracks:the plant Golgi apparatus traffics on an actin/ER network. Plant J,1998.15(3):p.441-447.
    9. GM, C., The Golgi Apparatus, in The Cell:A Molecular Approach.2000.
    10. Munro, S., What can yeast tell us about N-linked glycosylation in the Golgi apparatus? FEBS Lett,2001.498(2-3):p.223-227.
    11. Stanley, P., Golgi glycosylation. Cold Spring Harb Perspect Biol,2011.3(4).
    12. Maccioni, H.J., Glycosylation of glycolipids in the Golgi complex. J Neurochem,2007.103 Suppl 1:p.81-90.
    13. Allan, B.B. and W.E. Balch, Protein sorting by directed maturation of Golgi compartments. Science,1999.285(5424):p.63-66.
    14. Rodriguez-Boulan, E. and A. Musch, Protein sorting in the Golgi complex:shifting paradigms. Biochim Biophys Acta,2005.1744(3):p.455-464.
    15. Jiang, L. and J.C. Rogers, Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol,1998.143(5):p.1183-1199.
    16. Gal, S. and N.V. Raikhel, Protein sorting in the endomembrane system of plant cells. Curr Opin Cell Biol,1993.5(4):p.636-640.
    17. Michel, M., Gnagi, H. and Muller, M, Diamonds are a cryosectioner's best friend. J Microscop,1992.166:p.43-56.
    18. Boyer, M.G., The role of tannins in neutral red staining of pine leaf vacuoles. Stain Technol,1963.38:p.117-120.
    19. Epimashko, S., et al., Two functionally different vacuoles for static and dynamic purposes in one plant mesophyll leaf cell. Plant J,2004.37(2):p.294-300.
    20. Candido Ede, S., et al.. Plant storage proteins with antimicrobial activity:novel insights into plant defense mechanisms. FASEB J,2011.25(10):p.3290-3305.
    21. Jorgensen, M., A. Stensballe, and K.G. Welinder, Extensive post-translational processing of potato tuber storage proteins and vacuolar targeting. FEBS J,2011.278(21):p. 4070-4087.
    22. Lord, J.M. and R.A. Spooner, Ricin trafficking in plant and mammalian cells. Toxins (Basel), 2011.3(7):p.787-801.
    23. Maurel, C., Plant aquaporins:novel functions and regulation properties. FEBS Lett,2007. 581(12):p.2227-2236.
    24. Di Sansebastiano, G.P., et al., Regeneration of a lytic central vacuole and of neutral peripheral vacuoles can be visualized by green fluorescent proteins targeted to either type of vacuoles. Plant Physiol,2001.126(1):p.78-86.
    25. Jauh, G.Y., et al., delta-Tonoplast intrinsic protein defines unique plant vacuole functions. Proc Natl Acad Sci USA,1998.95(22):p.12995-12999.
    26. Paris, N., et al., Plant cells contain two functionally distinct vacuolar compartments. Cell, 1996.85(4):p.563-572.
    27. Jiang, L., et al., Biogenesis of the protein storage vacuole crystalloid. J Cell Biol,2000. 150(4):p.755-770.
    28. Swanson, S.J. and R.L. Jones, Gibberellic Acid Induces Vacuolar Acidification in Barley Aleurone. Plant Cell,1996.8(12):p.2211-2221.
    29. Herman, E.M. and B.A. Larkins, Protein storage bodies and vacuoles. Plant Cell,1999. 11(4):p.601-614.
    30. Fluckiger, R., et al., Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins. J Exp Bot,2003.54(387):p.1577-1584.
    31. Murphy, K.A., Kuhle, R. A., Fischer, A. M., Anterola, A. M. and Grimes, H. D, The functional status of paraveinal mesophyll vacuoles changes in response to altered metabolic conditions in soybean leaves. Func Plant Biol 2005.32(4):p.335-344.
    32. Hunter, P.R., et al., Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol,2007. 145(4):p.1371-1382.
    33. Otegui, M.S., et al., Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J,2005.41(6):p.831-844.
    34. Harris, N., Endoplasmic reticulum in developing seeds of Vicia faba:A high voltage electron microscope study. Planta,1979.146(1):p.63-69.
    35. Herman, E. and M. Schmidt, Endoplasmic reticulum to vacuole trafficking of endoplasmic reticulum bodies provides an alternate pathway for protein transfer to the vacuole. Plant Physiol,2004.136(3):p.3440-3446.
    36. Matsushima, R., et al., The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant Cell Physiol,2003.44(7):p.661-666.
    37. Matsushima, R., et al., A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis. Plant J,2003. 33(3):p.493-502.
    38. Samaj, J., et al., The endocytic network in plants. Trends Cell Biol,2005.15(8):p.425-33.
    39. Swanson, S.J., P.C. Bethke, and R.L. Jones, Barley aleurone cells contain two types of vacuoles. Characterization Of lytic organelles by use of fluorescent probes. Plant Cell, 1998.10(5):p.685-698.
    40. Mellman, I., Endocytosis and molecular sorting. Annu Rev Cell Dev Biol,1996.12:p. 575-625.
    41. Ganley, I.G., et al., Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Mol Biol Cell,2004.15(12):p.5420-5430.
    42. Ng, E.L., et al., Rab GTPases regulating receptor trafficking at the late endosome-lysosome membranes. Cell Biochem Funct,2012.30(6):p.515-523.
    43. Futter, C.E., et al., Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J Cell Biol,1996.132(6):p. 1011-1023.
    44. Luzio, J.P., et al., Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci,2000. 113 (Pt 9):p.1515-1524.
    45. Lafourcade, C., et al., Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS One,2008.3(7): p. e2758.
    46. Rink, J., et al., Rab conversion as a mechanism of progression from early to late endosomes. Cell,2005.122(5):p.735-749.
    47. Ghosh, P. and S. Kornfeld, The GGA proteins:key players in protein sorting at the trans-Golgi network. Eur J Cell Biol,2004.83(6):p.257-262.
    48. Boman, A.L., GGA proteins:new players in the sorting game. J Cell Sci,2001.114(Pt 19): p.3413-3418.
    49. Barbero, P., L. Bittova, and S.R. Pfeffer, Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol,2002.156(3):p.511-518.
    50. Carroll, K.S., et al., Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science,2001.292(5520):p.1373-1376.
    51. Grant, B.D. and J.G. Donaldson, Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol,2009.10(9):p.597-608.
    52. Felder, S., et al., Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell,1990.61(4):p.623-634.
    53. Dautry-Varsat, A., Receptor-mediated endocytosis:the intracellular journey of transferrin and its receptor. Biochimie,1986.68(3):p.375-381.
    54. Hicke, L. and R. Dunn, Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol,2003.19:p.141-172.
    55. Hurley, J.H., ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol,2008.20(1):p.4-11.
    56. Marcote, M.J., et al., Membrane transport in the endocytic pathway:Animal versus plant cells. Protoplasma,2000.210(3-4):p.123-132.
    57. Wang, J., et al., EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell,2010.22(12):p.4009-4030.
    58. Hala, M., et al., An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell,2008.20(5):p.1330-1345.
    59. Chong, Y.T., et al., Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol,2010.185(2):p.401-419.
    60. Contento, A.L., Y. Xiong, and D.C. Bassham, Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J,2005.42(4):p.598-608.
    61. Ding, Y., et al., Unconventional protein secretion. Trends Plant Sci,2012.17(10):p. 606-615.
    62. Jurgens, G., Membrane trafficking in plants. Annu Rev Cell Dev Biol,2004.20:p.481-504.
    63. De Marcos Lousa, C., D.C. Gershlick, and J. Denecke, Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. Plant Cell,2012.24(5):p.1714-1732.
    64. Bassham, D.C, et al.. The secretory system of Arabidopsis. Arabidopsis Book,2008.6:p. e0116.
    65. Shan, S.O., S.L. Schmid, and X. Zhang, Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases. Biochemistry,2009.48(29):p. 6696-6704.
    66. Johnson, A.E. and M.A. van Waes, The translocon:a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol,1999.15:p.799-842.
    67. Schubert, U., et al., Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature,2000.404(6779):p.770-774.
    68. Liu, J.X. and S.H. Howell, Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell,2010.22(9):p. 2930-2942.
    69. Ellgaard, L., M. Molinari, and A. Helenius, Setting the standards:quality control in the secretory pathway. Science,1999.286(5446):p.1882-1888.
    70. Schuldt, A., Protein metabolism:A channel for ERAD. Nat Rev Mol Cell Biol,2013.
    71. Eisele, F., A. Schafer, and D.H. Wolf, Ubiquitylation in the ERAD Pathway. Subcell Biochem,2010.54:p.136-148.
    72. Meusser, B., et al., ERAD:the long road to destruction. Nat Cell Biol,2005.7(8):p. 766-772.
    73. Hosokawa, N. and K. Nagata, [ER quality control and ERAD]. Seikagaku,2003.75(6):p. 512-519.
    74. Howell, S.H., Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol,2013. 64:p.477-499.
    75. Spiro, R.G., Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci,2004.61(9):p. 1025-1041.
    76. Gomord, V., et al.. The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J,1997.11(2):p.313-325.
    77. Napier, R.M., et al., Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci,1992.102( Pt 2):p.261-271.
    78. Benghezal, M., G.O. Wasteneys, and D.A. Jones, The C-terminal dilysine motif confers endoplasmic reticulum localization to type I membrane proteins in plants. Plant Cell, 2000.12(7):p.1179-1201.
    79. Schutze, M.P., P.A. Peterson, and M.R. Jackson, An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J,1994.13(7): p.1696-1705.
    80. Jensen, D. and R. Schekman, COPII-mediated vesicle formation at a glance. J Cell Sci, 2011.124(Pt 1):p.1-4.
    81. Marti, L, et al., COPII-mediated traffic in plants. Trends Plant Sci,2010.15(9):p.522-8.
    82. Russell, C. and S.M. Stagg, New insights into the structural mechanisms of the COPII coat. Traffic,2010.11(3):p.303-310.
    83. Pimpl, P., et al., In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell,2000.12(11):p.2219-2236.
    84. Donohoe, B.S., B.H. Kang, and L.A. Staehelin, Identification and characterization of COPIa-and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci U S A,2007.104(1):p.163-168.
    85. Mancias, J.D. and J. Goldberg, Exiting the endoplasmic reticulum. Traffic,2005.6(4):p. 278-285.
    86. Neumann, U., F. Brandizzi, and C. Hawes, Protein transport in plant cells:in and out of the Golgi. Ann Bot,2003.92(2):p.167-180.
    87. Hanton, S.L., et al., Diacidic motifs influence the export of transmembrane proteins from the endoplasmic reticulum in plant cells. Plant Cell,2005.17(11):p.3081-3093.
    88. Schoberer, J., et al., Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes. Traffic,2009.10(1):p.101-115.
    89. Orci, L., et al., Bidirectional transport by distinct populations of COPI-coated vesicles. Cell, 1997.90(2):p.335-349.
    90. Glick, B.S., Elston, T. and Oster, G, A cisternal maturation mechanism can explain the asymmetry of the Golgi stack. FEBS Lett,1997.414(2):p.177-181.
    91. Losev, E., et al., Golgi maturation visualized in living yeast. Nature,2006.441(7096):p. 1002-1006.
    92. Kirsch, T., et al.. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A,1994.91(8):p.3403-3407.
    93. Kirsch, T., et al., Interaction of a potential vacuolar targeting receptor with amino-and carboxyl-terminal targeting determinants. Plant Physiol,1996.111(2):p.469-474.
    94. Ahmed, S.U., et al., The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol,2000.149(7):p.1335-1344.
    95. daSilva, L.L., O. Foresti, and J. Denecke, Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. Plant Cell,2006.18(6): p.1477-1497.
    96. daSilva, L.L., et al., Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell,2005.17(1):p.132-148.
    97. Shimada, T., et al., A vacuolar sorting receptor PV72 on the membrane of vesicles that accumulate precursors of seed storage proteins (PAC vesicles). Plant Cell Physiol,2002. 43(10):p.1086-1095.
    98. Shimada, T., et al., AtVPS29, a putative component of a retromer complex, is required for the efficient sorting of seed storage proteins. Plant Cell Physiol,2006.47(9):p. 1187-1194.
    99. Otegui, M.S., et alv The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. Plant Cell,2006.18(10):p.2567-2581.
    100. Wang, J., et al., Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiol,2007.143(4):p.1628-1639.
    101. Jiang, L., A. Erickson, and J. Rogers, Multivesicular bodies:a mechanism to package lytic and storage functions in one organelle? Trends Cell Biol,2002.12(8):p.362-367.
    102. Sanmartin, M., et al., Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc Natl Acad Sci U S A,2007.104(9):p.3645-3650.
    103. Foresti, O., L.L. daSilva, and J. Denecke, Overexpression of the Arabidopsis syntaxin PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic vacuole in vivo. Plant Cell,2006.18(9):p.2275-2293.
    104. Hanton, S.L., et al., Post-Golgi protein traffic in the plant secretory pathway. Plant Cell Rep,2007.26(9):p.1431-1438.
    105. Rothman, J.E. and G. Warren, Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr Biol,1994.4(3):p.220-233.
    106. GM, C., The Mechanism of Vesicular Transport, in The Cell:A Molecular Approach.2000.
    107. Epp, N., et al., Membrane dynamics and fusion at late endosomes and vacuoles-Rab regulation, multisubunit tethering complexes and SNAREs. Eur J Cell Biol,2011.90(9):p. 779-785.
    108. Starai, V.J., Y. Jun, and W. Wickner, Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proc Natl Acad Sci U S A,2007.104(34):p.13551-13558.
    109. Jordens, I., et al., Rab proteins, connecting transport and vesicle fusion. Traffic,2005. 6(12):p.1070-1077.
    110. Horsnell, W.G., G.J. Steel, and A. Morgan, Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation. Biochemistry,2002.41(16):p. 5230-5235.
    111. Swanton, E., et al., Formation and turnover of NSF-and SNAP-containing "fusion" complexes occur on undocked, clathrin-coated vesicle-derived membranes. Mol Biol Cell, 1998.9(7):p.1633-1647.
    112. Matveeva, E. and S.W. Whiteheart, The effects of SNAP/SNARE complexes on the ATPase of NSF. FEBS Lett,1998.435(2-3):p.211-214.
    113. Schekman, R., Charting the secretory pathway in a simple eukaryote. Mol Biol Cell,2010. 21(22):p.3781-3784.
    114. Cheng, F.Y., et al., Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase:a possible defense against mannitol-secreting fungal pathogens. Planta,2009.230(6):p.1093-1103.
    115. Miki, B. and S. McHugh, Selectable marker genes in transgenic plants:applications, alternatives and biosafety. J Biotechnol,2004.107(3):p.193-232.
    116. Zhang, H., et al., Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS One,2011.6(11):p. e26477.
    117. Aniento, F. and D.G. Robinson, Testing for endocytosis in plants. Protoplasma,2005. 226(1-2):p.3-11.
    118. Geldner, N., et al., The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell,2003.112(2):p.219-230.
    119. Geldner, N., et al., Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature,2001.413(6854):p.425-428.
    120. Bolte, S., S. Brown, and B. Satiat-Jeunemaitre, The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J Cell Sci, 2004.117(Pt 6):p.943-954.
    121. Moriyasu, Y. and Y. Inoue, Use of protease inhibitors for detecting autophagy in plants. Methods Enzymol,2008.451:p.557-580.
    122. Yoshimoto, K., Y. Takano, and Y. Sakai, Autophagy in plants and phytopathogens. FEBS Lett,2010.584(7):p.1350-1358.
    123. Nair, U. and D.J. Klionsky, Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J Biol Chem,2005.280(51):p.41785-41788.
    124. Onodera, J. and Y. Ohsumi, [Physiological role of autophagy for starvation-adaptation in yeast]. Tanpakushitsu Kakusan Koso,2006.51(10 Suppl):p.1499-1502.
    125. Baba, M., et al., Ultrastructural analysis of the autophagic process in yeast:detection of autophagosomes and their characterization. J Cell Biol,1994.124(6):p.903-913.
    126. Aubert, S., et al., Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation:control by the supply of mitochondria with respiratory substrates. J Cell Biol,1996.133(6):p.1251-1263.
    127. Hoh, B., et al., Protein storage vacuoles form de novo during pea cotyledon development. J Cell Sci,1995.108 (Pt 1):p.299-310.
    128. Park, S.I.K.a.O.K., Autophagy in plants Journal of Plant Biology,2008.51(5):p.313-320.
    129. Nakamura K, M.K., Mukumoto F, Watanabe N, Processing and transport to the vacuole of a precursor to sweet potato sporamin in transformed tobacco cell line BY-2. J Exp Bot,1993.44(suppl):p.331-338.
    130. Nakamura, K. and K. Matsuoka, Protein targeting to the vacuole in plant cells. Plant Physiol,1993.101(1):p.1-5.
    131. Rogers, S.W., M. Burks, and J.C. Rogers, Monoclonal antibodies to barley aleurain and homologs from other plants. Plant J,1997.11(6):p.1359-1368.
    132. Matsuoka, K. and K. Nakamura, Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol,1999.41(6):p.825-835.
    133. Matsuoka, K., et al., Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol,1995. 130(6):p.1307-1318.
    134. Matsuoka, K., C-terminal propeptides and vacuolar sorting by BP-80-type proteins:not all C-terminal propeptides are equal. Plant Cell,2000.12(2):p.181-182.
    135. Saalbach, G., M. Rosso, and U. Schumann, The vacuolar targeting signal of the 2S albumin from Brazil nut resides at the C terminus and involves the C-terminal propeptide as an essential element. Plant Physiol,1996.112(3):p.975-985.
    136. Shimada, T., et al., Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2003.100(26):p.16095-16100.
    137. Miller, E.A., M.C. Lee, and M.A. Anderson, Identification and characterization of a prevacuolar compartment in stigmas of nicotiana alata. Plant Cell,1999.11(8):p. 1499-1508.
    138. Frigerio, L., et al., The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant Physiol,2001.126(1):p. 167-175.
    139. Neuhaus, J.M., M. Pietrzak, and T. Boller, Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase:low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant J,1994.5(1):p.45-54.
    140. Bednarek, S.Y., et al., A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell,1990.2(12):p.1145-1155.
    141. Frigerio, L., et al., Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell,1998.10(6):p.1031-1042.
    142. Saalbach,G., et al., Different legumin protein domains act as vacuolar targeting signals. Plant Cell,1991.3(7):p.695-708.
    143. Vitale, A. and M.J. Chrispeels, Sorting of proteins to the vacuoles of plant cells. Bioessays, 1992.14(3):p.151-160.
    144. Vitale, A. and G. Hinz, Sorting of proteins to storage vacuoles:how many mechanisms? Trends Plant Sci,2005.10(7):p.316-323.
    145. Arcalis, E., et al., Unexpected deposition patterns of recombinant proteins in post-endoplasmic reticulum compartments of wheat endosperm. Plant Physiol,2004. 136(3):p.3457-3466.
    146. Maruyama, N., et al.. Multiple vacuolar sorting determinants exist in soybean 11S globulin. Plant Cell,2006.18(5):p.1253-1273.
    147. Li, W., et al., A Short Peptide in Rice Glutelin Directs Trafficking of Protein into the Protein Storage Vacuoles of the Endosperm Cells. Plant Mol Biol Rep,2013.31:p. 1492-1505.
    148. Tague, B.W., C.D. Dickinson, and M.J. Chrispeels, A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole. Plant Cell,1990.2(6): p.533-546.
    149. Tormakangas, K., et al., A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell,2001.13(9):p.2021-2032.
    150. Nishizawa, K., et al., A C-terminal sequence of soybean beta-conglycinin alpha'subunit acts as a vacuolar sorting determinant in seed cells. Plant J,2003.34(5):p.647-659.
    151. Neuhaus, J.M., et al., A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A,1991.88(22):p. 10362-10366.
    152. Holwerda, B.C., H.S. Padgett, and J.C. Rogers, Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell,1992.4(3):p.307-318.
    153. Brown, J.C., et al., Sequence-specific, Golgi-dependent vacuolar targeting of castor bean 2S albumin. Plant J,2003.36(5):p.711-719.
    154. Matsuoka, K. and K. Nakamura, Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci U S A,1991.88(3):p.834-838.
    155. Petruccelli, S., et al., Two short sequences from amaranth 11S globulin are sufficient to target green fluorescent protein and beta-glucuronidase to vacuoles in Arabidopsis cells. Plant Physiol Biochem,2007.45(6-7):p.400-409.
    156. Paris, J.-M.N.a.N., Plant vacuoles:from biogenesis to function. Plant Cell Monographs, 2005.1:p.63-82.
    157. Mahon, P. and A. Bateman, The PA domain:a protease-associated domain. Protein Sci, 2000.9(10):p.1930-1934.
    158. Cao, X., et al.. Structural requirements for ligand binding by a probable plant vacuolar sorting receptor. Plant Cell,2000.12(4):p.493-506.
    159. Happel, N., et al., Arabidopsis mu A-adaptin interacts with the tyrosine motif of the vacuolar sorting receptor VSR-PS1. Plant J,2004.37(5):p.678-693.
    160. Paris, N., et al., Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol,1997.115(1):p.29-39.
    161. Hinz, G., et al., Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell,1999.11(8):p.1509-1524.
    162. Robinson, D.G., Baumer,M.,Hinz,G.,and Hohl.1., Vesicle transport of storage proteins to the vacuole:the role of the Golgi apparatus and multivesicular bodies. J.plant pysiol,1998. 152(659-667).
    163. Shimada, T., et al., A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol,1997.38(12): p.1414-1420.
    164. Masclaux, F.G., J.P. Galaud, and R. Pont-Lezica, The riddle of the plant vacuolar sorting receptors. Protoplasma,2005.226(3-4):p.103-108.
    165. Hadlington, J.L. and J. Denecke, Sorting of soluble proteins in the secretory pathway of plants. Curr Opin Plant Biol,2000.3(6):p.461-468.
    166. Miao, Y., et al., Localization of green fluorescent protein fusions with the seven Arabidopsis vacuolar sorting receptors to prevacuolar compartments in tobacco BY-2 cells. Plant Physiol,2006.142(3):p.945-962.
    167. Servant, F., et al., ProDom:automated clustering of homologous domains. Brief Bioinform,2002.3(3):p.246-251.
    168. Wang, H., J.C. Rogers, and L. Jiang, Plant RMR proteins:unique vacuolar sorting receptors that couple ligand sorting with membrane internalization. FEBS J,2011.278(1):p.59-68.
    169. Luo, X. and K. Hofmann, The protease-associated domain:a homology domain associated with multiple classes of proteases. Trends Biochem Sci,2001.26(3):p.147-148.
    170. Hartmann, C., et al., Vacuolar protein sorting:two different functional states of the AAA-ATPase Vps4p. J Mol Biol,2008.377(2):p.352-363.
    171. Jin, X., et al., RNF13:an emerging RING finger ubiquitin ligase important in cell proliferation. FEBS J,2011.278(1):p.78-84.
    172. Bocock, J.P., et al., Trafficking and proteolytic processing of RNF13, a model PA-TM-R1NG family endosomal membrane ubiquitin ligase. FEBS J,2011.278(1):p.69-77.
    173. Whiting, C.C., et al., GRAIL:a unique mediator of CD4 T-lymphocyte unresponsiveness. FEBS J,2011.278(1):p.47-58.
    174. Park, M., et al., AtRMRl functions as a cargo receptor for protein trafficking to the protein storage vacuole. J Cell Biol,2005.170(5):p.757-767.
    175. Lam, S.K., et al., Rice SCAMPI defines clathrin-coated, trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell,2007. 19(1):p.296-319.
    176. Wang, H., et al., Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J,2010.61(5):p.826-838.
    177. Park JH, Oufattole M, and R. JC, Golgi-mediated vacuolar sorting in plant cells:RMR proteins are sorting receptors for the protein aggregation/membrane internalization pathway. Plant Science,2007.172(4):p.728-745.
    178. Shen, Y., et al., The rice RMR1 associates with a distinct prevacuolar compartment for the protein storage vacuole pathway. Mol Plant,2011.4(5):p.854-868.
    179. Hirst, J., et al., The fifth adaptor protein complex. PLoS Biol,2011.9(10):p. e1001170.
    180. Dacks, J.B., P.P. Poon, and M.C. Field, Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc Natl Acad Sci U S A,2008. 105(2):p.588-593.
    181. Robinson, M.S. and J.S. Bonifacino, Adaptor-related proteins. Curr Opin Cell Biol,2001. 13(4):p.444-453.
    182. Sanderfoot, A.A., et al., A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc Natl Acad Sci U S A, 1998.95(17):p.9920-9925.
    183. Nakatsu, F. and H. Ohno, Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct,2003.28(5):p.419-429.
    184. Owen, D.J., et al., The structure and function of the beta 2-adaptin appendage domain. EMBO J,2000.19(16):p.4216-4227.
    185. Slepnev, V.I. and P. De Camilli, Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci,2000.1(3):p.161-172.
    186. Burgos, P.V., et al., Sorting of the Alzheimer's disease amyloid precursor protein mediated by the AP-4 complex. Dev Cell,2010.18(3):p.425-436.
    187. Janvier, K., et al., Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 gamma-sigmal and AP-3 delta-sigma3 hemicomplexes. J Cell Biol, 2003.163(6):p.1281-1290.
    188. Badolato, R. and S. Parolini, Novel insights from adaptor protein 3 complex deficiency. J Allergy Clin Immunol,2007.120(4):p.735-41; quiz 742-743.
    189. Rouille, Y., W. Rohn, and B. Hoflack, Targeting of lysosomal proteins. Semin Cell Dev Biol, 2000.11(3):p.165-171.
    190. Ghosh, P., N.M. Dahms, and S. Kornfeld, Mannose 6-phosphate receptors:new twists in the tale. Nat Rev Mol Cell Biol,2003.4(3):p.202-212.
    191. Hirst, J., M.R. Lindsay, and M.S. Robinson, GGAs:roles of the different domains and comparison with AP-1 and clathrin. Mol Biol Cell,2001.12(11):p.3573-3588.
    192. Deloche, O., et al., Vps10p transport from the trans-Golgi network to the endosome is mediated by clathrin-coated vesicles. Mol Biol Cell,2001.12(2):p.475-485.
    193. Costaguta, G., et al., Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell,2001.12(6):p.1885-1896.
    194. Seaman, M.N., Recycle your receptors with retromer. Trends Cell Biol,2005.15(2):p. 68-75.
    195. Reczek, D., et al., LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell,2007.131(4):p.770-783.
    196. Iwaki, T., et al., Vacuolar protein sorting receptor in Schizosaccharomyces pombe. Microbiology,2006.152(Pt 5):p.1523-1532.
    197. Braulke, T. and J.S. Bonifacino, Sorting of lysosomal proteins. Biochim Biophys Acta,2009. 1793(4):p.605-614.
    198. Zwiewka, M., et al., The AP-3 adaptor complex is required for vacuolar function in Arabidopsis. Cell Res,2011.21(12):p.1711-1722.
    199. Niihama, M., et al., ZIP genes encode proteins involved in membrane trafficking of the TGN-PVC/vacuoles. Plant Cell Physiol,2009.50(12):p.2057-2068.
    200. Bednarek, S.Y. and N.V. Raikhel, Intracellular trafficking of secretory proteins. Plant Mol Biol,1992.20(1):p.133-150.
    201. Hara-Nishimura, I., et al., Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell,1998.10(5):p.825-836.
    202. Takahashi, H., et al., A novel vesicle derived directly from endoplasmic reticulum is involved in the transport of vacuolar storage proteins in rice endosperm. Plant Cell Physiol,2005.46(1):p.245-249.
    203. Hohl, I., et al., Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci,1996.109( Pt 10):p.2539-2550.
    204. Hillmer, S., et al., Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol,2001.152(1):p.41-50.
    205. Wenzel, D., et al., The cargo in vacuolar storage protein transport vesicles is stratified. Traffic,2005.6(1):p.45-55.
    206. Segui-Simarro, J.M. and L.A. Staehelin, Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana:a quantitative and spatial analysis. Planta,2006.223(2):p.223-336.
    207. Segui-Simarro, J.M., et al., Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell,2004. 16(4):p.836-856.
    208. Vedrenne, C. and H.P. Hauri, Morphogenesis of the endoplasmic reticulum:beyond active membrane expansion. Traffic,2006.7(6):p.639-646.
    209. Klopfenstein, D.R., et al., Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alpha-helical segment. J Cell Biol,2001. 153(6):p.1287-1300.
    210. Timm, S., et al., The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner. Mol Biol Cell,1999.10(10):p.3473-3488.
    211. Choi, S.B., et al.. Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature,2000.407(6805):p.765-767.
    212. Hamada, S., et al., Dual regulated RNA transport pathways to the cortical region in developing rice endosperm. Plant Cell,2003.15(10):p.2265-2272.
    213. Wang, C., et al., The cytoplasmic-localized, cytoskeletal-associated RNA binding protein OsTudor-SN:evidence for an essential role in storage protein RNA transport and localization. Plant J,2008.55(3):p.443-454.
    214. Kawakatsu, T., et al., Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot,2008.59(15):p.4233-4245.
    215. Higuchi, W. and C. Fukazawa, A rice glutelin and a soybean glycinin have evolved from a common ancestral gene. Gene,1987.55(2-3):p.245-253.
    216. Ou, J., et al., Transgenic rice endosperm as a bioreactor for molecular pharming. Plant Cell Rep,2014.
    217. Kawagoe, Y., et al., The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Plant Cell,2005.17(4):p.1141-1153.
    218. Crofts, A.J., et al., Targeting of proteins to endoplasmic reticulum-derived compartments in plants. The importance of RNA localization. Plant Physiol,2004.136(3):p.3414-3419.
    219. Walter, M., et al., Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J,2004.40(3):p.428-438.
    220. Xie, T., et al., A biologically active rhlGF-1 fusion accumulated in transgenic rice seeds can reduce blood glucose in diabetic mice via oral delivery. Peptides,2008.29(11):p. 1862-1870.
    221. Ibl, V. and E. Stoger, The formation, function and fate of protein storage compartments in seeds. Protoplasma,2012.249(2):p.379-392.
    222. Reyes, F.C., R. Buono, and M.S. Otegui, Plant endosomal trafficking pathways. Curr Opin Plant Biol,2011.14(6):p.666-673.
    223. Saint-Jean, B., et al., The cytosolic tail dipeptide lie-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis. Plant Cell,2010.22(8):p. 2825-2837.
    224. Carter, C., et al., The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell,2004.16(12):p.3285-3303.
    225. Koide, Y., et al., The N-terminal propeptide and the C terminus of the precursor to 20-kilo-dalton potato tuber protein can function as different types of vacuolar sorting signals. Plant Cell Physiol,1999.40(11):p.1152-1159.
    226. Denecke, J., R. De Rycke, and J. Botterman, Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J, 1992.11(6):p.2345-2355.
    227. Wandelt, C.I., et al., Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J,1992. 2(2):p.181-192.
    228. Tyedmers, J., A. Mogk, and B. Bukau, Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol,2010.11(11):p.777-788.
    229. Drakakaki, G., et al., The intracellular fate of a recombinant protein is tissue dependent. Plant Physiol,2006.141(2):p.578-586.
    230. Nicholson, L., et al., A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnol J,2005. 3(1):p.115-127.
    231. Iwao, Y., et al., Changes of net charge and alpha-helical content affect the pharmacokinetic properties of human serum albumin. Biochim Biophys Acta,2007. 1774(12):p.1582-1590.
    232. Peters, T., All About Albumin:Biochemistry, Genetics, and Medical Applications. San Diego:Academic press,1995.
    233. Ning, T., et al., Oral administration of recombinant human granulocyte-macrophage colony stimulating factor expressed in rice endosperm can increase leukocytes in mice. Biotechnol Lett,2008.30(9):p.1679-1686.
    234. Carrette, O., et al., State-of-the-art two-dimensional gel electrophoresis:a key tool of proteomics research. Nat Protoc,2006.1(2):p.812-823.
    235. Humphery-Smith, I., S.J. Cordwell, and W.P. Blackstock, Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis,1997.18(8):p.1217-1242.
    236. Ong, S.E. and A. Pandey, An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng,2001.18(5):p.195-205.
    237. Lopez, J.L., Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B Analyt Technol Biomed Life Sci,2007.849(1-2):p.190-202.
    238. Chevalier, F., V. Rofidal, and M. Rossignol, Visible and fluorescent staining of two-dimensional gels. Methods Mol Biol,2007.355:p.145-156.
    239. Harris, L.R., et al., Assessing detection methods for gel-based proteomic analyses. J Proteome Res,2007.6(4):p.1418-1425.
    240. Volkova, K.D., V.B. Kovalska, and S.M. Yarmoluk, Modern techniques for protein detection on polyacrylamide gels:problems arising from the use of dyes of undisclosed structures for scientific purposes. Biotech Histochem,2007.82(4):p.201-208.
    241. Weiss, W., F. Weiland, and A. Gorg, Protein detection and quantitation technologies for gel-based proteome analysis. Methods Mol Biol,2009.564:p.59-82.
    242. Cong, W.T., et al., Sensitive fluorescent staining for proteomic analysis of proteins in 1-D and 2-D SDS-PAGE and its comparison with SYPRO Ruby by PMF. Electrophoresis,2008. 29(21):p.4304-4315.
    243. Lanne, B. and O. Panfilov, Protein staining influences the quality of mass spectra obtained by peptide mass fingerprinting after separation on 2-d gels. A comparison of staining with coomassie brilliant blue and sypro ruby. J Proteome Res,2005.4(1):p. 175-179.
    244. Patton, W.F., Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci,2002.771(1-2):p.3-31.
    245. Karp, N.A., et al., Comparison of DIGE and post-stained gel electrophoresis with both traditional and SameSpots analysis for quantitative proteomics. Proteomics,2008.8(5):p. 948-960.
    246. Hrebicek, T., et al., Effect of CyDye minimum labeling in differential gel electrophoresis on the reliability of protein identification. Electrophoresis,2007.28(7):p.1161-1169.
    247. Unlu, M., M.E. Morgan, and J.S. Minden, Difference gel electrophoresis:a single gel method for detecting changes in protein extracts. Electrophoresis,1997.18(11):p. 2071-2077.
    248. Shaw, J., et al., Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics,2003.3(7):p.1181-1195.
    249. Luche, S., V. Santoni, and T. Rabilloud, Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics,2003. 3(3):p.249-253.
    250. Santoni, V., M. Molloy, and T. Rabilloud, Membrane proteins and proteomics:un amour impossible? Electrophoresis,2000.21(6):p.1054-1070.
    251. Santoni, V., et al., Towards the recovery of hydrophobic proteins on two-dimensional electrophoresis gels. Electrophoresis,1999.20(4-5):p.705-711.
    252. Yamada, M., et al., Identification of low-abundance proteins of bovine colostral and mature milk using two-dimensional electrophoresis followed by microsequencing and massspectrometry. Electrophoresis,2002.23(7-8):p.1153-1160.
    253. Ahmed, N. and G.E. Rice, Strategies for revealing lower abundance proteins in two-dimensional protein maps. J Chromatogr B Analyt Technol Biomed Life Sci,2005. 815(1-2):p.39-50.
    254. Gorg, A., et al., The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis,2000.21(6):p.1037-1053.
    255. Seimiya, M., et al., Identification of novel immunohistochemical tumor markers for primary hepatocellular carcinoma; clathrin heavy chain and formiminotransferase cyclodeaminase. Hepatology,2008.48(2):p.519-530.
    256. Kuruma, H., et al.. High molecular mass proteome of androgen-independent prostate cancer. Proteomics,2005.5(4):p.1097-1112.
    257. Tomonaga, T., et al., Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res,2004.10(6):p.2007-2014.
    258. Gruhler, A., et al., Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics,2005.4(11):p.1697-1709.
    259. Engelsberger, W.R., et al., Metabolic labeling of plant cell cultures with K(15)NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods,2006.2:p.14.
    260. Lanquar, V., et al.,15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells. Proteomics,2007.7(5):p.750-754.
    261. Huttlin, E.L., et al., Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana. Mol Cell Proteomics,2007.6(5):p.860-881.
    262. Bindschedler, L.V., M. Palmblad, and R. Cramer, Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry,2008.69(10):p.1962-1972.
    263. Hebeler, R., et al., Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics,2008.7(1):p.108-120.
    264. Whitelegge, J.P., et al., Subtle modification of isotope ratio proteomics; an integrated strategy for expression proteomics. Phytochemistry,2004.65(11):p.1507-1515.
    265. Islam, N., H. Tsujimoto, and H. Hirano, Wheat proteomics:relationship between fine chromosome deletion and protein expression. Proteomics,2003.3(3):p.307-316.
    266. Majeran, W., et al., Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell,2005.17(11):p. 3111-3140.
    267. Dunkley, T.P., et al., The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana. Biochem Soc Trans,2004.32(Pt3):p.520-523.
    268. Dunkley, T.P., et al., Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics,2004.3(11):p.1128-1134.
    269. Dunkley, T.P., et al., Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci U S A,2006.103(17):p.6518-6523.
    270. Nuhse, T.S., et al., Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J,2007. 51(5):p.931-940.
    271. Liu, H., R.G. Sadygov, and J.R. Yates,3rd, A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem,2004.76(14):p. 4193-4201.
    272. Old, W.M., et al., Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics,2005.4(10):p.1487-1502.
    273. Wienkoop, S., et al., Stable isotope-free quantitative shotgun proteomics combined with sample pattern recognition for rapid diagnostics. J Sep Sci,2006.29(18):p.2793-2801.
    274. Asara, J.M., et al., A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics,2008.8(5):p.994-999.
    275. Niittyla, T., et al., Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics,2007.6(10):p. 1711-1726.
    276. Kamo, M., et al., Amino acid sequences of ferredoxins from rice cultivars, japonica and indica. Protein Seq Data Anal,1989.2(4):p.289-293.
    277. Tsugita, A., et al., Separation and characterization of rice proteins. Electrophoresis,1994. 15(5):p.708-720.
    278. Tsugita, A., et al., Two-dimensional electrophoresis of plant proteins and standardization of gel patterns. Electrophoresis,1996.17(5):p.855-865.
    279. Nozu, Y., A. Tsugita, and K. Kamijo, Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics,2006.6(12):p.3665-3670.
    280. Komatsu, S., H. Kajiwara, and H. Hirano, A rice protein library:a data-file of rice proteins separated by two-dimensional electrophoresis. Theor Appl Genet,1993.86(8):p. 935-942.
    281. Hirano, H., Screening of rice genes from the cDNA catalog using the data obtained by protein sequencing. J Protein Chem,1997.16(5):p.533-536.
    282. Agrawal, G.K. and R. Rakwal, Rice proteomics:a cornerstone for cereal food crop proteomes. Mass Spectrom Rev,2006.25(1):p.1-53.
    283. Kim, S.T., et al., Proteomics analysis of rice lesion mimic mutant (spll) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J Proteome Res,2008.7(4):p.1750-1760.
    284. Kim, S.T., et al., The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep,2008.27(3):p.593-603.
    285. Kim, S.G., et al.. The RNase activity of rice probenazole-induced proteinl (PBZ1) plays a key role in cell death in plants. Mol Cells,2011.31(1):p.25-31.
    286. Parker, R., et al., An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot,2006.57(5):p.1109-1118.
    287. Li, G., et al., Removal of high-abundance proteins for nuclear subproteome studies in rice (Oryza sativa) endosperm. Electrophoresis,2008.29(3):p.604-617.
    288. Agrawal, G.K., N.S. Jwa, and R. Rakwal, Rice proteomics:ending phase I and the beginning of phase H. Proteomics,2009.9(4):p.935-963.
    289. Catchpole, G.S., et al., Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A,2005.102(40):p.14458-14462.
    290. He, Z., et al., Two evolutionary histories in the genome of rice:the roles of domestication genes. PLoS Genet,2011.7(6):p. e1002100.
    291. Zhou, J., et al., Metabolic profiling of transgenic rice with crylAc and sck genes:an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci,2009.877(8-9):p.725-732.
    292. Kogel, K.H., et al., Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proc Natl Acad Sci U S A,2010.107(14):p.6198-6203.
    293. Manetti, C., et al., A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. J Exp Bot,2006.57(11):p.2613-2625.
    294. Leon, C, et al., Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. J Chromatogr A,2009.1216(43):p.7314-7323.
    295. Garcia-Villalba, R., et al., Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. J Chromatogr A,2008.1195(1-2):p.164-173.
    296. Baker, J.M., et al., A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J,2006.4(4):p.381-392.
    297. Di Carli, M., et al., Leaf proteome analysis of transgenic plants expressing antiviral antibodies. J Proteome Res,2009.8(2):p.838-848.
    298. Corpillo, D., et al., Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms:the case of a virus-resistant tomato. Proteomics,2004.4(1):p.193-200.
    299. Hajduch, M., et al., A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol,2005.137(4):p.1397-1419.
    300. Lehesranta, S.J., et al., Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol,2005.138(3):p.1690-1699.
    301. Coll, A., et al., Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields. Transgenic Res,2011.20(4):p.939-499.
    302. Rocco, M., et al., The expression of tomato prosystemin gene in tobacco plants highly affects host proteomic repertoire. J Proteomics,2008.71(2):p.176-185.
    303. Luo, J., et al., Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. J Proteome Res,2009.8(2):p.829-837.
    304. Emami, K., et al.. Changes in protein expression profiles between a low phytic acid rice (Oryza sativa L. Ssp. japonica) line and its parental line:a proteomic and bioinformatic approach. J Agric Food Chem,2010.58(11):p.6912-6922.
    305. 谢婷婷.2008.水稻胚乳小分子多肽表达平台建立以及水稻谷蛋白储藏液泡定位信号初步研究[D]:博士.武汉:武汉大学,25-45.
    306. Chassy, B.M., Can-omics inform a food safety assessment? Regul Toxicol Pharmacol, 2010.58(3 Suppl):p. S62-70.
    307. Zolla, L, et al., Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res,2008.7(5):p.1850-1861.
    308. Barros, E., et al., Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol J,2010. 8(4):p.436-451.
    309. Gong, C.Y., et al., Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J Proteome Res,2012.11(5):p.3019-3029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700