纳米二氧化钛颗粒稳定的反应型造纸施胶剂Pickering乳状液
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛原生直径约25 nm,分散在水中以平均粒度约260 nm的聚集体形式存在。其等电点为pH 6.4,在水中呈酸性,带有正电荷。本文利用纳米二氧化钛作为固体微粒乳化剂,研究了其对反应型施胶剂AKD和ASA的乳化作用。以AKD和工业级ASA制备的纳米二氧化钛稳定的乳状液用于浆内施胶,研究了乳液的施胶效果。发现,纳米二氧化钛单独使用不能稳定AKD乳液,而壳聚糖在用量较低时也不能有效地稳定AKD乳液。但二者联合使用时,在油水比为1:5、壳聚糖用量为2.0 wt%时,制备了稳定的O/W型AKD乳液,并当二氧化钛用量低于2.2 wt%时,乳液平均粒径随二氧化钛用量的增加而减小;当二氧化钛用量高于2.2 wt%时,继续增加二氧化钛用量,乳液粒径不再变化。经纳米二氧化钛/壳聚糖稳定的AKD乳液具有较高的施胶效率,且纸张施胶度在二氧化钛用量低于2.2 wt%时随二氧化钛用量的增加而提高。
     纳米二氧化钛单独使用能够稳定工业级ASA乳液。当ASA含量低于50%时,乳液稳定性好,粒径随纳米二氧化钛用量的增加而减小,至二氧化钛颗粒用量达到2.0 wt%时,乳液粒径不再随之减小。所得ASA乳液具有较好的施胶效果,并在施胶剂用量从0.4%增加到0.5%时,纸张施胶度迅速提高。乳液粒径的减小有助于提高其施胶效果,因此,适当提高稳定剂二氧化钛用量,ASA乳液的施胶效果也得到改善。但乳液的水解稳定性较差,在50分钟之内,施胶效果几乎降低50%左右。
     纳米二氧化钛能有效地稳定试剂级ASA乳液,乳液在3000 rpm下离心15min不破乳、不分层、不沉降。增加水相质量分数,能使纳米二氧化钛稳定的W/O型乳液转变为O/W型乳液,且纳米二氧化钛初始分散方式、乳化速度和颗粒浓度对乳液转相时的水相质量分数有显著影响。当纳米二氧化钛预先分散在ASA中时,乳液转相时的水相质量分数低于纳米二氧化钛预先分散在水中时转相所需的水相质量分数。通过纳米二氧化钛在ASA/水界面的扩散实验和红外光谱分析发现,当纳米二氧化钛分散在水中时,ASA的水解产物烯基琥珀酸在界面上对纳米二氧化钛进行了吸附改性,导致纳米二氧化钛分散在水中时更“疏水”。较高的乳化速度提供更多的能量促使乳液在较低的水相质量分数下从W/O转变为O/W型乳液;而在较高的二氧化钛浓度下,由于分散体系的黏度较高,致使W/O型乳液在较高的水相质量分数下才能转变为O/W型乳液。
The primary particle size of nano-TiO_2 is about 25 nm and the mean size of its aggregate is approximately 260 nm when nano-TiO_2 particles are dispersed in water. The isoelectic point of nano-TiO_2 particles in aqueous dispersion is pH 6.4. The pH of particle dispersion is less than 6.4, the particle is thus positively charged. In the present paper the emulsification behaviors of reactive sizing agents AKD and ASA have been investigated using nano-TiO_2 as solid particle emulsifier. The prepared AKD and industry-specific ASA emulsions stabilized by nano-TiO_2 are applied in internal sizing and their sizing performance is exploited. The results show that the AKD emulsion can hardly stabilized by nano-TiO_2 particle alone or by chitosan with a lower dosage. However, the mixture of chitosan and nano-TiO_2 can well stabilize the O/W AKD emulsion when the oil/water ratio is 1:5 and the concentration of chitosan is 2.0 %. Meanwhile when the concentration of nano-TiO_2 is lower than 2.2 wt%, the mean size of droplets decrease with the increase of the concentration of nano-TiO_2; while the mean size of emulsion droplet keep constant when the particle concentration is higher than 2.2 wt%,. The AKD emulsion stabilized by nano-TiO_2 and chitosan has high sizing efficiency. When the particle concentration is lower than 2.2 wt%, the sizing degree of the paper increases with the increase of nano-TiO_2 concentration.
     Nano-TiO_2 particle can stable industry-specific ASA alone. When the content of ASA is lower than 50%, the prepared ASA emulsion is very stable. The mean diameter of ASA emulsion decreases with the increase of nano-TiO_2 concentration and reaches the minmum at 2.0 wt% of nano-TiO_2 concentration. The emulsion can impart a high sizing degree to handsheet and the sizing degree rises abruptly when the charge level of ASA increases from 0.4% to 0.5%. The emulsions with smaller droplet size perform better in sizing development. Thus the appropriate increase of nano-TiO_2 concentration can ameliorate the sizing efficiency of ASA emulsion. However the stability of the prepared emulsion to hydrolysis is very poor and within 50 min the emulsion loses nearly half of its sizing performance.
     Nano-TiO_2 particle can effectively stabilize reagent grade ASA. When the prepared emulsions are centrfuged at 3000 rpm for 15 min, the emulsions are stable to deemulsificaiton, creaming and sedimentation. The W/O emulsion can invert to O/W emulsion with increasing the mass fraction of water phase. The particle initial location, homogenization speed and particle concentration show remarkable effects on the required mass fraction of water phase for phase inversion. When the nano-TiO_2 particles are initially located in ASA, the mass fraction of water phase for phase inversion is lower than that when nano-TiO_2 particle initially dispersed in water. The results of diffusion experiment of nano-TiO_2 particle through ASA/water interface and infrared spectral analysis indicate that nano-TiO_2 particle has been modified in situ at ASA/water interface by alkenyl succinic acid which is the hydrolysate of ASA. As a consequence the particles are more“hydrophobical”when they are initially dispersed in water. Higher homogenization speed provides more energy to invert to the emulsion from W/O to O/W at a relative low mass fraction of water phase. While at higher particle concentration, the invertion from W/O to O/W ocurrs at higher mass fraction of water phase due to the relative high viscosity of the system.
引文
[1]刘温霞,邱化玉.造纸湿部化学[M].北京:化学工业出版社, 2006.
    [2] Lindstrom T, Larsson P T. Alkyl Ketene Dimer (AKD) sizing-a review[J]. Nordic Pulp and Paper Research Journal, 2008, 23(2): 202- 209.
    [3] Shen W, Xu F, Parker I H. An experimental investigation of the redistribution behaviour of alkyl ketene dimers and their corresponding ketones[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212(2-3):197-209.
    [4] Lindstrom T, Glad-Nordmark G. A study of AKD-size retention, reaction and sizing efficiency. part 3: The effects of fibre charge density and electrolyte concentration on size retention[J]. Nordic Pulp and Paper Research Journal, 2007, 22(2): 161-166.
    [5] Lindstrom T, Glad-Nordmark G. A study of AKD-size retention, reaction and sizing efficiency. part 4: The effects of pH, bicarbonate and metal ions on AKD-hydrolysis[J]. Nordic Pulp and Paper Research Journal, 2007, 22(2): 167-172.
    [6] Garnier G, J.Wright, Godbout L, et al. Wetting Mechanism of Alkyl Ketene Dimers on cellulose film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 145(1-3): 153-165.
    [7] Shen W. A Preliminary Study of the Spreading of AKD in the Presence of Capillary Structures[J]. Journal of Colloid and Interface Science, 2001, 240(1): 172-181.
    [8] Shen W, Brack N, Ly H, et al. Mechanism of AKD migration studied on glass surfaces [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 176(2-3): 129 -137.
    [9]杨德清,刘温霞. AKD改性填料的表面施胶性能[J].中华纸业, 2009, 30(20): 47-50.
    [10]杨德清,刘温霞. AKD改性滑石粉用于纸张施胶[J].中华纸业, 2009, 30(14): 26-29.
    [11]杨德清,刘温霞. AKD对滑石粉和绢云母的改性效果与作用机理[J].中国造纸, 2010, (4): 1-7.
    [12] Zule J, Dolenc J. The influence of the chemical composition of synthetic reactive sizes on the sizing efficiency of paper[J]. MATERIALI IN TEHNOLOGIJE, 2005, 1-2(39): 55-58.
    [13]翟红周. AKD施胶的控制要点[J].中华纸业, 2008, (8): 72-73.
    [14]张革仓,邵学军. AKD中性/碱性施胶的影响因素[J].纸和造纸, 2002, (3):45-47.
    [15]劳嘉葆.阔叶木的原细小纤维和表面电荷对AKD施胶的影响[J].国际造纸, 2004, 23(3): 41-42.
    [16]黄驰,陈夫山,郭振.聚乙烯胺在瓦楞原纸中对AKD施胶的促进作用[J].纸和造纸, 2007, 26(4): 51-53.
    [17]周景晖,马兴东. AKD施胶增效剂[J].中华纸业, 2005, 26(8): 58-60.
    [18]王凤敏.在碳酸钙加填纸中AKD施胶的有效性和逆转性[J].国际造纸, 2003, 22(2): 17-21.
    [19]杨向平.造纸浆内施胶剂的研究应用进展[J].中华纸业, 2009, 30(18): 66-70.
    [20] Sepp?nen R. On the internal sizing mechanisms of paper with AKD and ASA related to surface chemistry, wettability and friction[D]. Stockholm: Division of Surface Chemistry KTH, 2007.
    [21] B.Wasser R, Brinen J S. Effect of hydrolyzed ASA on sizing in calcium carbonate filled paper[J]. TAPPI JOURNAL, 1998, 81(7): 139-144.
    [22] E. M, J. B, Kleemann. ASA_emulsification_Martorana[J]. Professional Papermaking, 2008, 5(2): 34 - 42.
    [23] John S, M. M, Ks S. Alkaline and Neutral Sizing: Latest Trends and Selection of Specialty Chemicals to Make Fine Quality Paper Cost Effectively[J]. TAPPI JOURNAL, 2007, 19(4): 129-131.
    [24] Jenkins S. Recent developments and trends of ASA sizing[J]. Papertex, 2007, (12): 1-11.
    [25] Merisalo J-P. Optimization of ASA emulsification in internal sizing of paper and paperboard[D]. Helsinki : Helsinki University of Technology, 2009.
    [26]鲁鹏,刘温霞.烯基琥珀酸酐施胶液制备技术的进展[J].造纸化学品, 2010, 22(4): 13-19.
    [27] Gess J M, Rende D S. Alkenyl Succinic Anhydride (ASA)[J]. TAPPI JOURNAL, 2005, 4(9): 25-30.
    [28]于得海,刘温霞,马庆超.氢氧化镁铝/蒙脱石对ASA的乳化性能[J].中华纸业, 2009, (8): 36-40.
    [29]于得海,刘温霞.膨润土与氢氧化镁铝联合乳化ASA及其施胶性能[J].中国造纸, 2009, 28(6): 26-29.
    [30]鲁鹏,刘温霞,宋美芹.膨润土微粒对ASA的乳化作用和施胶性能的影响分析[J].中华纸业, 2010, 31(20): 43-47.
    [31]于得海,刘温霞. ASA固体微粒乳化剂的制备和应用[C].第十六届全国造纸化学品开发应用技术, 2008.
    [32] Lee H L, Kim J S, Youn H J. Improvement of ASA Sizing Efficiency using hydrophobically modified and acid-hydrolyzed starches[J]. TAPPI JOURNAL, 2004, 3(12): 3-6.
    [33]解胜利,苟建霞,贾冬梅, et al.纳米二氧化钛的制备及应用研究[J].化工时刊, 2008, 22(4): 66-68.
    [34]李志军,王红英.纳米二氧化钛分散性的实验研究[J].广州化工, 2005, 33(6): 26-29.
    [35]崔小明.纳米二氧化钛的表面改性技术进展[J].化工文摘, 2009, (6): 25-28.
    [36]张新荔,高治,井新利.用超支化聚酯改善超细二氧化钛的分散稳定性[J].涂料工业, 2009, 39(4): 32-36.
    [37]刘立华,刘会媛,张相平.纳米二氧化钛表面改性[J].唐山师范学院学报, 2009, 31(2): 32-33.
    [38] Pickering S U. Emulsions[J]. J. Chem. Soc., 1907, 91(2001): 2021.
    [39] Ramsden W. Separation of Solids in the Surface-Layers of Solutions and 'Suspensions'(Observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation). Preliminary Account[J]. Proceedings of the Royal Society of London, 1903, 72(477-486): 156-164.
    [40] Finkle P, Draper H D, Hildebrand J H. The Theory of Emulsification[J]. Journal of the American Chemical Society, 1923, 45(12): 2780-2788.
    [41] Schulman J, Leja J. Control of contact angles at the oil-water-solid interfaces. Emulsions stabilized by solid particles (BaSO4)[J]. Trans Faraday Soc, 1954, 50: 598-605.
    [42] Lucassen-Reynders E. Contact angles and adsorption on solids[J]. J Phys Chem, 1963, 67: 969-972.
    [43] Koretskii A, Kruglyakov P. Emulsifing effect of solid particles and their wetting energetics at the water-oil interface[J]. IIzv Sib Otd Akad Nauk SSSR Ser Khim Nauk, 1971, 2:139.
    [44] Tambe D E, Sharma M M. Factors Controlling the Stability of Colloid-Stabilized Emulsions: I. An Experimental Investigation[J]. Journal of Colloid and Interface Science, 1993, 157(1): 244-253.
    [45] Sonia Melle, Mauricio Lask, Fuller G. Pickering Emulsions with Controllable Stability [J]. Langmuir, 2005, 21(6): 2158-2162.
    [46] Aveyard R. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100-102: 503-546.
    [47] Ao Z, Yang Z, Wang J, et al. Emulsion-templated liquid core-polymer shellmicrocapsule formation[J]. Langmuir, 2009, 25(5): 2572-2574.
    [48] Binks B P, Lumsdon S O. Pickering Emulsions Stabilized by Monodisperse Latex Particles: Effects of Particle Size[J]. Langmuir, 2001, 17(15): 4540-4547.
    [49] Leal-Calderon F, Schmitt V. Solid-stabilized emulsions[J]. Current Opinion in Colloid & Interface Science, 2008, 13(4): 217-227.
    [50] Mehta S C, Somasundaran P. Mechanism of stabilization of silicone oil-water emulsions using hybrid siloxane polymers[J]. Langmuir, 2008, 24(9): 4558-4563.
    [51] Abend S, Bonnke N, Gutschner U, et al. Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides[J]. Colloid and Polymer Science, 1998, 276(8): 730-737.
    [52] Binks B P, Lumsdon S O. Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions[J]. Langmuir, 2000, 16(23): 8622-8631.
    [53] Horozov T S, Aveyard R, Clint J H, et al. Order-disorder transition in monolayers of modified monodisperse silica particles at the octane-water interface[J]. Langmuir, 2003, 19(7): 2822-2829.
    [54] Hui Xu, Mauricio Lask, John Kirkwood, et al. Particle Bridging between Oil and Water Interfaces[J]. Langmuir, 2007, 23(9): 4837-4841.
    [55]梁文平.乳状液科学与技术基础[M].北京:科学出版社, 2001.
    [56] Binks B P, Philip J, Rodrigues J A. Inversion of silica-stabilized emulsions induced by particle concentration[J]. Langmuir : the ACS journal of surfaces and colloids, 2005, 21(8): 3296-3302.
    [57] Binks B P, Clint J H. Solid Wettability from Surface Energy Components: Relevance to Pickering Emulsions[J]. Langmuir, 2002, 18(4): 1270-1273.
    [58] Binks B P, Lumsdon S O. Effects of oil type and aqueous phase composition on oil–water mixtures containing particles of intermediate hydrophobicity[J]. Physical Chemistry Chemical Physics, 2000, 2(13): 2959-2967.
    [59] Binks B P, Murakami R, Armes S P, et al. Effects of pH and Salt Concentration on Oil-in-Water Emulsions Stabilized Solely by Nanocomposite Microgel Particles[J]. Langmuir, 2006, 22(5): 2050-2057.
    [60] Kostakis T, Ettelaie R, Murry B S. Effect of high salt concentrations on the stabilization of bubbles by silica particles[J]. Langmuir, 2006, 22(3): 1273-1280.
    [61] Yang F, Liu S, Xu J, et al. Pickering emulsions stabilized solely by layered double hydroxides particles: The effect of salt on emulsion formation and stability[J]. Journal of Colloid and Interface Science, 2006, 302(1): 159-169.
    [62] Fingas M F, Munn D L, White B, et al. Laboratory testing of dispersanteffectiveness: The importance of oil-to-water ratio and settling time[C], Ottawa, 1989.
    [63] Zambrano N, Tyrode E, Mira I, et al. Emulsion catastrophic inversion from abnormal to normal morphology. 1. Effect of the water-to-oil ratio rate of change on the dynamic inversion frontier[J]. Industrial and Engineering Chemistry Research, 2003, 42(1): 50-56.
    [64] Tyrode E, Mira I, Marquez L, et al. Emulsion Catastrophic Inversion from Abnormal to Normal Morphology 3. Conditions for Triggering the Dynamic Inversion and Application to Industrial Processes[J]. Ind Eng Chem Res, 2003, 42(19): 4311-4318.
    [65] Binks B P, Lumsdon S O. Stability of oil-in-water emulsions stabilised by silica particles[J]. Physical Chemistry Chemical Physics, 1999, 1(12): 3007-3016.
    [66] Kruglyakov P M, Nushtayeva A V. Phase inversion in emulsions stabilised by solid particles[J]. Advances in Colloid and Interface Science, 2004, 108-109: 151-158.
    [67] Binks B P, Lumsdon S O. Catastrophic Phase Inversion of Water-in-Oil Emulsions Stabilized by Hydrophobic Silica[J]. Langmuir, 2000, 16(6): 2539-2547.
    [68] Binks B P, Lumsdon S O. Transitional Phase Inversion of Solid-Stabilized Emulsions Using Particle Mixtures[J]. Langmuir, 2000, 16(8): 3748-3756.
    [69] Wang J, Yang F, Tan J, et al. Pickering Emulsions Stabilized by a Lipophilic Surfactant and Hydrophilic Platelike Particles[J]. Langmuir, 2010, 26(8): 5397-5404.
    [70] Cui Z G, Shi K Z, Cui Y Z, et al. Double phase inversion of emulsions stabilized by a mixture of CaCO3 nanoparticles and sodium dodecyl sulphate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 329(1-2): 67-74.
    [71] Binks B P, Rodrigues J A. Types of Phase Inversion of Silica Particle Stabilized Emulsions Containing Triglyceride Oil[J]. Langmuir, 2003, 19(12): 4905-4912.
    [72] Wang J, Yang F, LI C, et al. Double phase inversion of emulsions containing layered double hydroxide particles induced by adsorption of sodium dodecyl sulfate[J]. Langmuir, 2008, 24(18): 10054-10061.
    [73] Ashby N P, Binks B P. Pickering emulsions stabilised by Laponite clay particles[J]. Physical Chemistry Chemical Physics, 2000, 2(24): 5640-5646.
    [74] Read E S, Fujii S, Amalvy J I, et al. Effect of varying the oil phase on the behavior of pH-responsive latex-based emulsifiers: demulsification versus transitional phase inversion[J]. Langmuir, 2004, 20(18): 7422-7429.
    [75] Fujii S, Armes S P. Stimulus-Responsive Particulate Emulsifiers Based on LightlyCross-Linked Poly(4-vinylpyridine)-Silica Nanocomposite Microgels[J]. Langmuir, 2006, 22(16): 6818-6825.
    [76] Lan Q, Liu C, Yang F, et al. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions[J]. Journal of Colloid and Interface Science, 2007, 310(1): 260-269.
    [77] Weissenborn P K, Pugh R J. Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence[J]. Journal of Colloid and Interface Science, 1996, 184(2): 550-563.
    [78]董元锋,刘温霞,蒋秀梅.改性方式对膨润土性能及微粒助留助滤效果的影响[J].中国非金属矿工业导刊, 2007, (1): 35-39.
    [79]宋兆萍,刘温霞.石油树脂作松香补充剂对松香胶性能及其施胶作用的影响[J].中国造纸学报, 2009, 24(3): 73-78.
    [80] Pal R. Effect of droplet size on the rheology of emulsions[J]. AICHE journal, 1996, 42(11): 3181-3190.
    [81] Rumscheidt F, Mason S. Particle motions in sheared suspensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow[J]. Journal of Colloid Science, 1961, 16(3): 238-261.
    [83] Binks B P. Particles as surfactants - similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1-2): 21-41.
    [81] Rumscheidt F, Mason S. Particle motions in sheared suspensions XII. Deformation and burst of fluid drops in shear and hyperbolic flow[J]. Journal of Colloid Science, 1961, 16(3): 238-261.
    [82] Rondón-González M, Madariaga L F, Sadtler V, et al. Emulsion catastrophic inversion from abnormal to normal morphology 6. Effect of the phase viscosity on the inversion produced by continuous stirring[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3595-3601.
    [85] Sacanna S, Kegel W K, Philipse A P. Spontaneous Oil-in-Water Emulsification Induced by Charge-Stabilized Dispersions of Various Inorganic Colloids[J]. Langmuir, 2007, 23(21): 10486-10492.
    [86] Kraft D J, De Folter J W J, Luiges B, et al. Conditions for equilibrium solid-stabilized emulsions[J]. The journal of physical chemistry B, 2010, 114(32): 10347-10356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700