铁酸镍锌—硒化镉磁性荧光复合微球的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有独特的、与尺寸相关的性质。尤其是磁性纳米材料在生物医药领域的应用引起人们极大的兴趣:包括磁响应成像、生物分离和磁热治疗。然而,磁性纳米颗粒其反应活性随着尺寸的减少迅速增大。较小尺寸的纳米颗粒直接暴露于一定的环境会发生快速的降解,因此,为了克服这一缺点有必要对其进行包覆。量子点具有优良的光学性质,由于其作为生物标记物的潜在应用价值获得了广泛关注。构造磁性荧光双重功能的复合微球并应用于医药、生物技术以及电子、催化领域具有重要意义。将磁性和光学纳米材料包覆到聚合物中被认为是一个重要的创新。然而,当应用这些磁性荧光复合微球时遇到的一个普遍问题是由于磁性材料的填充量少,导致产物的磁响应不高,以至于材料的回收相当费时,甚至于不切实际。
     本论文利用微乳液方法、改善后的StOber法和层层自组装三种方法相结合制备了具有高饱和磁化强度的磁性荧光复合微球。研究的主要内容如下:
     (1)利用Na2SeSO3为前驱体在水溶液中制备了CdSe量子点,并对不同实验条件下产物的荧光性能进行了研究。产物具有单分散性、尺寸统一、粒径可控。该方法容易操作、低成本、良好的重现性、环境友好性。
     (2)铁酸镍锌磁性纳米材料利用十八胺为配体,在空气气氛条件下利用高温热解方法制备,研究了不同实验条件对产物磁性的影响。所制备产物具有良好的分散性,且粒径大小为10 nm左右,具有较窄的尺寸分布。
     (3)论文选用了全新的二甘醇为连续相、甲苯为油相、TX-100为表面活性剂的微乳体系,利用二甘醇代替水作为连续相,将正硅酸乙酯的水解和缩合限制在小油滴中进行,通过提高液滴中磁性材料的含量从而制备高磁响应的磁性二氧化硅微球。利用硅烷偶联剂对磁性微球进行表面修饰后,采用静电自组装将CdSe量子点吸附到修饰后的磁性微球表面。StOber法是在乙醇和水混合溶剂中以氨水等催化有机硅氧烷在磁性纳米粒子表面修饰SiO2的方法,本论文以吸附量子点的磁性微球替换磁性纳米颗粒,通过控制醇水比、氨水加入量等实验条件制备了磁性荧光复合微球。利用TEM, HRTEM, FT-IR, PL和VSM研究了产物的形态和性质。结果表明:通过上述方法可制备具有高饱和磁化强度的磁性荧光复合微球。相比于其他文献报道,产物具有高的饱和磁化强度主要来源于较多的磁性材料填充量。因此,该复合微球有望在生物医学领域有更广的应用。
Nanoparticles have unique, size-dependent properties. In addition, magnetic nanoparticles have been of great interest for biomedical applications including magnetic resonance imaging, bio-separation, and hyperthermia treatment. Nevertheless, the reactivity of magnetic nanoparticles has been shown to greatly increase as the particle dimensions are reduced, and particles with relatively small sizes may undergo rapid degradation when they are directly exposed to certain environments. Consequently, a suitable coating is essential to overcome such limitations. Quantum dots (QDs), which have excellent optics function, have gained extensive attention due to their potential applications as labeling agents for biological research. The fabrication of bifunctional magnetic-luminescent composite microspheres for practical use in a wide range of applications from medicine and biotechnology to electronics and catalysis is currently of considerable interest. The encapsulation of magnetic and optical materials within a carrier polymer (silica) based nanoparticle is seen as a significant and important innovation. However, a common problem encountered when applying these magnetic-luminescent silica composite microspheres is their poor magnetic response due to the low loading density of magnetic nanoparticles, which makes the recovery of magnetic-luminescent silica composite microspheres much more time-consuming and even impractical.
     In this paper, we have prepared magnetic-luminescent composite microspheres with a high saturation magnetization via three consecutive steps by microemulsion combined with a modified StOber method and the layer-by-layer (LbL) assembly technique. The results of this work are as following:
     (1) CdSe quantum dots were prepared with precursors Na2SeSO3 in aqueous solution and the fluorescent properties of CdSe QDs with different experimental condition were discussed. The products were of monodispersed, and uniform in radius, size controllable. The methods are easy to handle, low in price, with good repeatability and environmental friendly.
     (2) (Ni,Zn)Fe2O4 nanoparticles were prepared via the thermal decomposition of precursors in the open air with octadecylamine as capping agent and the influence of different experimental condition on the magnetic properties of the products was researched. The product has good dispersion, and size for 10 nm around, with a narrow size distribution.
     (3) This paper selects a new microemulsion system with diethylene glycol as continuous phase, toluene as oil phase and TX-100 as surfactant. Water instead by diethylene glycol as continuous phase can limit the hydrolysis and condensation of TEOS in small droplets, through improving amount of magnetic materials in the droplets, high magnetic response silica microspheres will synthesised. After the surface modification of magnetic microsphere by silane coupling agent, quantum dot decorate the magnetic microsphere surface via electrostatic self-assembly. StOber method is in magnetic nanoparticles surface modification with SiO2 by organo-siloxane catalyzed by ammonia in ethanol and water mixed solvents. In this paper, the magnetic nanoparticles were replaced by magnetic microspheres, and add quantum dot, through the control of alcohol, ammonia water quantity and so on, magnetic fluorescence composite microspheres were synthesis. Magnetic-luminescent composite microspheres with high saturation magnetization was obtained by assembling CdSe onto the surface of magnetic silica microspheres. TEM, HRTEM, FT-IR, PL and VSM were used to investigate the morphology and properties of the composite microspheres. The results showed that the composite microspheres displayed a strong magnetic behavior at room temperature. The as-synthesized composite microspheres exhibit a much higher saturation magnetization because of the high loading density of (Ni,Zn)Fe2O4 magnetic material compared to others reported in the current literature. Therefore, the composite microspheres is expected to find many potential applications in biomedical fields.
引文
[1]杨中民,信文瑜,王月平.纳米粒子及纳米化学研究进展[J].云南化工,2000,27(1):22-25
    [2]Klabunde K J, Stark J, Koper 0, Mohs C, Park D G, Decker S, Jiang Y, Lagadic I, Zhang D J. Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry [J]. J. Phys. Chem. A,1996,100(30):12142-12153
    [3]Kamat P V, DimitrijeviC N M. Colloidal semiconductors as photocatalysts for solar energy conversion[J]. Sol. Energy,1990,44(2):83-98
    [4]张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域——纳米微粒与纳米固体[J].物理,1992,21(3):167-173
    [5]Sharma S C, Murphree J, Chakraborty T. Photoluminescence spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532-nm laser radiation and gamma-rays[J].J. Lumin.,2008,128(11):1771-1776
    [6]Zhang X F, Sun Z H, Yan W S, Wei F, Wei S Q. Structural evolutions of CdSe nanocrystals in ripening process[J]. Mate. Chem. Phys.,2008,111:513-516
    [7]邓大伟,于俊生.柠檬酸稳定的水溶性CdSe和CdSe/CdS量子点的荧光特性[J].无机化学学报,2008,24(5):701-707
    [8]Duong H D, Rhee J. Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection[J]. Anal. Chim. Acta,2008,626(1):53-61
    [9]杨芳芳,于俊生,谢颖.水溶性的CdSe/CdS/ZnS量子点的合成及表征[J].无机化学学报,2008,24(7):1142-1147
    [10]王璐,王德平,黄文,宁佳,郁美娟.水相制备硒化镉半导体量子点的荧光性能[J].硅酸盐学报,2005,33(10):49-55
    [11]Kim D, Mishima T, Tomihira K, Nakayama M. Temperature Dependence of Photoluminescence Dynamics in Colloidal CdS Quantum Dots[J]. J. Phys. Chem. C,2008,112(29):10668-10673.
    [12]Seabold J A, Shankar K, Wilke R H T, Paulose M, Varghese O K, Grimes C A, Choi K S. Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays[J]. Chem. Mate.,2008,20(16):5266-5273.
    [13]Medintz I L, Uyeda H T, Goldman E R, Mattoussi H.Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J]. Nat. Mater.,2005,4(6):435-446
    [14]Liu J H, Fan J B, Gu Z, Cui J, Xu X B, Liang Z W, Luo S L, Zhu M Q. Green Chemistry for Large-Scale Synthesis of Semiconductor Quantum Dots[J]. Langmuir,2008, 24(10):5241-5244
    [15]Stuczynski S M, Brennan J G, Steigerwald M L. Formation of Metal-chalcogen Bonds by the Reaction of Metal-alkyls with Silyl Chalcogenides[J]. Inorg. Chem.,1989,28(25):4431-4432
    [16]Murray C B, Norris D J, Bawendi M G. Synthesis and Characterization of Nearly Monodisperse CdE (E=sulfur, selenium, tellurium)Semiconductor Nanocrystallites[J]. J. Am. Chem. Soc.,1993,115(19):8706-8715
    [17]Trindade T, O'Brien P, Zhang X M. Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach[J]. Chem. Mater.,1997,9 (2):523-530
    [18]Ptatschek V, Schreder B, Herz K, Hilbert U, Ossau W, Schottner G, Rahaluser O, Bischof T, Lermann G, Materny A, Kiefer W,Bacher G, Forchel A, Su D, Giersig M, Mulller G, Spanhel L. Sol-Gel Synthesis and Spectroscopic Properties of Thick Nanocrystalline CdSe Films[J]. J. Phys. Chem. B,1997,101(44):8898-8906
    [19]Adam P Z, Peng X G. Mechanisms of the Shape Evolution of CdSe Nanocrystals[J]. J. Am. Chem. Soc.,2001,123(7):1389-1395
    [20]Manna L, Scher E C, Paul A A. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals[J]. J. Am. Chem. Soc.,2000, 122(51):12700-12706
    [21]Becerra L R, Murray C B, Griffin R G. Investigation of the Surface Morphology of Capped CdSe Nanocrystallites by 31P Nuclear Magnetic Resonance[J]. J. Chem. Phys., 1994,100(4):3297-3300
    [22]Bowen K J E,Colvin V L, Alivisatos A P. X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface[J]. J. Phys. Chem., 1994,98(15):4109-4117
    [23]Hines M A, Guyot-Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals[J]. J. Phys. Chem.,1996,100(2):468-471
    [24]Hines M A, Guyot-Sionnest P. Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals[J]. J. Phys.Chem. B.1998,102(19):3655-3657
    [25]Peng X G, Wickham J, Alivisatos A P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions[J]. J. Am. Chem. Soc.,1998,120(21):5343-5344
    [26]Peng X G, Manna L, Yang W D.Shape Control of CdSe Nanocrystals[J]. Nature, 2000,404(6773):59-61
    [27]Adam P Z, Peng X G. Mechanisms of the Shape Evolution of CdSe Nanocrystals[J]. J. Am. Chem. Soc.,2001,123(7):1389-1395
    [28]Adam P Z, Peng X G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor[J]. J. Am. Chem. Soc.,2001,123(1):183-184
    [29]Aldana J, Wang Y A, Peng X G. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols[J]. J. Am. Chem. Soc.,2001,123(36):8844-8850
    [30]Qu L H, Peng Z A, Peng X G. Alternative Routes toward High Quality CdSe Nanocrystals[J]. Nano Lett.,2001,1(6):333-337
    [31]Peng X G, Yu W W. Formation of High-quality CdS and other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers[J]. Angew. Chem.,Int. Ed.,2002,41 (13):2368-2371
    [32]Hines Margaret A, Guyot-Sionnest Philippe. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals[J]. J. Phys. Chem.,1996,100(2):468-471
    [33]Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility[J]. J. Am. Chem. Soc.,1997,119(30):7019-7029
    [34]Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine Trioctylphosphine Oxide Trioctylphospine Mixture[J]. Nano Lett.,2001,1(4):207-211
    [35]Talapin D V, Haubold S, Rogach A L, Kornowski A, Haase M, Weller H. A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals[J]. J. Phys. Chem. B, 2001,105(12):2260-2263
    [36]Mekis I, Talapin D V, Kornowski A, Haase M, Weller H. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches[J]. J. Phys. Chem. B,2003,107(30):7454-7462
    [37]Li J J, Wang Y A, Guo W Z, Keay J C, Mishima T D, Johnson M B, Peng X G. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable reagents via Successive Ion Layer Adsorption and Reaction[J]. J. Am. Chem. Soc., 2003,125(41):12567-12575
    [38]Talapin D V, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals[J]. J. Phys. Chem. B, 2004,108(49):18826-18831
    [39]Xie R G, Kolb U, Li J, Basche T, Mews A. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals[J]. J. Am. Chem. Soc., 2005,127(20) 7480-7488
    [40]Talapin D V, Nelson J H, Shevchenko E V, Aloni S, Sadtler B, Alivisatos A P. Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies[J]. Nano Lett.,2007,7(10):2951-2959
    [41]Lu C G, Chen Z Y, O'Brien S. Optimized Conditions for the Self-Organization of CdSe-Au and CdSe-CdSe Binary Nanoparticle Superlattices[J]. Chem. Mater.,2008,20(11):3594-3600
    [42]Mahler B, Lequeux N, Dubertret B. Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals[J]. J. Am. Chem. Soc.,2010,132(3):953-959
    [43]Spanhel L, Haase M, Weller H, Henglein A. Photochemistry of Colloidal Semiconductors.20. Surface Modification and Stability of Strong Luminescing CdS Particles[J]. J. Am. Chem. Soc.,1987,109(19):5649-5655
    [44]Spanhel L, Weller H, Henglein A. Photochemistry of Semiconductor Colloids.22. Electron Injection from Illuminated CdS into Attached TiO2 and ZnO Particles[J]. J. Am. Chem. Soc., 1987,109(22):6632-6635
    [45]Rogach A L, Katsikas L, Kornowski A. Synthesis and Characterization of Thiol-Stabilized CdTe Nanocrystals.Berichte der Bunsen-Gesellschaft[J]. Phys. Chem., 1996,100(11):1772-1778
    [46]Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmulller A, Weller H. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes[J]. J. Phys. Chem. B,2002,106(29):7177-7185
    [47]Nguyen L, Kho R, Bae W, Mehra R K. Glutathione as a matrix for the synthesis of CdS nanocrystallites[J]. Chemosphere,1999,38(1):155-173
    [48]Spanhel L, Haase M, Weller H, Henglein A. Photochemistry of Colloidal Semiconductors Surface Modification and Stability of Strong Luminescing CdS Particles[J]. J. Am. Chem. Soc.,1987,109(19):5649-5655
    [49]Vossmeyer T, Katsikas L, Giersig M, Popovic I G, Diesner K, Chemseddine A, Eychmueller A, Weller H. CdS Nanoclusters:Synthesis Characterization Size Dependent Oscillator Strength Temperature Shift of the Excitonic Transition Energy and Reversible Absorbance Shift[J]. J. Phys. Chem.,1994,98(31):7665-7673
    [50]Rogach A L, Kornowski A, Gao M Y, Eychmuller A, Weller H. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J]. J. Phys. Chem. B,1999,103(16):3065-3069
    [51]Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes[J]. J. Phys. Chem. B,2002,106(29):7177-7185
    [52]Gao M Y, Kirstein S, Rogach H M L, Kornowski A, Eychmuller A, Weller H. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification[J]. J. Phys. Chem. B, 1998,102(43):8360-8363
    [53]Zhang H, Zhou Z, Yang B, Gao M Y. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles[J]. J. Phys. Chem. B,2003,107(1):8-13
    [52]Mahtab R, Rogers J P, Murphy C J. Protein-Sized Quantum Dot Luminescence Can Distinguish between "Straight", "Bent", and "Kinked" Oligonucleotides[J]. J. Am. Chem. Soc.,1995,117(35):9099-9100
    [53]Mamedova N N, Kotov N A, Rogach A L, Studer Joe. Albumin-CdTe Nanoparticle Bioconjugates Preparation Structure and Interunit Energy Transfer with Antenna Effect[J]. Nano Lett.,2001,1(6):281-285
    [54]Wang S P, Mamedova N, Kotov N A, Chen W, Studer J. Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates[J]. Nano Lett.,2002,2(8):817-822
    [55]Chen Y F, Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes[J]. Anal. Chem.,2002,74(19):5132-5138
    [56]汪乐余,朱英贵,朱昌青,王伦,宋海燕,李世珍,李兴江.硫化镉纳米荧光探针荧光猝灭法测定痕量铜[J].分析化学,2002,30(11):1352-1354
    [57]Kerim M, Gattas A, Roger M. Peptide-coated CdS Quantum Dots for the Optical Detection of Copper and Silver[J]. Chem. Commun.,2003,38(21):2684-2685
    [58]Isarov A V, Chrysochoos J. Optical and Photochemical Properties of Nonstoichiometric Cadmium Sulfide Nanoparticles:Surface Modification with Copper(Ⅱ) Ions[J]. Langmuir, 1997,13(12):3142-3149
    [59]Mitchell G P, Mirkin C A, Letsinger R L. Programmed Assembly of DNA Functionalized Quantum Dots[J]. J. Am. Chem. Soc.,1999,121(35):8122-8123
    [60]Pathak S, Choi S K, Arnheim N, Thompson M E. Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization[J]. J. Am. Chem. Soc., 2001,123(17):4103-4104
    [61]Bruchez M, Jr M M, Gin P, Weiss S, Alivisatos A P. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science,1998,281(5385):2013-2016
    [62]Wu X Y, Liu H J, Liu J Q, Haley K N, Treadway J A, Larson J P, Ge N F, Peale F, Bruchez M P. Immunofluorescent Labeling of Cancer Marker Her2 and other Cellular Targets with Semiconductor Quantum Dots[J]. Nat. Biotechnol.,2003,21 (1):41-46
    [63]Tokumasu F, Fairhurst R M, Ostera G R, Brittain N J, Hwang J, Wellems T E, Dvorak J A. Band 3 modifications in Plasmodium falciparuminfected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots[J]. J. Cell Sci.,2005,118 (5):1091-1098
    [64]Tada H, Higuchi H, Wanatabe T M, Ohuchi N. In vivo Real-time Tracking of Single Quantum Dots Conjugated with Monoclonal Anti-HER2 Antibody in Tumors of Mice[J]. Cancer Res.,2007,67(3):1138-1144
    [65]Akerman M E, Chan W C W, Laakkonen P. Nanocrystal Target in Invivo[J]. P. Natl. Acad. Sci. USA.,2002,99(20):12617-12621
    [66]Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles[J]. Science. 2002,298(5599):1759-1762
    [67]张吉林,洪广言,倪嘉缵.单分散磁性纳米粒子靶向药物载体[J].化学进展,2009,21(5):880-889
    [68]王君,刘嘉.功能性磁共振成像的应用和发展前景[J].现代仪器,2008,(1):6-10
    [69]Lange J, otitz R K, Haller A, Trahms L, Semmler W, Weitschies W. Magnetorelaxometry-a new binding specific detection method based on magnetic nanoparticles[J]. J. Magn. Magn. Mater.,2002,252:381-383
    [70]Sertkol M, Koseoglu Y, Baykal A, Kavas H, Ba(?)aran A C. Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticles via a polyethylene glycol-assisted hydrothermal route[J]. J. Magn. Magn. Mater.,2009,321(3):157-162.
    [71]Modak S, Karan S, Roy S K., Mukherjee S, Das D, Chakrabarti P K.. Preparation and characterizations of SiO2-coated nanoparticles of Mn0.4Zn0.6Fe2O4[J]. J. Magn. Magn. Mater.,2009,321(3):169-174.
    [72]Sertkol M, Koseoglu Y, Baykal A, Kavas H, Bas-aran A C. Synthesis and magnetic characterization of Zn0.6Ni0.4Fe2O4 nanoparticlesvia a polyethylene glycol-assisted hydrothermal route[J]. J. Magn. Magn. Mater.,2009,321 (3):157-162
    [73]Li X, Wang G. Low-temperature synthesis and growth of superparamagnetic Zn0.5Ni0.5Fe2O4 nanosizedparticles[J]. J. Magn. Magn. Mater.,2009,321(9):1276-1279
    [74]Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G X. Monodisperse MFe2O4 (M= Fe, Co, Mn) Nanoparticles[J]. J. Am. Chem. Soc.,2004,126 (1),273-279
    [75]Fuertes A B, Valdes-Solis T, Sevilla M. Fabrication of Monodisperse Mesoporous Carbon Capsules Decorated with Ferrite Nanoparticles[J]. J. Phys. Chem. C,2008,112(10): 3648-3654
    [76]Fan H M, Yi J B, Yang Y, Kho K W, Tan H R, Shen Z X, Ding J, Sun X W, Olivo M C, Feng Y P. Single-Crystalline MFe2O4 Nanotubes/Nanorings Synthesized by Thermal Transformation Process for Biological Applications[J]. ACS Nano.2009,3(9):2798-2808
    [77]Tao K, Zhou H, Dou H J, Xing B, Li W W, Sun K. Direct Deposition of Fluorescent Emission-Tunable CdSe on Magnetite Nanocrystals[J]. J. Phys. Chem. C,2009,113(20): 8762-8766
    [78]Ju Z G, Lu Y M, Zhang J Y, Wu X J, Liu K W, Shan C X, Li B S, Zhao D X, Zhang Z Z, Li B H, Yao B, Shen D Z. Structural and Optical Properties of Cd1-xFexSe Microstructures Grown by Metalorganic Chemical Vapor Deposition[J]. Cryst. Growth Des.,2008,8(8):2733-2735
    [79]Liu B, Wang D, Huang W, Yu M J, Yao A. Fabrication of nanocomposite particles with superparamagnetic and luminescent functionalities[J]. Mater. Res. Bull., 2008,43(11):2904-2911.
    [80]Li L, Choo E S G, Liu Z Y, Ding J, Xue J. Double-layer silica core-shell nanospheres with superparamagnetic and fluorescent functionalities[J]. Chem. Phys. Lett.,2008,461(1-3):114-117
    [81]Yu S Y, Zhang H J, Yu J B, Wang C, Sun L N, Shi W D. Bifunctional Magnetic-Optical Nanocomposites:Grafting Lanthanide Complex onto Core-Shell Magnetic Silica Nanoarchitecture[J]. Langmuir,2007,23(14):7836-7840
    [82]Zhang Y X, Pan S S, Teng X M, Luo Y Y, Li G H. Bifunctional Magnetic-Luminescent Nanocomposites:Y2O3/Tb Nanorods on the Surface of Iron Oxide/Silica Core-Shell Nanostructures[J]. J. Phys. Chem. C,2008,112(26):9623-9626
    [83]Zhang L H, Liu B F, Dong S J. Bifunctional Nanostructure of Magnetic Core Luminescent Shell and Its Application as Solid-State Electrochemiluminescence Sensor Material[J]. J. Phys. Chem. B,2007,111(35):10448-10452
    [84]Insin N, Tracy J B, Lee H, Zimmer J P, Westervelt R M., Bawendi M G. Incorporation of Iron Oxide Nanoparticles and Quantum Dots into Silica Microspheres[J]. ACS Nano,2008,2 (2):197-202
    [85]Crosby G A, Demas J N. Measurement of photoluminescence quantum yields. Review[J]. J. Phys. Chem. B,1971,75(8):991-1178
    [86]Caruso F, Spasova M, Susha A, Giersig M, Caruso R A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem. Mater., 2001,13(1):109-116
    [87]Hyeon T, Lee S S, Park J, Chung Y, Na H B. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process[J]. J. Am. Chem. Soc.,2001,123(51):12798-12801
    [88]Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G X. Monodisperse MFe2O4 (M= Fe, Co, Mn) Nanoparticles[J]. J. Am. Chem. Soc.,2004,126(1):273-279.
    [89]Sahoo Y, Cheon M, Wang S, Luo H, Furlani E P, Prasad P N. Field-Directed Self-Assembly of Magnetic Nanoparticles[J]. J. Phys. Chem. B,2004,108(11):3380-3383.
    [90]Lyon J L, Fleming D A, Stone M B, Schiffer P, Williams M E. Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding[J]. Nano Lett.,2004,4(4):719-723.
    [91]Jalaly M, Enayati M H, Karimzadeh F, Kameli P. Mechanosynthesis of nanostructured magnetic Ni-Zn ferrite[J]. Powder Technol.,2009,(193):150-153
    [92]Jalaly M, Enayati MH, Karimzadeh F. Investigation of structural and magnetic properties of nanocrystalline Nio.3Zno.7Fe204 prepared by high energy ball milling[J]. J. Alloy. Compd., 2009,480 (2):737-740

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700