三苯甲烷类染料与G-四链体的作用及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三苯甲烷染料(TPM)自身由于共振去激发显示很弱的荧光。然而当它们堆积在G-四链体的两个表面G-四分体时,由于共振被限制,它们的荧光显著增强。因此TPM染料可以开发为G-四链体识别荧光探针。本文考察了五种TPM染料和G-四链体、双链和单链DNA作用后的荧光光谱和荧光共振能量转移光谱。结果表明四种TPM染料的荧光光谱可用于区分分子内G-四链体和分子间G-四链体、单链和双链DNA。TPM染料的荧光共振能量转移光谱和荧光共振能量转移滴定可把G-四链体(包括分子内G-四链体和分子间G-四链体)与单链和双链DNA区分开。此外,还发现TPM染料所带的正电荷数以及取代基的体积是影响染料和G-四链体结合稳定性的两个重要因素。
     此外,本论文利用无需标记的能形成G-四链体的富G寡核苷酸链和廉价的三苯甲烷染料—结晶紫(CV)开发了一种新型的钾离子检测方法。这种钾离子定量检测方法是基于某些CV/G-四链体配合物在K+和Na+中存在不同的荧光信号,且荧光信号随K+浓度改变而变化而建立起来的。根据荧光信号随K+浓度变化趋势,我们开发出了两种检测模式。一种是荧光猝灭模式,在此模式中,荧光强度随K+增加而降低,使用的寡核苷酸链是T3TT3(5'-GGGTTTGGGTGGGTTTGGG);另一种是荧光增强模式,在此模式中,荧光强度随K+增加而增强,使用的寡核苷酸链是Hum21 (5'-GGGTTAG GGTTAGGGTTAGGG)。与已有的K+检测方法相比,此方法有以下优点:如检测费用低、检测体系中允许存在大量的Na+、检测线性范围可调及具有更长的激发和发射波长等等。
     另外,以Ag+和Cys为输入信号,TPM染料的荧光强度为输出信号,我们利用TPM染料/G-四链体配合物设计了一种DNA IMPLICATION逻辑门。当没有输入时,TPM染料/G-四链体配合物显示很强的荧光,此时的输出信号为1。Cys的加入对TPM染料/G-四链体配合物没有影响,所以只有输入Cys时,荧光仍旧很强,输出信号也是1。然而因为Ag+能破坏G-四链体结构的形成,所以仅有输入Ag+时,荧光猝灭,输出信号是0。当同时有Ag+和Cys输入时,Cys作为一种较强的Ag+结合剂,能使Ag+从DNA中释放出来,从而荧光得到恢复,输出信号是1。与已有的DNA逻辑门相比,此逻辑门快速、可逆并且有可靠的输出信号和数字化行为(digital behavior)。基于Ag+和Cys对TPM染料/G-四链体配合物的荧光调制作用,此体系还可以用于Ag+和Cys的高特异性均相检测。
Triphenylmethane (TPM) dyes normally render rather weak fluorescence due to easy vibrational deexcitation. However, when they stack onto the two external G-quartets of a G-quadruplex (especially intramolecular G-quadruplex), such vibrations will be restricted, resulting in greatly enhanced fluorescence intensities. Thus, TPM dyes may be developed as sensitive G-quadruplex fluorescent probes. Here, fluorescence spectra and energy transfer spectra of five TPM dyes in the presence of G-quadruplexes, single-or double-stranded DNAs were compared. The results show that the fluorescence spectra of four TPM dyes can be used to discriminate intramolecular G-quadruplexes from intermolecular G-quadruplexes, single-and double-stranded DNAs. The energy transfer fluorescence spectra and energy transfer fluorescence titration can be used to distinguish G-quadruplexes (including intramolecular and intermolecular G-quadruplexes) from single-and double-stranded DNAs. Positive charges and substituent size in TPM dyes may be two important factors in influencing the binding stability of the dyes and G-quadruplexes.
     In addition, a novel K+ detection method was reported using a label-free G-quadruplex-forming oligonucleotide and a triphenylmethane fluorescent dye crystal violet (CV). This method is based on the fluorescence difference of some CV/G-quadruplex complexes in the presence of K+ or Na+, and the fluorescence change with the variation of K+ concentration. According to the nature of the fluorescence change of C V as a function of ionic conditions, two K+ detection modes can be developed. One is a fluorescence-decreasing mode, in which T3TT3 (5'-GGGTTTGGGTGGGTTTGGG) is used, and the fluorescence of CV decreases with an increased concentration of K+. The other is a fluorescence-increasing mode, in which Hum21 (5'-GGGTTAGGGTTAGGGTTAGGG) is used, and the fluorescence of CV increases with an increased concentration of K+. Compared with some published K+ detection methods, this method has some important characteristics, such as lower cost of the test, higher concentrations of Na+ that can be tolerated, adjustable linear detection range and longer excitation and emission wavelengths. Preliminary results demonstrated that the method might be used in biological systems, for example in urine.
     In this paper, a DNA IMPLICATION logic gate was also constructed based on triphenylmethane (TPM) dye/G-quadruplex complexes, using Ag+ and Cys as two inputs and fluorescence intensity of TPM dye as the output signal. The formation of the TPM dye/G-quadruplex complexes rendered the dye greatly enhanced fluorescence signal and the output signal of the gate was 1. The addition of Cys had no effect on the fluorescence signal and the output still was 1. However, the addition of Ag+ instead of Cys could greatly disrupt the G-quadruplex structure, accompanied by the fluorescence decrease of the dye, rendering an output signal of 0. The addition of Cys into Ag+-quenched fluorescence system led to the recovery of the fluorescence due to the release of Ag+ from DNA by Cys, giving an output signal of 1. Compared with previously published DNA logic gates, the gate operation is rapid and reversible with reliable, nondestructive readout and excellent digital behavior. In addition, the modulation of the fluorescence of the TPM dye/G-quadruplex complexes by Ag+ or/and Cys can also be used to develop highly selective homogenous sensing methods of Ag+ and Cys.
引文
[1]Rachwal P A, Findlow I S, Werner J M, et al. Intramolecular DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids Res,2007,35:4214~4222
    [2]Yang D, Hurley L H, Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Nucleosides Nucleotides Nucleic Acids,2006,25:951~968
    [3]Simonsson T, G-quadruplex DNA structures variations on a theme. Biol. Chem.,2001,382: 621-628
    [4]Hardin C C, Perry A G, White K, Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids. Biopolymers,2001,56:147~194
    [5]Smargiasso N, Rosu F, Hsia W, et al. G-quadruplex DNA assemblies:loop length, cation identity, and multimer formation. J. Am. Chem. Soc.,2008,130:10208~10216
    [6]Ueyama H, Takagi M, Takenaka S, A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J. Am. Chem. Soc.,2002,124:14286~ 14287
    [7]Takenaka S, Ueyama H, Nojima T, et al. Comparison of potassium ion preference of potassium-sensing oligonucleotides, PSO-1 and PSO-2, carrying the human and Oxytricha telomeric sequence, respectively. Anal. Bioanal. Chem.,2003,375:1006~1010
    [8]Guschlbauer W, Chantotand J F, Thiele D, Four-stranded nucleic acid structures 25 years later: From guanosine gels to telomer DNA. J. Biomol. Struct. Dyn.,1990,8:491~511
    [9]Sun D, Thompson B, Cathers B E, et al. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem.,1997,40:2113~2116
    [10]Shi D F, Wheelhouse R T, Sun D, et al. Quadruplex-interactive agents as telomerase inhibitors:synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase. J. Med. Chem.,2001,44:4509~4523
    [11]Mergny J L, Lacroix L, Teulade-Fichou M P, et al. Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc. Natl. Acad. Sci. U.S.A.,2001,98: 3062-3067
    [12]Kerwin S M, G-quadruplex DNA as a target for drug design. Curr. Pharm. Des.,2000,6: 441~471
    [13]Juskowiak B, Galezowska E, Kaczorowska N, et al. Aggregation and G-quadruplex DNA-binding study of 6a,12a-diazadibenzo-[a,g]fluorenylium derivative. Bioorg. Med. Chem. Lett.,2004,14:3627~3630
    [14]Oliver A W, Bogdarina I, Kneale G G, Preferential binding of fd gene 5 protein to tetraplex nucleic acid structures. J. Mol. Biol.,2000,301:575~584
    [15]Harrington C, Lan Y, Akman S A, The identification and characterization of a G4-DNA resolvase activity. J. Biol. Chem.,1997,272:24631~24636
    [16]Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature,1992,355:564~566
    [17]Zhu H, Lewis F D, Pyrene excimer fluorescence as a probe for parallel G-quadruplex formation. Bioconjugate Chem.,2007,18:1213~1217
    [18]Neidle S, The structures of quadruplex nucleic acids and their drug complexes.Curr. Opin. Struct. Biol.,2009,19:239~250
    [19]Wei C, Jia G, Yuan J, et al. A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs. Biochemistry,2006,45:6681~6691
    [20]Seenisamy J, Rezler E M, Powell T J, et al. The dynamic character of the G-quadruplex element in the c-Myc promoter and modification by TMPyP4. J. Am. Chem. Soc.,2004,126: 8702-8709
    [21]Siddiqui-Jain A, Grand C L, Bearss D J, et al. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. U.S.A.2002,99:11593~11598
    [22]Palumbo S L, Memmott R M, Uribe D J, et al. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res., 2008,36:1755~1769
    [23]Zahler A M, Williamson J R, Cech T R, et al. Inhibition of telomerase by G-quartet DNA structures. Nature,1991,350:718~720
    [24]Neidle S, Parkinson G, Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug Des.,2002,1:383~393
    [25]Mergny J L, Riou J F, Mailliet P, et al. Natural and pharmacological regulation of telomerase. Nucleic Acids Res.,2002,30:839~865
    [26]Huppert J L, Four-stranded nucleic acids:Structure, function and targeting of G-quadruplexes. Chem. Soc. Rev.,2008,37:1375~1384
    [27]Chen B, Liang J, Tian X, et al. G-Quadruplex structure:a target for anticancer therapy and a probe for detection of potassium. Biochemistry (Mascow),2008,73:853~861
    [28]Sattanathan P, Iulian R, Philip H Bolton, Circular dichroism of quadruplex DNAs: Applications to structure cation and ligand binding, Methods,2007,43:324~331
    [29]Balagurumoorthy P, Brahmachari S K, Structure and stability of human telomeric sequence, J.Biol.Chem,1994,269:21858~21869
    [30]Monchaud D, Yang P, Lacroix L, et al. A metal-mediated conformational switch controls G-quadruplex binding affinity, Angew. Chem. Int. Ed. Engl,2008,47:4858~4861
    [31]Mergny J L, Phan A T, Laurent L, Following G-quartet formation by UV-spectroscopy, FEBS Letters,1998,74~78
    [32]Nancy H Campbell, Gary N Parkinson, Crystallographic studies of quadruplex nucleic acids, Methods,2007,43:252263
    [33]Patel P K, Hosur R V, NMR observation of T-tetrads in a parallel stranded DNA quadruplex formed by saccharomyces cerevisiae telomere repeats, Nucleic Acids Research,1999,27: 2457-2464
    [34]Yuta S, Hiroshi S, Overview of formation of G-quadruplex structures, Curr. Protoc. Nucleic Acid Chem.,2010,40:17.2.1~17.2.17
    [35]Kimura T, Kawai K, Fujitsuka M, et al. Fluorescence properties of 2-aminopurine in human telomeric DNA. Chem.Commun.,2004,12:1438~1439
    [36]Nagatoishi S, Nojima T, Juskowiak B, et al. A pyrene-labeled G-quadruplex oligonucleotide as a fluorescent probe for potassium ion detection in biological applications. Angew. Chem. Int. Ed.,2005,44:5067~5070
    [37]Seo Y J, Lee I J, Yi J W, et al. Probing the stable G-quadruplex transition using quencher-free endstacking ethynyl pyreneadenosine. Chem. Commun.2007,27:2817~ 2819
    [38]Chang C C,Wu J Y, Chien C W, et al. A fluorescent carbazole derivative:High sensitivity for quadruplex DNA. Anal.Chem.,2003,75:6177~6183
    [39]Hong Y, Haubler M, Lam J W Y, et al. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-Induced emission characteristics. Chem. Eur. J.,2008,14:6428~6437
    [40]Zhuang X Y, Tang J, Hao Y H, et al. Fast detection of quadruplex structure in DNA by the intrinsic fluorescence of a single-stranded DNA binding protein. J. Mol. Recognit.2007,20: 386~391
    [41]Bhasikuttan A C, Mohanty J, Pal H, Interaction of malachite green with guanine-rich single-stranded DNA:preferential binding to a G-quadruplex. Angew. Chem. Int. Ed.,2007, 46:9305~9307
    [42]Kong D M, Ma Y E, Wu J, et al. Discrimination of G-quadruplexes with duplex and single-stranded DNAs by fluorescence and energy transfer fluorescence spectra of crystal violet. Chem. Eur. J.,2009,15:901~909
    [43]Simonsson T, Sjoback R, DNA tetraplex formation studied with fluorescence resonance energy transfer. J. Biol. Chem.,1999,274:17379-17383
    [44]Lmergny J, Fluorescence energy transfer as a probe for tetraplex formation:The i-Motif. Biochemistry,1999,38:1573~1581
    [45]Lmergny J, Maurizot J C, Fluorescence resonance energy transfer as a probe for G-quartet formation by a telomeric repeat, ChemBioChem,2001,2:124~132
    [46]Oganesian L, Moon I K, Bryan T M, et al. Extension of G-quadruplex DNA by ciliate telomerase. The EMBO Journal,2006,25:1148~1159
    [47]Vo T U, McGown L B, Selectivity of quadruplex DNA stationary phases toward amino acids in homodipeptides and alanyl dipeptides. Electrophoresis,2004,25:1230~1236
    [48]Zhou J,Wei C, Jia G, et al. The structural transition and compaction of human telomeric G-quadruplex induced by excluded volume effect under cation-deficient conditions. Biophys.
    Chem.,2008,136:124-127
    [49]Kandela I K, Bartlett J A, Indig G L, Effect of molecular structure on the selective phototoxicity of triarylmethane dyes towards tumor cells. Photochem. Photobiol. Sci.,2002, 1:309~314
    [50]Liao J, Roider J, Jay D G, Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc. Natl. Acad. Sci. USA,1994,91:2659~2663
    [51]Grate D, Wilson C, Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA,1999,96:6131~6136
    [52]Babendure J R, Adams S R, Tsien R Y, Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc.,2003,125:14716~14717
    [53]Kolpashchikov D M, Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc.2005,127:12442~12443
    [54]Brackett D M, Dieckmann T, Aptamer to Ribozyme:The Intrinsic Catalytic Potential of a Small RNA. ChemBioChem,2006,7:839~843
    [55]Kong D M, Ma Y E, Guo J H, et al. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion. Anal. Chem.,2009,81:2678~2684
    [56]Baptista M S, Indig G L, Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes. J. Phys. Chem. B,1998,102:4678~4688
    [57]a) Yu S P, Canzoniero L M T, Choi D W, Ion homeostasis and apoptosis. Curr. Opin. Cell Biol,2001,13:405~411; b) Walz W, Role of astrocytes in the clearance of excess extracellular potassium. Neurochem. Int.,2000,36:291~300; c) Doyle D A, Morais Cabral J, Pfuetzner R A, et al. The structure of the potassium channel:molecular basis of K+ conduction and selectivity. Science,1998,280:69~77
    [58]Juskowiak B, Analytical potential of the quadruplex DNA-based FRET probes. Anal. Chim. Acta,2006,568:171~180
    [59]He H, Mortellaro M A, Leiner M J P, et al. A fluorescent sensor with high selectivity and sensitivity for potassium in water. J. Am. Chem. Soc.,2003,125:1468~1469
    [60]Crossley R, Goolamali Z, Gosper J J, et al. Synthesis and spectral properties of new fluorescent probes for potassium. J. Chem. Soc., Perkin Trans.,1994,2:513~520
    [61]Yamauchi A, Hayashita T, Nishizawa S, et al. J. Am. Chem. Soc., Benzo-15-crown-5 fluoroionophore/y-cyclodextrin complex with remarkably high potassium ion sensitivity and selectivity in water.1999,121:2319~2320
    [62]Wu Z S, Chen C R, Shen G L, et al. Reversible electronic nanoswitch based on DNA G-quadruplex conformation:A platform for single-step, reagentless potassium detection. Biomaterials,2008,29:2689~2696
    [63]Nagatoishi S, Nojima T, Galezowska E, et al. G-quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of potassium ion. Chembiochem,2006,7:1730~1737
    [64]He F, Tang Y, Wang S, et al. Fluorescent amplifying recognition for DNA G-quadruplex
    folding with a cationic conjugated polymer:A platform for homogeneous potassium detection. J. Am. Chem. Soc.,2005,127:12343~12346
    [65]Nagatoishi S, Nojima T, Juskowiak B, et al. Pyrene-labeled G-quadruplex oligonucleotide as a fluorescence probe for potassium ions detection in biological applications. Angew. Chem. Int. Ed. Engl.,2005,44:5067~5070
    [66]Nagatoishi S, Nojima T, Galezowska E, et al. G-quadruplex-based FRET probes for the fluorometric detection of potassium ion. Anal. Chim. Acta,2007,581:125~131
    [67]Ueyama H, Takagi M, Takenaka S, A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J. Am. Chem. Soc.,2002,124:14286~ 14287
    [68]Nojima T, Ueyama H, Takagi M, et al. Patassium sensing oligonucleotide, PSO, based on DNA tetraplex formation. Nucleic Acids Res. Suppl.,2002,2:125~126
    [69]Takenaka S, Ueyama H, Nojima T, et al. Comparison of potassium ion preference of potassium-sensing oligonucleotides, PSO-1 and PSO-2, carrying the human and Oxytricha telomeric sequence, respectivelyAnal. Bioanal. Chem.,2003,375:1006~1010
    [70]Balzani V, Credi A, Venturi M, Translated by Tian H, Wang L M, Molecular Devices and Machines, Chemical Industry Press, Beijing,2005, pp.1~239 (in Chinese).(田禾,王利民译,分子器件与分子机器,化学工业出版社,北京,2005,pp.1~239.)
    [71]Guo X F, Ph.D. Dissertation, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 2004 (in Chinese).(郭雪峰,博士论文,中国科学院化学研究所,北京,2004.)
    [72]Raymo F M, Digital Processing and Communication with Molecular Switches. Adv. Mater., 2002,14:401-414
    [73]Stojanovic M N, Mitchell T E, Stefanovic D, Deoxyribozyme-Based Logic Gates. J. Am. Chem. Soc.,2002,124:3555~356
    [74]Stojanovic M N, Semova S, Kolpashchikov D, et al. Deoxyribozyme-based ligase logic gates and their initial circuits. J. Am. Chem. Soc.,2005,127:6914~6915
    [75]Miyoshi D, Inoue M, Sugimoto N, DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. Angew. Chem.,2006,118: 7880-7883
    [76]Yoshidaab W, Yokobayashi Y, Photonic boolean logic gates based on DNA aptamers. Chem. Commun.,2007,195~197
    [77]Frezza B M, Cockroft S L, Ghadiri M R, Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc.,2007,129:14875~14879
    [78]Ogasawara S, Kyoi Y, Fujimoto K, Nonenzymatic parallel DNA logic circuits. ChemBioChem,2007,8:1520~1525
    [79]Voelcker N H, Guckian K M, Saghatelian A, et al. Sequence-addressable DNA logic. Small, 2008,4:427~431
    [80]Willner I, Shlyahovsky B, Zayats M., et al. DNAzymes for sensing, nanobiotechnology and
    logic gate applications. Chem.Soc.Rev.,2008,37:1153~1165
    [81]Feng X L, Duan X R, Liu L B, et al. Fluorescence logic-signal-based multiplex detection of nucleases with the assembly of a cationic conjugated polymer and branched DNA. Angew. Chem. Int. Ed.,2009,48:5316~5321
    [82]Elbaz J, Wang Z G., Orbach R, et al. pH-stimulated concurrent mechanical activation of two DNA "tweezers". A "SET RESET" logic gate system. Nano Letters 2009,9:4510~4514
    [83]Konry T, Walt D R, Intelligent medical diagnostics via molecular logic. J. Am. Chem. Soc., 2009,131:13232~13233
    [84]Margulies D, Hamilton A D, Digital analysis of protein properties by an ensemble of DNA quadruplexes. J. Am. Chem. Soc.,2009,131:9142~9143
    [85]Urso A D, Mammana A, Balaz M, et al. Interactions of a tetraanionic porphyrin with DNA: from a Z-DNA sensor to a versatile supramolecular device. J. Am. Chem. Soc.,2009,131: 2046~2047
    [86]Shlyahovsky B, Li Y, Lioubashevski O, et al. Logic gates and antisense DNA device operating on a translator nucleic acid scaffold. ACS Nano,2009,3:1831~1843
    [87]Freeman R, Finder T, Willner I, Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew. Chem.,2009,121:7958~7961
    [88]Moshe M, Elbaz J, Willner I, Sensing of UO2 and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes. Nano Lett.,2009,9:1196~1200
    [89]Li T, Wang E K, Dong S J, Potassium lead-switched G-quadruplexes:A new class of DNA logic gates. J. Am. Chem. Soc.2009,131:15082~15083
    [90]Zhang C, Yang J, Xu J, Circular DNA logic gates with strand displacement. Langmuir letter, 2010,1416~1419
    [91]Jose A M, Soukup G A, Breaker R R, Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res.,2001,29:1631~1637
    [92]Sato K, Hosokawa K, Maeda M, Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc.,2003,125:8102~8103
    [93]Sato K, Hosokawa K, Maeda M, Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions. Nucleic Acids Res.,2005,33, e4
    [94]Sato K, Onoguchi M., Sato Y, et al. Non-cross-linking gold nanoparticle aggregation for sensitive detection of single-nucleotide polymorphisms:Optimization of the particle diameter. Anal. Biochem.,2006,350:162~164
    [95]Ashkenasy G, Ghadiri M R, Boolean logic functions of a synthetic peptide network. J. Am. Chem. Soc.,2004,126:11140~11141
    [96]Prehoda K E, Scott J A, Mullins R D, et al. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science,2000,290:801~806
    [97]Muramatsu S, Kinbara K, Taguchi H, et al. Semibiological molecular machine with an implemented "AND" logic gate for regulation of protein folding. J. Am. Chem. Soc.,2006, 128:3764-3769
    [98]Baron R., Lioubashevski O, Katz E, et al. Two coupled enzymes perform in parallel the "AND" and "InhibAND" logic gates operations. Org. Biomol. Chem.,2006,4:989~991
    [99]Baron R., Lioubashevski O, Katz E, et al. Elementary arithmetic operations by enzymes:A model for metabolic pathway based computing. Angew. Chem., Int. Ed.,2006,45:1572~ 1576
    [100]Wang H M, Zhang D Q, Guo X F, et al. Tuning the fluorescence of 1-imino nitroxide pyrene with two chemical inputs:Mimicking the performance of an "AND" gate. Chem. Commun.,2004,670~671
    [101]Guo X F, Zhang D Q, Zhu D B, Logic Control of the Fluorescence of a New Dyad, Spiropyran-perylene diimide-spiropyran, with Light, Ferric ion, and proton:construction of a new three-Input "AND" logic gate. Adv. Mater.,2004,16:125~130
    [102]Uchiyama S, Kawai N, de Silva A P, et al. Fluorescent polymeric AND logic gate with temperature and pH as inputs. J. Am. Chem. Soc.,2004,126:3032~3033
    [103]Margulies D, Melman G, Felder C E, et al. Chemical input multiplicity facilitates arithmetical processing. J. Am. Chem. Soc.,2004,126:15400~15401
    [104]Szacilowski K, Molecular logic gates based on pentacyanoferrate complexes:from simple gates to three-dimensional logic systems. Chem. Eur. J.2004,10:2520~2528
    [105]Bagand B, Bharadwaj P K, Fluorescence enhancement of a signaling system in the simultaneous presence of transition and alkali metal ions:a potential AND logic Gate, Chem. Commun.,2005,513~515
    [106]Koskela S J M, Fyles T M, James T D, A ditopic fluorescent sensor for potassium fluoride. Chem. Commun.,2005,945~94
    [107]Biancardo M, Bignozzi C, Doyle H, et al. A potential and ion switched molecular photonic logic gate. Chem. Commun.,2005,3918~3920
    [108]Shiraishi Y, Tokitoh Y, Hirai T, A fluorescent molecular logic gate with multiply-configurable dual outputs. Chem. Commun.,2005,5316~5318
    [109]Uchiyama S, McClean G D, Iwai K, et al. Membrane media create small nanospaces for molecular computation. J. Am. Chem. Soc.,2005,127:8920~8921
    [110]Straight S D, Andreasson J, Kodis G, et al. Molecular AND and INHIBIT gates based on control of porphyrin fluorescence by photochromes. J. Am. Chem. Soc.,2005,127:9403~ 9409
    [111]Lankshear M D, Cowley A R, Beer P D, Cooperative AND receptor for ion-pairs. Chem. Commun.,2006,612~614
    [112]de Sousa M, de Castro B, Abad S, et al. A molecular tool kit for the variable design of logic operations(NOR, INH, EnNOR). Chem. Commun.,2006,2051~2053
    [113]Margulies D, Melman G, Shanzer A, A molecular full-adder and full-subtractor, an additional step toward a moleculator. J. Am. Chem. Soc.2006,128:4865~4871
    [114]Gust D, Moore T A, Moore A L, Molecular switches controlled by light. Chem. Commun. 2006,1169~1178
    [115]Ashlyn E D, Rhett C S, "Turn-on" fluorescent sensor for the selective detection of zinc ion by a sterically-encumbered bipyridyl-based receptor. Chem. Commun.2007,4641~4643
    [116]Pischel U, Chemical approaches to molecular logic elements for addition and subtraction. Angew. Chem. Int. Ed.,2007,46:4026~4040
    [117]de Silva A P, Uchiyama S, Molecular logic and computing. Nat. Nanotechnol.,2007,2: 399~410
    [118]Green J E, Choi J W, Boukai A, et al. A 160-kilobit molecular electronic memory patterned at 1011 bits/cm2. Nature,2007,445:414~417
    [119]Credi A, Molecular logic:Monolayers with an IQ. Nat. Nanotechnol.,2008,3:529~530
    [120]Amelia M, Baroncini M, Credi A, A simple unimolecular multiplexer/demultiplexer. Angew. Chem.,2008,120:6336~6339
    [121]Gupta T, van der Boom M E, Sensing of UO2 and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes. Angew. Chem.,2008,120: 5402~5406
    [122]Mu L X, Shi W S, She G G, et al. Fluorescent logic gates chemically attached to silicon nanowires. Angew. Chem.,2009,121:3521~3524
    [123]Jaschke A, Artificial ribozymes and deoxyribozymes. Curr. Opin. Struct. Biol.,2001,11: 321~326
    [124]Breaker R R, DNA enzymes. Nat. Biotechnol.,1997,15:427~431
    [125]Sen D, Geyer C R, DNA enzymes. Curr. Opin. Chem. Biol.,1998,2:680~687
    [126]Famulok M, Mayer G, Blind M, Nucleic acid aptamers-from selection in vitro to applications in vivo. Acc. Chem. Res.,2000,33:591~599
    [127]Harting J S, Najafi-Shoushtari S H, Grune I, et al. Protein-dependent ribozymes report molecular interactions in real time. Nat. Biotechnol.,2002,20:717~722
    [128]Tuerkand C, Gold L, Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science,1990,249:505~510
    [129]Ellington A D, Szostak J W, In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346:818~822
    [130]Osborne S E, Ellington A D, Nucleic acid selection and the challenge of combinatorial chemistry. Chem. ReV.1997,97:349~370
    [131]Famulok M, Oligonucleotide aptamers that recognize small molecules. Curr. Opin. Struct. Biol.,1999,9:324~329
    [132]Tombelli S, Minunni M, Mascini M, Analytical applications of aptamers. Biosens. Bioelectron.,2005,20:2424~2434
    [133]Klussmann S, The aptamer handbook:Functional oligonucleotides and their applications; Wiley-VCH:Weinheim,2006.
    [134]Suh D, Chaires J B, Criteria for the mode of binding of DNA binding agents. Bioorg. Med. Chem.,1995,3:723~728
    [135]Lubitz I, Borovok N, Kotlyar A, Interaction of monomolecular G4-DNA nanowires with TMPyP:Evidence for intercalation. Biochemistry,2007,13:12925~12929
    [136]Baker E S, Lee J T, Sessler J L, et al. Cyclo[n]pyrroles:Size and site-specific binding to G-quadruplexes. J. Am. Chem. Soc.,2006,128:2641~2648
    [137]Reed J E, Arnal A A, Neidle S, et al. Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar Nickel(Ⅱ) complexes. J. Am. Chem. Soc.,2006,128: 5992-5993
    [138]Nagatoishi S, Nojima T, Takenaka S,Complexation of thrombin-binding aptamer oligonucleotide carrying fluorescence resonance energy transfer (FRET) dyes at both termini with potassium ion. Nucleic Acids Symp. Ser.,2005,49:233~234
    [139]Huang C C, Chang H T, Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chem. Commun.,2008,1461~1463
    [140]Monchaud D, Yang P, Lacroix L, et al. A metal-mediated conformational switch controls G-quadruplex binding affinity. Angew. Chem. Int. Ed. Engl.,2008,47:4858~4861
    [141]De Cian A, Cristofari G, Reichenbach P, et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc. Natl. Acad. Sci. USA,2007,104: 17347~17352
    [142]Ambrus A, Chen D, Dai J, et al. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res.,2006,34:2723~2735
    [143]Luu K N, Phan A T, Kuryavyi V, et al. Structure of the human telomere in K+ solution:An intramolecular (3+1) G-quadruplex scaffold. J. Am. Chem. Soc.,2006,128:9963~9970
    [144]Ragazzon P, Chaires J B, Use of competition dialysis in the discovery of G-quadruplex selective ligands. Methods,2007,43:313~323
    [145]Ragazzon P A, Garbett N C, Chaires J B, Competition dialysis:A method for the study of structural selective nucleic acid binding. Methods,2007,43:173-182
    [146]Ren J, Chaires J B, Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry,1999,38:16067~16075
    [147]Song G, Xing F, Qu X, et al. Oxazine 170 induces DNA:RNA:DNA triplex formation. J. Med. Chem.,2005,48:3471~3473.
    [148]Wei C, Jia G, Yuan J, et al. A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs. Biochemistry,2006,45:6681~6691
    [149]Park H J, Kim J Y, Kim J, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res.,2009,43:1027~1032
    [150]McDonnel G, Russell A D, Antiseptics and disinfectants:activity, action and resistance. Clin. Microbiol. Rev.,1999,12:147~179
    [151]Gruen L C, Interaction of amino acids with silver (Ⅰ) ions. Biochim. Biophys. Acta,1975, 386:270-274
    [152]Rurack K, Trieflinger C, Kovallchuck A, et al. An ionically driven molecular IMPLICATION gate operating in fluorescence mode. Chem. Eur. J.,2007,13:8998~9003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700