纳米羟基磷灰石对肝癌细胞蛋白质合成的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米羟基磷灰石nHAP)具有显著的体外抗肝癌细胞作用,而对肝细胞的抑制作用不明显。纳米羟基磷灰石的这种抗肝癌作用,为抗肝癌医学研究提供了一条新的途径。目前已知其主要作用机理是通过调节c-myc、p53的基因表达,使肝癌细胞阻止于G1期,激活caspase-9诱导肝癌细胞非凋亡性程序性死亡。为了进一步探究纳米羟基磷灰石抑癌作用的机理,本文主要通过研究纳米羟基磷灰石对肝癌细胞蛋白合成的影响来探究其抑制肝癌细胞增殖的机理。
     选用人肝癌细胞系Bel-7402和人肝细胞系L02,用不同浓度的同种纳米羟基磷灰石进行不同时间处理,然后通过MTT比色法测定其对两种细胞的增殖抑制率。结果表明,在一定处理浓度和时间范围内,纳米羟基磷灰石对L02细胞影响很小的情况下,对Bel-7402细胞的增殖产生明显抑制作用,起到抑制肝癌细胞增长的作用。
     通过用Eu标记的纳米羟基磷灰石Eu-nHAP处理Bel-7402细胞和L02细胞,然后用DAPI作为细胞核特异荧光探针对两种细胞的细胞核染色,用DiOC6(3)作为内质网特异荧光探针对两种细胞的内质网染色,最后再在激光共聚焦显微镜下观察到经荧光探针标记的Bel-7402细胞和L02细胞,发现Eu-nHAP处于内质网。说明纳米羟基磷灰石进入细胞后的作用靶点为内质网,并可能通过内质网,影响细胞蛋白的合成、分泌、空间折叠、蛋白质糖基化修饰等功能。
     用含有3H-Leucine的1640培养基培养经纳米羟基磷灰石处理过的细胞,然后经液体闪烁计数器检测细胞合成蛋白质的速率。结果表明,经纳米羟基磷灰石处理后的细胞,总蛋白质的合成速率均有不同程度减缓。在小于0.7mg/ml的浓度范围内,处理3天的纳米羟基磷灰石明显抑制了Bel-7402细胞蛋白质的合成,而L02细胞蛋白质的合成受到的影响却不大,L02细胞仍然维持着正常的合成蛋白的功能。这说明纳米羟基磷灰石通过破坏Bel-7402细胞的蛋白质合成功能,抑制肝癌细胞增长。
     用异硫氰酸荧光素(FITC)标记转铁蛋白制成Fe-TfFITC,并与纳米羟基磷灰石处理过的Bel-7402细胞,L02细胞共孵育,利用荧光光度计检测两种细胞转铁蛋白受体的含量。结果表明,经纳米羟基磷灰石处理的Bel-7402细胞转铁蛋白受体的含量明显减少,L02细胞转铁蛋白受体含量几乎没有影响。这表明纳米羟基磷灰石进入肝癌细胞后通过抑制转铁蛋白受体的表达,降低铁进入细胞的数量,来抑制核糖核苷酸还原酶的活性,阻碍DNA的合成,将无限增殖的肝癌细胞阻滞于G1期,起到抑制肝癌细胞生长和增殖的作用。
     综上所述,纳米羟基磷灰石在进入肝癌细胞后作用于内质网,影响细胞总蛋白的生成,并通过对细胞转铁蛋白受体表达的抑制,使肝癌细胞阻滞于G1期,起到抑制肝癌细胞增殖的作用。
Previous studies show that nano-hydroxyapatite (nHAP) significantly inhibits the proliferation of hepatocellular carcinoma cells, but not that of hepatocytes in vitro. The inhibition of nHAP on carcinoma cells may provide a new way for medical research. The known main mechanism is that nHAP inhibits carcinoma cell proliferation by regulating the mRNA expression of c-myc and p53, arresting the hepatocellular carcinoma cells at G1 phase, and activating caspase-9 which ultimately leads to paraptosis. In order to further explore the mechanisms, this paper studied the influnence of nHAP on cell protein synthesis.
     The inhibition rate of cells was measured using MTT method. After treating human hepatocellular carcinoma Bel-7402 cells and human liver L02 cells with nHAP of different concentrations for different time periods, the cell activity was measusred. It was found that, in a certain rang of concentration and time, nHAP inhibited the growth of Bel-7402 cells while had little effect on L02 cells.
     The location of nHAP in cells is observed with confocal laser scanning microscopy. After treating Bel-7402 cells and L02 cells with Eu-nHAP, the nucleus and endoplasmic reticulum were stained with DAPI and DiOC6(3) separately. Eu-nHAP was found locating in the endoplasmic reticulum. The results showed that nHAP may effect the protein synthesis, secreting, space folding and glycosylation of cells.
     The protein synthesis of nHAP was measured by H3-Leucine incorporation. It was found that the total protein synthesis rate of Bel-7402 cells slowed in varying degrees after treated with nHAP of less than 0.7mg/ml for 3days. In contrast, nHAP had less effect on L02 cells. It showed that nHAP inhibited hepatocellular carcinoma cells growth and proliferation by disrupting protein synthesis.
     The expression of transferrin receptor in cells was measured by fluorescence intensity using FITC-labelled transrerrin. It was found that nHAP significantly decreased the expression of transferrin receptor in Bel-7402 cells, in contrast, nHAP had little effect on the expression of transferrin receptor in L02 cells. It showed that nHAP inhibited hepatocellular carcinoma cells growth and proliferation by decreasing the expression of transferrin receptor and arresting human hepatocellular carcinoma at G1 phase.
     In summary, nHAP enters hepatocellular carcinoma cells, locates in endoplasmic reticulum, and inhibits human hepatocellular carcinoma growth and proliferation by disrupting protein synthesis, decreaseing the expression of transferrin receptor and arresting human hepatocellular carcinoma at G1 phase.
引文
[1]国家质量监督检验检疫总局,国家标准化管理委员会.中华人民共和国国家标准(GB/T199619-2004):纳米材料术语[S].北京:中国标准出版社,2004-12
    [2]夏和生,王琪.纳米技术进展.高分子材料科学与工程,2001,17(4):1-5
    [3]Yi DK, Kim DY. Polymer nanoshere lithography:fabrication of an orderd trigonal polymeric nanostructure. Chen Commun(Camb),2003,21:982~983
    [4]Labhasetwar V, Song C. Nanoparticle drug delivery system for restenosis. Advanced Drug Alivery Reviews,1997,24:63~86
    [5]Alleock H R, Pukcer S R. Poly((amino acid ester) phosphaeznes) as substrates for the contorlled release of small molecules. Biomaterials,1994,15:563
    [6]Fu K, Griebenow K, Hsieh L, et al. FT-IR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J Controlled Release,1999,58:357~369
    [7]屈文涛,任延平.纳米技术在医学诊断中的应用[J].现代检验医学杂志,2003(4)
    [8]Cleland L, Jobnson J. Recombinant human growth hormonepoly (lactic-co-glycolic acid) microshereformulation development. Advanced Drug Delivery Reviews,1998,28:71~84
    [9]Mattson M P, Haddon R C, Rao A M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Nurosci,2000,14:175~82
    [10]Taylor J R, Fang M M, Nie S M A. Probing specific sequences in single DNA molecule with bioconjugated fluorescent nanoparticles. Chemistry,2000,72(9):1979~1986
    [11]Haynes C L, Van Dayne R P. Nanosphere lithography. J Plays hem(B),2001.105: 5599~5611
    [12]Lewin M, Carlesso N, Tung CH, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol,2000,18:410~414
    [13]秦仁义,裘法祖.纳米生物技术在实验外科的应用前景.中华实验外科杂志,2003,20:773~775
    [14]陈丽英.中国率先应用纳米技术诊断肝癌.中国新药杂志,2004,13(6):564
    [15]Jordan A. Nanotechnology and consequences for surgical oncology. Kongressba Dtsch Ges Chir Kongr,2002,119:821~828
    [16]Cleland L. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulation for therapeutics and vaccines. Biotechnology Progress, 1998,14:102~107
    [17]Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release,2001,70:399~421
    [18]Vandorpe J, Schacht E. Poly(organo phosphazene) nanoparticle surface modified with poly(ethylene oxide). Biotechnology and Bioengineering,1996,52:89~95
    [19]Samsavar L. Dual stage instrument for scanning a specimen. United States, 6267005.2000-05-27
    [20]Okuda K. Hepatocellular carcinoma. J Hepatol,2000,32(suppl 1):225~237
    [21]Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis,1999, 19:271~285
    [22]Liaw YF, Tai DI, Chu CM, et al. Early detection of hepatocellar carcinoma in patients with chronic type B hepatitis. A prospective study, Gastroenterology,1986,90:263~267
    [23]Bismuth H, Majno PE, Adam R. Liver transplantation for hepatocellular carcinoma. Semin Liver Dis,1999,19:311~322
    [24]Llovet JM, Bruix J, Gores GJ. Surgical resection versus transplantation for early hepatocellular carcinoma:clues for the best strategy. Hepatology,2000,31:1019~1021
    [25]Nagasue N, Kohno H, Chang YC, et al. Liver resection for hepatocellular carcinoma Results of 229 consecutive patients during 11 years. Ann Surg,1993,217:375~384
    [26]Iwatsuki S, Starzl TE. Role of liver tranplantation in the treatment of hepatocellular carcinoma. Semin Surg Oncol,1993,9:337
    [27]Sarasin FP, Giostra E, Mentha G, et al. Parcial hepatectonmy or orthotopic Liver transplantation for the treament of resectable hepatocellular carcinoma. A cost-effectiveness perspective Hepatology,1998,28:436~442
    [28]Chen RM. The estabishment of a strain of human liver cell carcinoma in vitro and some preliminary observations. China Med J,1963,82:228
    [29]Shen DW, Chen Rm. Human hepatocellular carcinoma cells cultivated in vitro. In:Tang ZY, ed. Subclinicalhepatocelluar carcinoma. Berlin:Spinger,1985:336
    [30]Tabor E. Tumor suppressor genes, growth factors, and oncogenes in hepatitis B virus-associated hepatocellular carcinoma. J Med Virol,1994,42:357
    [31]Livni N, Eid A, Ilan Y, et al. p53 expression in patients with cirrhosis with and without hepatocellular carcinoma. Cancer,1995,75:2420
    [32]Ng IOL, Lai ECS, Chan ASY. So MKP. Over expression of p53 in hepatocellular carcinoma:a clinicopathological and prognostic correlation. J Gastroenterol Hepatol,1995,10: 250
    [33]Inui Y, Hisgashiyama S, Kawata S, et al. Expression of heparin-binding epidermal growth factor in human gepatocellular carcinoma. Gastroenterology,1994,107:1799
    [34]Shirai Y, Kawata S, Tamura S, et al. Plasma transforming growth factor-β I in patients with hepatocellular carcinoma-comparison with chromic liver disease. Cancer,1994,73:2275
    [35]Tanno S, Ogawa K. Abundant TGFa a precursor and EGF receptor expression as a possible mechanism for the preferential growth of carcinogen-induced prencoplastic and neoplastic hepatocytes in rats. Carcinogenesis,1944,15:1689
    [36]Jeng KS, Sheen IS, Chen BF, et al. Is the p53 gene mutain of prognostic value in hepatocellular carcinoma after resection[J]. Arch Surg,2000,135(11):1329
    [37]Qin LX, Tang ZY, Liu KD, et al. p53 mutations may be related to tumor in vasiveness of hepatocellular carcinoma in China[J]. Oncol Rep,1995,2:1175
    [38]Nolte M, Wemer M, Nasarek A, et al. Expression of proliferation associated antigens and detection of mumerical chromosome aberrations in primaty human liver tumours:relevance to tumour characteristics and prognosis[J]. J Clin Pathol,1998,51(1):47
    [39]Hino N, Higashi T, Nouso K, et al. Prolifetating cell nuclear antigen and grade of malignancy in small hepatocellular carcinoma-evaluation in US-guided specimens [J]. Hepatogastroenterology,1997,44:245
    [40]Ng IO, Lai EC, Fan ST, et al. Prognostic significaned of proliferating cell nuclear antigen expression in hepatocellular carcinoma[J]. Cancer,1994,73(9):2268
    [41]Yuki I, Yokom izo Y. Inorganic phosphate materials. Sensa Gyntsn,1981,1:23~27
    [42]Qiying M, Logan T J, Traina S J. Lead immobilization from aqueous solutions and contam inated soils using phosphate rocks. Environ Sci and Technol,1995,29:1118~1126
    [43]Prener J S. The growth and crystsallographic properties of calcium fluor and chlorapatite crystals. Electrochem. Soc Solid State Science,1967,114(1):77~83
    [44]Roy D M, Eysel W, Dinger D. Hydrothermal synthesis of various carbonate containing calcium hydroxyapatite. Mater. Res. Bull,1974,9:35~40
    [45]Aoki H, Kato K, Shiba M. Synthesis of hydroxyapatite under hydrothermal conditions [J]. Dent. Apparatus and Materialsk,1972,13(27):170~176
    [46]Jarcho M, Bolen C H, Thomas M B. Hydroxylapatite synthesis and charaterization in dense polycrystalline form. [J] Mater, Sci,1976(1):2027~2035
    [47]张士成,李世普,陈芳.磷灰石超微粉对癌细胞作用的初步研究.武汉工业大学学报,1996,18(1):5-8
    [48]张士成,李世普,袁润章.磷灰石超微粉对骨癌Os-732细胞形态的影响.武汉工业大学学报,1996,18(1):13~16
    [49]张士成,李世普,袁润章.磷灰石超微粉对胃癌MGc-803细胞集落形成和细胞骨架的影响.武汉工业大学学报,1996,18(1):9-11
    [50]陈筠,曹献英,韩颖超,李世普.纳米磷灰石对肝癌癌基因表达的影响.武汉理工大学学报,2005,(09):29~31
    [51]曹献英.纳米羟基磷灰石诱导肝癌细胞死亡的作用靶点及机理研究[D].武汉:武汉理工大学,2005
    [52]Skouteris GG, Schroder CH. C-myc is required for the G0/G1-stransition of primary hepatocytes simulated with a deleted from of hepatocytes growth factor. Biochem,1996,316: 879~886
    [53]齐志涛,曹献英,韩颖超,戴红莲,李世普.纳米磷灰石对人肝癌细胞端粒酶基因表达的影响.武汉理工大学学报,2004,26(7):46-48
    [54]叶秀珍,朱德厚,沈鼎武.体外连续培养的干细胞的超显微结构.实验生物学报,1980,13(4):362~365
    [55]陈瑞铭,朱德厚,叶秀珍等.人体肝癌体外细胞系Bel-7402的建立及其特征.实验生物学报,1978,11(1):37
    [56]Chen RM. The estabishment of a strain of human liver cell carcinoma vitro and some preliminary observations. China Med J,1963,82:228
    [57]Boyd, M.B. Status of implementation of the NCI humuan tumor cell line in vitro primary screening. Proc. Amer. Assoc. Cancer Res.30,652-658(1989)
    [58]Jens Meyer, Andress F, Mack, Anthony W, Gummer. Pronounced infracuticular endocytosis in mammalian outer hair cells. Hearing Research,2001,161:10~22
    [59]杜正通,黄东标,凌志强.顺铂诱导人骨肉瘤细胞凋亡及其分子机制的初步研究.中国误诊学杂志,2003,3(3):329~331
    [60]D. Dufrace, O. Cornu, C. Delloye, et al. Physical and chemical processing for a human dura mater substitute. Biomaterials,2002,23:2979~2988
    [61]Terasaki M. Labeling of the Endoplasmic Reticulum with DiO6(3) Cell Biology:A Labotrtory Handbook. Celis JE. Ed.1998,501~506
    [62]戴维德,王雷,刘凡光等.应用激光扫描共聚焦显微成像术研究光敏剂亚细胞定位.中国激光医学杂志,2004,13(1):12~17
    [63]Yuping Gong, Yanting Wang, Fanyuan Chen, et al. Identification of the subcellular localization of daunorubicin in multidrug-resistant K562 cell line. Leukemia Research,2000, 24:769~774
    [64]White JG, Amos WB. Confocal microscopy comes of age[J]. Nature,1987,32:183~184
    [65]Min Skym. Memo iron inventing confocal scanning microscope[J]. Scanning,1998,12: 11
    [66]Egger MD. The development of confocal microscopy[J]. TINS,1998,12:11[67]张旭,徐维奇.激光扫描共聚焦显微镜技术的发展及应用.现代科学仪器.2001
    [68]吕顺艳,朱妙章,郭海涛,于军,魏启明.血管钠肽对中度低氧诱导的心肌细胞蛋白合成有抑制作用.生理学报,2002,54(1):7-11
    [69]张恒,王培勇,刘健,严竣.BAPTA对去甲肾上腺素刺激的大鼠心肌细胞蛋白合成及c-fos和βp-M HC表达的影响.第三军医大学学报,2005,27(15):1534~1537
    [70]谢协驹,符史干,吉丽敏.肾上腺素诱导培养新生大鼠心肌细胞肥大的实验研究.海南医学院学报,2001,7(1):1-3
    [71]Hedley D, Rugg C, Musgrove E & Taylor I. Modulation of transferrin receptor expression by inhibitors of nucleic acid synthesis [J]. Cell Physiol,124,61-66(1985)
    [72]Thelander L, Reichard P. Peduction of ribonucleotides. Annu Rev Biochem,1979,48: 133
    [73]Neckers LM, Bauer S, McGlennen RC et al. Dilitiazem inhibits transferrin receptor expression and causes G1 arrest in normal and neoplastic T cells. Mol Cell Biol,1986,6(12): 4244
    [74]谢天培,吴孟超,沈锋,施乐华等.肝癌细胞膜上转铁蛋白受体和去唾液酸糖蛋白受体数量的变化.第二军医大学学报,1997,18(1):6-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700