纳米结构金属氧化物过氧化氢及DNA传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢会在很多酶催化的氧化反应中产生,包括葡萄糖氧化酶、尿酸氧化酶、胆固醇氧化酶、乙醇氧化酶等,因而测定过氧化氢的浓度可用于间接测定各种目标物质的浓度。这为发展针对包括葡萄糖在内的多种物质的生物传感器提供了可能。很多细胞都会产生过氧化氢,并且它也会出现在尿液、血液以及呼吸气体中。因此,测试体液和/或呼吸中的过氧化氢可以用来测试生理或病理状态下的氧应激状态,并可以监控治疗过程中的反应。
     基因的分离及分析检测在卫生防疫、医学诊断、药物研制、环境科学及生物工程等领域发挥着越来越重要的作用,这也对基因的分析和检测方法提出了新的要求。发展高性能低价格的核酸杂交测试生物传感器成为目前的主要研究目标。
     在传感器研究领域,各种种类及结构的纳米材料被用于传感器特别是电化学传感器制备,取得了良好的测试效果,线性范围及检测限有很大提高。这其中,金属氧化物半导体材料的应用引起很大关注。本文发展了基于ZnO纳米棒阵列(ZnO nanorod arrays,ZnONRAs)的电化学传感器,用于过氧化氢的测试,以期这类传感器能够更好地满足实际需要。此外,研究了采用场效应原理的器件及光可寻址电位传感器(Light AddressablePotentiometric Sensors,LAPS)表面修饰对DNA测试性能的影响。
     本文的主要研究内容:
     (一)研究了紫外光(UV)照射ZnO种子层对ZnO纳米棒阵列生长的影响
     我们利用ZnO薄膜为种子层,通过水热法制备了ZnO NRAs。发现了紫外光处理ZnO薄膜促进了水热法制备ZnO NRAs表面均一性的提高,纳米棒阵列中棒直径的分布更均匀,棒的直径相对变小。
     (二)研究了镀金ZnO纳米棒阵列用于电化学测试效果
     实验表明,通过磁控溅射技术在ZnO NRAs上镀金,可以保护ZnO纳米棒在水溶液中不受腐蚀,同时也作为一维纳米阵列电极进行电化学测试。
     1)镀金ZnO纳米棒阵列电极在电化学测试上的特点
     通过循环伏安法测试得到,镀金ZnO纳米棒阵列电极的扩散特性与平面电极接近。由于电极表面构造的改变,镀金ZnO纳米棒阵列电极的扩散层表面积较平面电极增大。由电化学阻抗谱测试可知,电极的电子传递电阻减小,表明电极的交换电流值增大,说明电极在表面电化学活性方面有显著提高。
     2 )镀金的ZnO纳米棒阵列电极测试过氧化氢的特性
     采用镀金的ZnO纳米棒阵列电极进行过氧化氢测试。与平面金电极对照,过氧化氢在这种电极上的氧化还原电位都有了显著下降,对应峰电流显著上升。实现了过氧化氢更低还原电位下的测试。采用镀金ZnO纳米棒阵列电极得到的线性范围为0.088mM-70.6mM,检测限为0.07mM,测试灵敏度为30mA cm~(-2)M~(-1)。在所测试浓度范围内,生理浓度的抗坏血酸对测试没有干扰。
     3)纳米铂修饰的镀金的ZnO纳米棒阵列电极测试过氧化氢的特性
     镀金的ZnO纳米棒阵列电极表面沉积纳米尺度的铂层后,过氧化氢在电极上氧化还原反应的可逆性增加,这表明镀铂后电极活性增加。过氧化氢测试的线性测试范围为0.044mM-20mM,检测限为0.03mM,灵敏度为50 mA cm~(-2)M~(-1)。生理浓度的抗坏血酸对测试没有干扰。
     (三)研究了场效应器件的表面修饰对其DNA测试性能的影响
     1)比较了两种不同处理方式对EIS型场效应DNA生物传感器测试性能的影响
     研究表明,采用50%硫酸及甲醇-盐酸等体积混合液对场效应器件进行处理,两种处理方法在器件后续的硅烷化效果上差别并不明显,但是在场效应特性测试上则有不同。甲醇-盐酸体系处理对器件测试性能有不利影响。在此基础上制备的场效应DNA传感器的测试特性表明,采用硫酸处理方法制备的传感器的测试结果要优于甲醇-盐酸处理的结果。
     2)采用表面TiO_2修饰的光可寻址电位传感器(LAPS)进行非标记DNA测试LAPS表面采用TiO_2修饰,荧光标记表明,通过紫外光照TiO_2可以改善表面硅烷化效果,但这种改善需要很好地控制时间条件。该非标记测试方法可以对于10μM人工合成的目标DNA与固定在器件表面的互补DNA的杂交进行检测。杂交过程可以引起LAPS测试的Ⅰ-Ⅴ曲线100mV左右的移动。
Hydrogen peroxide (H_2O_2) will be produced in many oxidase-catalyzed reactions,including enzymes such as glucose oxidase, uric acid oxidase, cholesterol oxidase, ethanoloxidase, etc. The detection of the concentration of H_2O_2 can be employed to measure theconcentration of many target samples, which are the substrates of the oxidase s mentioned above.This makes it possible to develop biosensors for various substances such as glucose, etc. Manycells will produce H_2O_2 and it will also appear in the urine, blood and breath. The detection ofH_2O_2 could be employed to evaluate the status of the oxidative stress and to monitor the reactionin the process of therapy.
     On the other hand, the separation and analysis of genes have exhibited more and moreimportance in the areas of hygienic immunology, medical diagnosis, pharmaceutical research,environmental science and biological engineering. This promotes new requirements on themethods for the gene analysis and detection.
     In the research area of sensors, nanomaterials of different kinds and various structures havebeen applied, especially in the development of electrochemical sensors. This has resulted ingood measurement effects in the related research work, including the improvement of linearrange and detect limit.
     We developed electrochemical sensors for the measurement of hydrogen peroxide, basedon the ZnO nanorod arrays, to meet the requirement of this kind of sensors for the practicalapplications. Besides, the influence of surface modification of field-effect device to its functionof DNA test was studied too. TiO_2 film was deposited on the surface of thelight-addressable-potentilmetric sensor (LAPS) to simplify the surface treatment process and toimprove the efficiency, for attaining better result of DNA test.
     The main research contents of this work are as followings:
     1) The effect of the UV treatment on the properties of the hydrothermally-grown ZnOnanorod arrays
     The ZnO nanorod arrays hydrothermally grown on the UV-treated area of the ZnO seedinglayer exhibit different surface morphology and photoluminescence characteristics comparedwith those grown on the non-UV-treated area. The UV treatment makes the surface of the ZnONRAs more uniform, the same as the diameter distribution of the nanorods. The nanorods on theUV-treated area were thinner than those on the non-UV treated area.
     2) Electrochemical characterization of gold-coated ZnO nanorod arrays electrode
     Gold was spurtered onto the surface of the ZnO nanorods in the arrays, which will protect them from erosion in aqueous solution and make the arrays capable of acting as electrode forelectrochemical detection. The prepared electrode was characterized by cyclic voltammetry andelectrochemical impedance spectrum, etc. With comparison to planar gold electrode, it is foundout that the diffusion property of the gold-coated ZnO NRAs electrode is nearly the same as thatof planar gold electrode, but the difffusion area enlarged and the charge transfer resistancedecreased. The decrease of the charge transfer resistance implies the increase of theelectrochemical activity of the electrode, which is in accordance with the properties ofnanostructure materials.
     3) Gold-coated ZnO NRAs electrode with improved electrochemical activity for thedirect detection of hydrogen peroxide
     The cyclic voltammograms in H2O2 solution revealed that the cathodic potential waslowered on gold-coated ZnO NRAs electrode compared with that on the planar gold electrode.The linear range of the detection for H2O2 with this electrode is 0.088 mM to 72.6mM, and thedetection limit is 0.07M. The detect sensitivity is 30 mAcm~(-2)M~(-1).
     4) Pt-modified gold-coated ZnO NRAs electrode for the detection of hydrogenperoxide
     With Pt modification, the resulted gold-coated ZnO NRAs electrode exhibits differentcyclic voltammetry characteristics. The reversibility of the reduction-oxidation reaction ofH2O2 on the Pt-modified electrode was improved, indicating the improvement of theelectrochemical activity of the electrode after the Pt deposition. The linear range of the detectionfor H2O2 with this electrode is 0.044 mM to 20mM, and the detection limit is 0.03mM. Thedetect sensitivity is 50 mAcm~(-2)M~(-1). Compared with the gold-coated ZnO NRAs electrode, afterPt modification, the detection limit and sensitivity were improved. The interference of theascorbic acid under the physiological concentration was neglected in the detection range.
     5) Influence of surface modification on the measurement effect of field-effect device.
     Two kinds of field-effect devices were studied, which could response to the change ofsurface charge by the variation of impedance of the devices.
     A. The influence of the surface treatment on the test characteristics of the field effectdevices (FED) has been studied. The surface treatment was carried out employing sulfuric acidand methanol-HCl solution respectively. The silanization and fluorescence-labeling of thesurface after these two kinds of treatment reveal that the treatments cause little influence on thesilanization effect of the surface. It is found that the sulfuric acid treatment makes the readout ofthe DNA sensor better.
     B. The non-label DNA test was conducted employing the characteristics of the LAPS responding to the surface charge. Nanocrystal titanium dioxide (TiO_2) thin film was depositedon the surface of the LAPS. The fluorescence labeling measurement indicates that the effect ofsurface silanization is improved by the UV treatment. The hybridization of 10μM target DNAwith the corresponding probe DNA immobilized on the LAPS surface can be measured by theshift of the I-V curve of LAPS.
引文
[1] ALIVISATOS P.The use of nanocrystals in biological detection. Nature Biotechnology, 2004, 22: 47-52.
    [2] AUTHIER L, GROSSIORD C, et al. Gold Nanoparticle-Based Quantitative Electrochemical Detection of Amplified Human Cytomegalovirus DNA Using Disposable Microband Electrodes. Analytical Chemistry, 2001, 73(18): 4450-4456.
    [3] AZAMIAN B R, DAVIS J J, et al. Bioelectrochemical Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2002, 124(43): 12664-12665.
    [4] BAKKER E, QIN Y. Electrochemical Sensors. Analytical Chemistry, 2006, 78(12): 3965-3984.
    [5] BAUER L A, BIRENBAUM N S, et al. Biological applications of high aspect ratio nanoparticles. Journal of Materials Chemistry, 2004, 14(4): 517-526.
    [6] BESTEMAN K, LEE J O, et al. Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors. Nano Letters, 2003, 3(6): 727-730.
    [7] BOON E M, CERES D M, et al. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotechnology, 2000, 18:1096-1100.
    [8] CAI W, PECK J R, et al. Direct electrical detection of hybridization at DNA-modified silicon surfaces. Biosensors and Bioelectronics, 2004, 19(9): 1013-1019.
    [9] CHEN L, GU B, et al. Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. Journal of Eleetroanalytical Chemistry, 2008, 617(1): 7-13.
    [10] CHOPRA N. Functional One-Dimensional Nanomaterials: Applications in Nanoscale Biosensors. Analytical Letters, 2007, 40(11): .2067-2096.
    [11] CUI Y, WEI Y, et al. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 2001, 293(5533): 1289-1292.
    [12] DELVAUX M, DEMOUSTIER-CHAMPAGNE S. Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosensors and Bioelectronics, 2003, 18(7): 943-951.
    [13] DOMINGUEZ E, RINCON O, et al. Electrochemical DNA Sensors Based on Enzyme Dendritic Architectures: an Approach for Enhanced Sensitivity. Analytical Chemistry, 2004, 76(11): 3132-3138.
    [14] GAO M, DAI L, et al. Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes. Synthetic Metals, 2003,137(1-3): 1393-1394.
    [15] GAUTIER C, ESNAULT C, et al. Hybridization-induced interfacial changes detected by non-Faradaic impedimetric measurements compared to Faradaic approach. Journal of Electroanalytical Chemistry,2007, 610(2): 227-233.
    [16] GOODING J. Electrochemical DNA Hybridization Biosensors. Electroanalysis, 2002, 14(17):1149-1156.
    [17] GOODSELL D S. Bionanotechnology: lessons from nature, Wiley-Liss, Inc., Hoboken, NewJersey.2004.
    [18] GORE M R, SZALAI V A, et al. Detection of Attomole Quantitites of DNA Targets on Gold Microelectrodes by Electrocatalytic Nucleobase Oxidation. Analytical Chemistry, 2003, 75(23):6586-6592.
    [19] GORVE A S, DEAL B E, et al. Investigation of thermally oxidized silicon surfaces using metal-oxide-semiconductor structures. IEEE Transactions on Electron Devices, 1964,11(11): 531-531.
    [20] GROVE A S, SNOW E H, et al. Simple Physical Model for the Space-Charge Capacitance of Metal-Oxide-Semiconductor Structures. Journal of Applied Physics, 2004,35: 2458.
    [21] HAFEMAN D G, PARCE J W, et al. Light-addressable potentiometric sensor for biochemical systems.Science, 1988,240(4856): 1182-1185.
    [22] HERNANDEZ-VELEZ M. Nanowires and 1D arrays fabrication: An overview. Thin Solid Films,2006, 495(1-2): 51-63.
    [23] HOFSTEIN S R, WARFIELD G. Physical limitations on the frequency response of a semiconductor surface inversion layer(Frequency response of p and n-type silicon semiconductor surface inversion layer found physically limited, investigating metal-oxide semiconductor/MOS/ capacitors). Solid-State Electronics, 1965, 8: 321-341.
    [24] ISMAIL A B M, HARADA T, et al. Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications. Sensors and Actuators B: Chemical, 2000, 71(3):169-172.
    [25] ITO Y, MORIMOTO K, et al. Light-addressable potentiometric (LAP) gas sensor. Proceedings of the 4th International Meeting on Chemical Senors at Waseda, Japan, 1922: 410-412.
    [26] JUSTIN GOODING J, F M W Y J L. Self-Assembled Monolayers into the 21~(st) Century: Recent Advances and Applications. Electroanalysis, 2003, 15(2): 81-96.
    [27] KERMAN K, YMYTMOET. DNA-Directed Attachment of Carbon Nanotubes for Enhanced Label-Free Electrochemical Detection of DNA Hybridization. Electroanalysis, 2004, 16(20):1667-1672.
    [28] KERMAN K, MORITA Y, et al. Label-free electrochemical detection of DNA hybridization on gold electrode. Electrochemistry Communications, 2003, 5(10): 887-891.
    [29] KIM D S, JEONG Y T, et al. An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosensors and Bioelectronics, 2004, 20(1): 69-74.
    [30] KOLMLOV A, MOSKOVITS M. Chemical Sensing And Catalysis By One-Dimensional Metal-Oxide Nanostructures. Annual Review of Materials Research, 2004,34(1): 151-180.
    [31] KRIZ K, ANDERLUND M, et al. Real-time detection of-ascorbic acid and hydrogen peroxide in crude food samples employing a reversed sequential differential measuring technique of the SIRE-technology based biosensor. Biosensors and Bioelectronics, 2001,16(6): 363-369.
    [32] KUCHIBHATLA S V N T, KARALOTI A S, et al. One dimensional nanostructured materials. Progress in Materials Science, 2007, 52(5): 699-913.
    [33] KUMAR A, MALHOTRA R et al. Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol-gel film. Analytica Chimica Acta, 2000,414(1-2): 43-50.
    [34] LAPIERRE-DEVLIN M A, ASHER C L, et al. Amplified Electrocatalysis at DNA-Modified Nanowires. Nano Letters, 2005, 5(6): 1051-1055.
    [35] LEHMANN M, BAUMANN W, et al. Simultaneous measurement of cellular respiration and acidification with a single CMOS ISFET. Biosensors and Bioelectronics, 2001,16(3): 195-203.
    [36] LEI C, ZHANG Z, et al. Biosensoring of hydrogen peroxide using new methylene blue N incorporated in a montmorillonite-modified horseradish peroxidase immobilization matrix as an electron shuttle. Analytica Chimica Acta, 1996,332(1): 73-81.
    [37] LI W, WANG Z, et al. Fabrication of multilayer films containing horseradish peroxidase and polycation-bearing Os complex by means of electrostatic layer-by-layer adsorption and its application as a hydrogen peroxide sensor. Analytica Chimica Acta, 2000, 418(2): 225-232.
    [38] LI Y F, LIU Z, et al. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Analytical Biochemistry, 2006,349(1): 33-40.
    [39] LIEBER C M, WANG Z L. Functional nanowires. MRS Bull, 2007,32(2): 99-108.
    [40] LIN Y, LU F, et al. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Letters, 2004,4(2): 191-196.
    [41] LIU H, LIU Y, et al. Fabrication and features of a Methylene Green-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as immobilization matrix for peroxidase. Talanta , 1996,43(1): 111-118.
    [42] LIU Q, CAI H, et al. Olfactory cell-based biosensor: A first step towards a neurochip of bioelectronic nose. Biosensors and Bioelectronics, 2006, 22(2): 318-322.
    [43] LU J G, CHANG P, et al. Quasi-one-dimensional metal oxide materials-Synthesis, properties and applications. Materials Science & Engineering, 2006,52(1-3): 49-91.
    [44] MCNEIL S E. Nanotechnology for the biologist. Journal of leukocyte biology, 2005, 78(3): 585-594.
    [45] GAO M, L D G W. Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers. Electroanalysis, 2003,15(13): 1089-1094.
    [46] MICHAEL J, SCHONING A P. Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions. Electroanalysis, 2006, 18(19-20): 1893-1900.
    [47] NAKAMURA R, UEDA K, et al. In Situ Observation of the Photoenhanced Adsorption of Water on TiO2 Films by Surface-Enhanced IR Absorption Spectroscopy. Langmuir, 2001, 17(8): 2298-2300.
    [48] NAKHMANSON R S. On the theory of MIS capacitance. Solid-State Electronics, 1976, 19: 745-758.
    [49] SCHROTH P, H L, HUMMEL H E, et al. Characterising an insect antenna as a receptor for a biosensor by means of impedance spectroscopy. Electrochimica Acta, 2001,47(1-2): 293-297.
    [50] PAN S, ROTHBERG L. Chemical Control of Electrode Functionalization for Detection of DNA Hybridization by Electrochemical Impedance Spectroscopy. Langmuir, 2005, 21(3): 1022-1027.
    [51] PATOLSKY F. LICHTENTEIN A, et al. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnology, 2001,19: 253-257.
    [52] PATOLSKY F. TIMKO B P, et al. Nanowire-based nanoelectronic devices in the life sciences. MRS Bulletin, 2007,32(2): 142-149.
    [53] POGHOSSIAN A, CHERSTVY A, et al. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators B: Chemical, 2005, 111-112:470-480.
    [54] ZHAO Q, Z G Q Z. Electrochemical Sensors Based on Carbon Nanotubes. Electroanalysis, 2002, 14(23): 1609-1613.
    [55] RENNEBERG R, LISDAT F, et al. Biosensing for the 21st Century, Springer, 2008.
    [56] ROJKIND M, DOMINGUEZ-ROSALES J A, et al. Role of hydrogen peroxide and oxidative stress in healing responses. Cellular and Molecular Life Sciences (CMLS), 2002,59(11): 1872-1891.
    [57] WANG R, et al. Photogeneration of Highly Amphiphilic TiO_2 Surfaces. Advanced Materials, 1998,10(2): 135-138.
    [58] SCHONING M J, POGHOSSIAN A. Recent advances in biologically sensitive field-effect transistors (BioFETs). The Analyst, 2002, 127(9): 1137-1151.
    [59] SEKI A, MOTOYA K, et al. Novel sensors for potassium, calcium and magnesium ions based on a silicon transducer as a light-addressable potentiometric sensor. Analytica Chimica Acta, 1999,382(1-2):131-136.
    [60] SINGHAL P, KUHR W G. Direct Electrochemical Detection of Purine- and Pyrimidine-Based Nucleotides with Sinusoidal Voltammetry. Analytical Chemistry, 1997, 69(17): 3552-3557.
    [61] SOUTEYRAND E, CLOAREC J P, et al. Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect. The Journal of Physical Chemistry B, 1997, 101(15):2980-2985.
    [62] STAR A, GABRIEL J C P, et al. Electronic Detection of Specific Protein Binding Using Nanotube FET Devices. Nano Letters, 2003, 3(4): 459-463.
    [63] STEIN B, GEORGE M, et al. Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sensors and Actuators B: Chemical, 2004, 98(2-3):299-304.
    [64] SUN C Q. Size dependence of nanostructures: Impact of bond order deficiency. Progress in Solid State Chemistry, 2007,35(1): 1-159.
    [65] SZE S M. Physics of Semiconductor Devices, Wiley-Interscience New York, 2007.
    [66] TANAKA H, YOSHINOBU T, et al. Application of the chemical imaging sensor to electrophysiological measurement of a neural cell. Sensors and Actuators B: Chemical, 1999, 59(1): 21-25.
    [67] TAYLOR R F, SCHULTZ J S. Handbook of Chemical and Biological Sensors, Institute of Physics Publishing. 1996.
    [68] USLU F, INGEBRANDT S, et al. Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosensors and Bioelectronics, 2004,19(12): 1723-1731.
    [69] VASEASHTA A, DIMOVA-MALINOVSKA D. Nanostructured and nanoscale devices, sensors and detectors. Science and Technology of Advanced Materials, 2005, 6(3-4): 312-318.
    [70] WANG H S, JU H X, et al. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode. Analytica Chimica Acta, 2002,461(2): 243-250.
    [71] WANG J, MUSAMEH M. Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors. Analytical Chemistry, 2003, 75(9): 2075-2079.
    [72] WANG J, POLSKY R, et al. Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization. Langmuir, 2001,17(19): 5739-5741.
    [73] WANG J X, SUN X W, et al. Zinc oxide nanocomb biosensor for glucose detection. Applied Physics Letters, 2006, 88(23): 233106.
    [74] WANG R, HASHIMOTO K, et al. Light-induced amphiphilic surfaces. Nature, 1997,388(6641): 431.
    [75] WANG Z L. Nanostructures of zinc oxide. Materials Today, 2004, 7(6): 26-33.
    [76] WANG Z L. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics Condensed Matter, 2004,16(25).
    [77] WATANABE T, NAKAJIMA A, et al. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 1999,351(1-2): 260-263.
    [78] WEI A, SUN X W, et al. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Applied Physics Letters, 2006, 89(123902): 1-3.
    [79] XIAO Y, LUBIN A A, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proceedings of the National Academy of Sciences,2006,103(45): 16677.
    [80] XU G, YE X, et al. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosensors and Bioelectronics, 2005, 20(9): 1757-1763.
    [81] XIA Y, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 2003,15(5): 353-389.
    [82] YAMAMOTO K, OHGARU T, et al. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry. Analytica Chimica Acta, 2000,406(2): 201-207.
    [83] YANG Y, MU S. Determination of hydrogen peroxide using amperometric sensor of polyaniline doped with ferrocenesulfonic acid. Biosensors and Bioelectronics, 2005,21(1): 74-78.
    [84] YUAN J, SHILLER A M. Determination of Subnanomolar Levels of Hydrogen Peroxide in Seawater by Reagent-Injection Chemiluminescence Detection. Analytical Chemistry, 1999, 71(10): 1975-1980.
    [85] ZHANG F, WANG X, et al. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Analytica Chimica Acta, 2004, 519(2): 155-160.
    [86] ZHANG L S, WONG G T F.Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method. Talanta, 1999, 48(5): 1031-1038.
    [87] ZHANG Q, WANG P, et al. Diagnosis of diabetes by image detection of breath using gas-sensitive laps. Biosensors and Bioelectronies, 2000, 15(5-6): 249-256.
    [88] ZHAO Z W, CHEN X J, et al. A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosensors and Bioeleetronies, 2007, 23(1): 135-139.
    [89] 王中林.压电式纳米发电机的原理和潜在应用.物理,2006,35(11):897-903.
    [90] 王平,叶学松.现代生物医学传感技术,浙江大学出版社,2003.
    [91] 王丽江,结合纳米技术的细菌检测分子生物传感器的研究,博士学文论文,杭州,浙江大学,2007.
    [92] 王存嫦,鲁亚霜等.基于铂纳米线阵列的葡萄糖生物传感器.化学传感器,2007,27(003):29-33.
    [93] 朱玉奴,彭图治等.碳纳米管负载铂颗粒酶电极葡萄糖传感器.分析化学,2004,32(010):1299-1303.
    [94] 牟季美,吴自勤等.纳米材料和纳米结构,科学出版社,2001.
    [95] 李一峻,常子栋等.电化学分析的进展及应用.分析试验室,2007:10.
    [96] 李新华,徐家跃等.重新发现ZnO--一种大有前途的多功能晶体材料.自然杂志,2004,26(006):343-345.
    [97] 曾辉,温志立.生物传感器在医学中新的应用.现代临床医学生物工程学杂志,2002,8(001):72-75.
    [98] 刘恩科,朱秉升等.半导体物理学,北京:电子工业出版社,2005.
    [99] 张炯,万莹等.电化学DNA生物传感器.化学进展,2007,19(010):1576-1584.
    [100] 张阳德.纳米生物技术学,科学出版社,2005.
    [101] 许银玉,吴朝阳等.基于铂纳米颗粒修饰碳纳米管Nafion膜电极的葡萄糖传感器.化学传感器,2006,26(002):48-53.
    [1] AHSANULHAQ Q, UMAR A, et al. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. Nanotechnology, 2007, 18(11): 115603.
    [2] MURPHY C J, N R J. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced Materials, 2002, 14(1): 80-82.
    [3] CAO X, LAN X, et al. General wet route for the growth of regular anisotropic nanostructures on silicon substrate. Journal of Crystal Growth, 2007, 306(1): 225-232.
    [4] CHANDER R, RAYCHAUDHURI A K. Growth of aligned arrays of ZnO nanorods by low temperature solution method on Si surface. Journal of Materials Science, 2006, 41(12): 3623-3630.
    [5] CHENG J, ZHANG X, et al. Aligned ZnO nanorod arrays fabricated on Si substrate by solution deposition. Physica E: Low-dimensional Systems and Nanostructures, 2006, 31(2): 235-239.
    [6] CHO S, MA J, et al. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn. Applied Physics Letters, 1999, 75:2761.
    [7] DHANANJAY, NAGARAJU J, et al. Investigations on zinc oxide thin films grown on Si (1??) by thermal oxidation. Materials Science and Engineering: B, 2007, 137(1-3): 126-130.
    [8] GUO M, DIAO P, et al. Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Applied Surface Science, 2005, 249(1-4): 71-75.
    [9] GUO M, DIAO P, et al. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry, 2005, 178(6): 1864-1873.
    [10] HE J H, HSU J H, et al. Pttern and Feature Designed Growth of ZnO Nanowire Arrays for Vertical Devices. J. Phys. Chem. B, 2006, 110(1): 50-53.
    [11] HONG S K, JEONG S K, et al. Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. Journal of Applied Physics, 2004, 95(3): 1246-1250.
    [12] HSU J W P, TIAN Z R, et al. Directed Spatial Organization of Zinc Oxide Nanorods. Nano Lett, 2005, 5(1): 83-86.
    [13] HUANG M H, MAO S, et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, 292(5523): 1897-1899.
    [14] JIANG X C, PILENI M P. Gold nanorods: Influence of various parameters as seeds, solvent, surfactant on shape control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295(1-3): 228-232.
    [15] XU J Q. C Y P, et al. Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sensors and Actuators B: Chemical. 2006,113(1): 526-531.
    [16] GOVENDER K, D S B, O'BRIEN P. BRINKS D, et al. Room-Temperature Lasing Observed from ZnO Nanocolumns Grown by Aqueous Solution Deposition. Adv. Mater, 2002,14: 1221-1224.
    [17] KANG B S, PEARTON S J, et al. Low temperature (< 100℃) patterned growth of ZnO nanorod arrays on Si. Applied Physics Letters, 2007. 90: 083104.
    [18] KATSUMATA, K.-i., A. Nakajima, et al. "Photoinduced surface roughness variation in polycrystalline TiO2 thin films." Journal of Photochemistry and Photobiology A: Chemistry,2006,180: 75-79.
    [19] KIM Y J, LEE C H, et al. Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Applied Physics Letters, 2006,89: 163128.
    [20] KONG X Y, WANG Z L. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Lett, 2003,3(12): 1625-1631.
    [21] KWON S J, PARK J H, et al. Selective growth of ZnO nanorods by patterning of sol-gel-derived thin film. Journal of Electroceramics, 2006,17(2): 455-459.
    [22] LEE C J. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters, 2002,81(19): 3648.
    [23] LI Z, HUANG X, et al. Growth and comparison of different morphologic ZnO nanorod arrays by a simple aqueous solution route. Materials Letters, 2007,61(22): 4362-4365.
    [24] LIAO L, LU H B, et al. Size Dependence of Gas Sensitivity of ZnO Nanorods. J. Phys. Chem. C, 2007,111(5): 1900-1903.
    [25] LIU C, MASUDA Y, et al. A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces. Thin Solid Films, 2006,503(1-2): 110-114.
    [26] MA T, GUO T, et al. Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology, 2007,18(035605): 035605.
    [27] MIYAUCHI M, NAKAJINA A, et al. Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films. Chemistry of Materials, 2002,14(6): 2812-2816.
    [28] ONDA K, LI B, et al. Wet Electrons at the H2O/TiO2(110) Surface. Science, 2005, 308(5725):1154-1158.
    [29] OZGUR U, YA I A, et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, 98(4): 041301.
    [30] PARTHANGAL P, CAVICCHI R E, et al. A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture. Nanotechnology, 2006,17(15): 3786-3790.
    [31] POSTELS B, KREYE M, et al. Selective growth of ZnO nanorods in aqueous solution. Superlattices and Microstructures, 2007, 42(1-6): 425-430.
    [32] RICO V, LOPEZ C, et al. Effect of visible light on the water contact angles on illuminated oxide semiconductors other than TiO2. Solar Energy Materials and Solar Cells, 2006, 90(17): 2944-2949.
    [33] LEE S M, S N C J C. Anisotropic Shape Control of Colloidal Inorganic Nanocrystals. Advanced Materials. 2003,15(5): 441-444.
    [34] SUN R D. NAKAJIMA A, et al. Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films. J. Phys. Chem. B, 2001,105(10): 1984-1990.
    [35] SUN Y. FUGE G M, et al. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chemical Physics Letters, 2004,396(1-3): 21-26.
    [36] TAK Y. YONG K. Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J Phys Chem B, 2005,109(41): 19263-9.
    [37] TAKEUCHI M, SAKAMOTO K, et al. Mechanism of Photoinduced Superhydrophilicity on the TiO2 Photocatalyst Surface. J. Phys. Chem. B, 2005,109(32): 15422-15428.
    [38] UOSAKI K, YANO T, et al. Interfacial Water Structure at As-Prepared and UV-Induced Hydrophilic TiO2 Surfaces Studied by Sum Frequency Generation Spectroscopy and Quartz Crystal Microbalance. J.Phys. Chem. B, 2004,108(50): 19086-19088.
    [39] VAYSSIERES L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials, 2003,15(5): 464-466.
    [40] VAYSSIERES L, KEIS K, et al. Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes. Chemistry of Materials, 2001,13(12): 4395-4398.
    [41] VAYSSIERES L, KEIS K, et al. Purpose-Built Anisotropic Metal Oxide Material:  3D Highly Oriented Microrod Array of ZnO. The Journal of Physical Chemistry B, 2001,105(17): 3350-3352.
    [42] VINAY G, ABHAI M. Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. Journal of Applied Physics, 1996, 80(2): 1063-1073.
    [43] WANG C, CHU X, et al. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sensors and Actuators B: Chemical, 2006,113(1): 320-323.
    [44] WANG D, CHU X, et al. Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method. Sensors and Actuators B: Chemical, 2006,117(1): 183-187.
    [45] WANG R, HASHIMOTO K et al. Light-induced amphiphilic surfaces. Nature, 1997,388(6641): 431.
    [46] WANG X D, SUMMERS C J, et al. Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Lett, 2004, 4(3): 423-426.
    [47] WANG Y G, LAU S P, et al. Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Journal of Applied Physics, 2003, 94: 354.
    [48] WANG Z L. Zinc oxide nanostructures: growth, properties and applications. Journal of physics condensed matter, 2004,16: 829-858.
    [49] WEINTRAUB B, DENG Y, et al. Position-Controlled Seedless Growth of ZnO Nanorod Arrays on a Polymer Substrate via Wet Chemical Synthesis. Journal of physical chemistry. C, 2007, 111(28):10162-10165.
    [50] XU X Y, ZHANG H Z, et al. Patterned growth of ZnO nanorod arrays on a large-area stainless steel grid. Journal of Physical Chemistry B, 2005,109(5): 1699-1702.
    [51] Yang P., Yan H., et al.Controlled Growth of ZnO Nanowires and Their Optical Properties. Advanced Functional Materials, 2002. 12(5): p. 323-331.
    [52] YI G C, WANG C, et al. ZnO nanorods: synthesis, characterization and applications. Semiconductor Science and Technology. 2005.20(4): S22-S34.
    [53] YU H, ZHANG Z, et al. A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays. J. Am. Chem. Soc, 2005, 127(8): 2378-2379.
    [54] ZHANG Y, YU K, et al. Zinc oxide nanorod and nanowire for humidity sensor. Applied Surface Science, 2005, 242(1-2): 212-217.
    [55] ZHAO J, JIN Z G, et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method. Journal of the European Ceramic Society, 2006, 26(13): 2769-2775.
    [56] ZHAO Q, ZHANG H Z, et al. Morphological effects on the field emission of ZnO nanorod arrays. Applied Physics Letters, 2005, 86:203115.
    [57] 李新华,徐家跃等.重新发现ZnO--一种大有前途的多功能晶体材料.自然杂志,2004,26(006):343-345.
    [58] 徐伟中,叶志镇等.MOCVD法以NO气体为掺杂源生长P型ZnO薄膜.半导体学报,2005,26(001):38-41.
    [59] 袁志好,段月琴等.自催化生长氧化锌纳米柱阵列.科学通报,2005,50(6).
    [60] 叶志镇,陈汉鸿.直流磁控溅射ZnO薄膜的结构和室温PL谱.半导体学报,2001,22(008):1015-1018.
    [61] 赵杰,胡礼中等.热氧化法制备ZnO薄膜及其特性研究.电子元件与材料,2005,24(003):40-43.
    [1] AKAGI Y, MAKIMURA M, et al. Development of a ligation-based impedimetric DNA sensor for single-nucleotide polymorphism associated with metabolic syndrome. Electrochimica Acta, 2006, 51(28): 6367-6372.
    [2] ARRIGAN D W M. Nanoelectrodes, nanoelectrode arrays and their applications. The Analyst, 2004, 129(12): 1157-1165.
    [3] MA C, Z L W. Road Map for the Controlled Synthesis of CdSe Nanowires, Nanobelts, and Nanosaws-A Step Towards Nanomanufacturing. Advanced Materials, 2005,17(21): 2635-2639.
    [4] CAO X, LAN X, et al. General wet route for the growth of regular anisotropic nanostructures on silicon substrate. Journal of Crystal Growth. 2007,306(1): 225-232.
    [5] CHENG H M, HSU H C. The substrate effect on the in-plane orientation of vertically well-aligned ZnO nanorods grown on ZnO buffer layers. Nanotechnology, 2005,16(12): 2882-2886.
    [6] CHOI J, SAUER G, et al. Monodisperse metal nanowire arrays on Si by integration of template synthesis with silicon technology. Journal of Materials Chemistry, 2003,13(5): 1100-1103.
    [7] CHOI J, SAUER G, et al. Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio. Chemistry of Materials, 2003,15(3): 776-779.
    [8] DIJKSMA M. BOUKAMP B A, et al. Effect of Hexacyanoferrate(Ⅱ/Ⅲ) on Self-Assembled Monolayers of Thioctic Acid and 11 -Mercaptoundecanoic Acid on Gold. Langmuir, 2002,18(8): 3105-3112.
    [9] DOBREV D, YAO H J, et al. Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: the influence of deposition parameters. Nanotechnology, 2006,17: 1922-1926.
    [10] EUGENII KATX, I W. Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 2003,15(11): 913-947.
    [11] FORRER P, SCHLOTTIG F, et al. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. Journal of Applied Electrochemistry, 2000,30(5): 533-541.
    [12] GAU V, MA S C, et al. Electrochemical molecular analysis without nucleic acid amplification. Methods,2005, 37(1): 73-83.
    [13] GUO M, DIAO P, et al. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry, 2005,178(6): 1864-1873.
    [14] HUANG T K, CHEN Y C, et al. Growth of High-Aspect-Ratio Gold Nanowires on Silicon by Surfactant-Assisted Galvanic Reductions. Langmuir, 2008, 24(11): 5647-5649.
    [15] ISAAC O, K'OWINO, O A S. Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring. Electroanalysis, 2005,17(23): 2101-2113.
    [16] LAPIERRE-DEVLIN, M A, ASHER C L, et al. Amplified Electrocatalysis at DNA-Modified Nanowires.Nano Letters, 2005, 5(6): 1051-1055.
    [17] LINUX C C, MICHAEL M, et al. Critical diameter for Ⅲ-Ⅴ nanowires grown on lattice-mismatched substrates. Applied Physics Letters, 2007,90(4): 043115.
    [18] MA T, GUO M, et al. Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology, 2007,18(035605): 035605.
    [19] MENON V P, MARTIN C R. Fabrication and Evaluation of Nanoelectrode Ensembles. Analytical Chemistry, 1995,67(13): 1920-1928.
    [20] PEJCIC B, DE MARCO R. Impedance spectroscopy: Over 35 years of electrochemical sensor optimization. Electrochimica Acta, 2006, 51(28): 6217-6229.
    [21] PENNER R M, MARTIN C R. Preparation and electrochemical characterization of ultramicroelectrode ensembles. Analytical Chemistry, 1987, 59(21): 2625-2630.
    [22] RIVEROS G, GREEN S, et al. Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology, 2006, 17(2): 561.
    [23] SUN C Q. Size dependence of nanostructures: Impact of bond order deficiency. Progress in Solid State Chemistry, 2007, 35(1): 1-159.
    [24] TANG X, ZHANG G, et al. Electrochemical characterization of silver nanorod electrodes prepared by oblique angle deposition. Nanotechnology, 2006, 17(17): 4439.
    [25] TIAN M, WNAG J, et al. Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano Letters, 2003, 3(7): 919-923.
    [26] TROJANOWICZ M. Analytical applications of carbon nanotubes: a review. TrAC Trends in Analytical Chemistry, 2006, 25(5): 480-489.
    [27] WANG J, TIAN M, et al. Microtwinning in Template-Synthesized Single-Crystal Metal Nanowires. The Journal of Physical Chemistry B, 2004, 108(3): 841-845.
    [28] DUAN X, C M L. General Synthesis of Compound Semiconductor Nanowires. Advanced Materials, 2000, 12(4): 298-302.
    [29] 巴德,福克纳等.电化学方法--原理和应用,北京:化学工业出版社,2005.
    [30] 陈松月,金阵列电化学免疫传感器检测大肠杆菌的研究,浙江大学硕士学位论文,2006。
    [31] 李莹,王英连.溶胶-凝胶法制备纳米ZnO薄膜及其光催化性能.人工晶体学报,2005,34(004):760-763.
    [32] 柳厚田,许品弟.电化学中的仪器方法,复旦大学出版社,1992.
    [33] 牟季美,吴自勤等.纳米材料和纳米结构,科学出版社,2001.
    [34] 田昭武.电化学研究方法,北京:科学出版社,1984.
    [35] 王丽江,结合纳米技术的细菌检测分子生物传感器的研究,浙江大学博士学位论文,2007.
    [36] 查全性.电极过程动力学导论,科学出版社,1976.
    [37] 张灯,检测大肠杆菌的电化学阻抗谱免疫生物传感器研究,浙江大学硕士学位论文,2005。
    [38] 曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [39] 张阳德.纳米生物技术学,科学出版社,2005.
    [40] 赵燕,张亚利等.纳米阵列电极研究进展.大学化学,2004,19(005):1-7.
    [41] 杨辉,卢文庆,应用电化学,科学出版社,2001.
    [1] CASS A E G, DAVIS G, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 1984, 56(4): 667-671.
    [2] COX J A, JAWORSKI R K. Voltammetric reduction and determination of hydrogen peroxide at an electrode modified with a film containing palladium and iridium. Analytical Chemistry, 1989, 61(19): 2176-2178.
    [3] DAI Z, XU X, et al. Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. Analytical Biochemistry, 2004, 332(1): 23-31.
    [4] MATTOS D, I L, GORTON L, et al. Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes. Biosensors and Bioelectronics, 2003, 18(2-3): 193-200.
    [5] DEGRANDL B L A C. Electrocatalytic oxidation of hydrogen peroxide by nitroxyl radicals. Journal of Electroanalytical Chemistry, 1997, 422(1-2): 7-12.
    [6] GARJONYTE R, MALINAUSKAS A. Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates. Sensors and Actuators B: Chemical, 1999, 56(1-2): 93-97.
    [7] GERLACHE M, GIROUSI S, et al. Pulsed electrochemical detection of H2O2 on gold. Electrochimica Acta, 1998,43(23): 3467-3473.
    [8] GOBI K V, TOKUDA K, et al. Monomolecular films of a nickel(Ⅱ) pentaazamacrocyclic complex for the electrocatalytic oxidation of hydrogen peroxide at gold electrodes. Journal of Electroanalytical Chemistry. 1998.444(2): 145-150.
    [9] GUO M, DIAO P. et al. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry, 2005,178(6): 1864-1873.
    [10] HALL S B, KHUDAISH E A, et al. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism. Electrochimica Acta, 1997,43(5-6): 579-588.
    [11] HALL S B, KHUDAISH E A, et al. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part Ⅱ: effect of potential. Electrochimica Acta, 1998, 43(14-15): 2015-2024.
    [12] HALL S B, KHUDAISH E A, et al. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part Ⅲ: Effect of temperature. Electrochimica Acta, 1999:2455-2462.
    [13] HALL S B, KHUDAISH E A, et al. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part Ⅳ: phosphate buffer dependence. Electrochimica Acta, 1999, 44(25): 4573-4582.
    [14] KARYAKIN A A, PUGANOVA E A, et al. Prussian Blue Based Nanoelectrode Arrays for H2O2 Detection. Analytical Chemistry, 2004, 76(2): 474-478.
    [15] KHOO S B, YAP MGS,et al. Electrocatalytic oxidation of H2O2 at an oxycobalt film modified glassy carbon electrode for fermentation monitoring. Analytica Chimica Acta, 1997, 351(1-3): 133-142.
    [16] KNITTEL D, WEI Q, et al. Strategies for the development of a voltammetric sensor for the determination of hydrogen peroxide at high concentrations. Fresenius' Journal of Analytical Chemistry, 1994,348(12): 820-824.
    [17] AGUI L, C P F, et al. Poly-(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes.Electrochimica Acta, 2007, 52(28): 7946-7952.
    [18] LU Y, YANG M, et al. Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochemistry, 2007, 71(2): 211-216.
    [19] MARC G, Z S, et al. Electrochemical Behavior of H202 on Gold. Electroanalysis, 1997, 9(14): 1088-1092.
    [20] MASHAZI P N, OZOEMENA K I, et al. Tetracarboxylic acid cobalt phthalocyanine SAM on gold:Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochimica Acta, 2006, 52(1): 177-186.
    [21] MIAH M R, OHSAKA T. Cathodic Detection of H2O2 Using Iodide-Modified Gold Electrode in Alkaline Media. Analytical Chemistry, 2006, 78(4): 1200-1205.
    [22] MIAH M R, OHSAKA T. Electrochemical oxidation of hydrogen peroxide at a bromine adatom-modified gold electrode in alkaline media. Electrochimica Acta, 2009, 54(5): 1570-1577.
    [23] OU F, SHI A, et al. Preparation and characterization of Prussian blue nanowire array and bioapplication for glucose biosensing. Analytica Chimica Acta, 2007, 605(1): 28-33.
    [24] OU F, YANG M, et al. Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosensors and Bioelectronics, 2007, 22(8): 1749-1755.
    [25] RAVI S D, IIMURA K I, et al. A novel metal immobilized self-assembled surface for electrochemical sensing. Sensors and Actuators B: Chemical, 2003, 96(3): 523-526.
    [26] RAWSON F J, PURCELL W M, et al. Fabrication and characterisation of novel screen-printed tubular microband electrodes, and their application to the measurement of hydrogen peroxide. Electrochimica Acta, 2007, 52(25): 7248-7253.
    [27] SABATANI E, RUBINSTEIN I. Organized self-assembling monolayers on electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very rapid electrode kinetics. The Journal of Physical Chemistry, 1987, 91(27): 6663-6669.
    [28] STRBAC S, ADZIC R R. The influence of OH- chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions. Journal of Electroanalytical Chemistry, 1996, 403(1-2): 169-181.
    [29] TANG X, ZHANG G, et al. Electrochemical characterization of silver nanorod electrodes prepared by oblique angle deposition. Nanotechnology, 2006, 17(17): 4439.
    [30] 赵琨,宋海燕等.铂纳米颗粒修饰直立碳纳米管电极的葡萄糖生物传感器.高等学校化学学报,2007:07.
    [31] 赵燕,张亚利等.纳米阵列电极研究进展.大学化学,2004,19(005):1-7.
    [1] CLOAREC JP, DELIGIANIS N, et al. Immobilization of homooligonucleotide probe layers onto Si/SiO2 substrates: characterization by electrochemical impedance measurements and radiolabelling. Biosensors and Bioelectronics, 2002, 17(5): 405-412.
    [2] CRAS J J, ROWE-TAITT C A, et al. Comparison of chemical cleaning methods of glass in preparation for silanization. Biosensors and Bioelectronies, 1999, 14(8-9): 683-688.
    [3] DE-LOS-SANTOS-ALVAREZ P. Current strategies for electrochemical detection of DNA with solid electrodes. Analytical and Bioanalytical Chemistry, 2004, 378(1): 104-118.
    [4] FRITZ J, COOPER E B, et al. Electronic Detection of DNA by Its Intrinsic Molecular Charge. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(22): 14142-14146.
    [5] HALLER I. Covalently attached organic monolayers on semiconductor surfaces. J. Am. Chem. Soc, 1978, 100(26): 8050-8055.
    [6] HAN Y, MAYER D, et al. Surface activation of thin silicon oxides by wet cleaning and silanization. Thin Solid Films, 2006, 510(1-2): 175-180.
    [7] IMPENS N R E N, VANDER VOORT P, et al. Silylation of micro-, meso- and non-porous oxides: a review. Microporous and Mesoporous Materials, 1999, 28(2): 217-232.
    [8] INGEBRANDT S, HAN Y, et al. Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. Biosensors and Bioelectronies, 2007, 22(12): 2834-2840.
    [9] KURTH D G, BEIN T. Surface reactions on thin layers of silane coupling agents. Langmuir, 1993, 9(11): 2965-2973.
    [10] GRANGE L, J D, MARKHAM J k. et al. Effects of surface hydration on the deposition of silane monolayers on silica. Langmuir, 1993.9(7): 1749-1753.
    [11] POGHOSSIAN A, ABOUZAR M H, et al. Field-effect sensors with charged macromolecules: Characterisation by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. Biosensors and Bioelectronics, 2007, 22(9-10): 2100-2107.
    [12] POGHOSSIAN A, CHERSTVY A, et al. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators B: Chemical, 2005, 111-112: 470-480.
    [13] SHISHKANOVA T V, VOLF R, et al. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor. Biosensors and Bioelectronies, 2007, 22(11): 2712-2717.
    [14] SIBERZAN P, LEGER L, et al. Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir, 1991,7(8): 1647-1651.
    [15] SOUTEYRAND E, CLOAREC J P, et al. Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect. J. Phys. Chem. B, 1997, 101(15): 2980-2985.
    [16] SZE S M. Physics of Semiconductor Devices, Wiley-Interscience New York, 2007.
    [17] TAYLOR R F, SCHULTZ J S. Handbook of Chemical and Biological Sensors, Institute of Physics Publishing, 1996.
    [18] USLU F, INGEBRANDT S, et al. Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosensors and Bioelectronics, 2004, 19(12): 1723-1731.
    [19] VAN DER VOORT P, VANSANT E F.Silylation of the Silica Surface A Review. Journal of Liquid Chromatography & Related Technologies, 1996, 19(17): 2723-2752.
    [20] 杜荣归,黄若双等.埋置式复合探针原位测定钢筋/混凝土界面氯离子和pH值.分析化学,2005,33(001):29-32.
    [21] 廖劲松,张水华等.DNA场效应生物传感器的研制.华南理工大学学报:自然科学版,2003,31(006):85-87.
    [22] 刘恩科,朱秉升等.半导体物理学,北京:电子工业出版社,2005.
    [23] 张虹.DNA场效应晶体管的研制.传感器技术,2003,(09).
    [1] BROOKES I M, MURYN C A, et al. Imaging Water Dissociation on TiO_2 (110). Physical Review Letters, 2001, 87(26): 266103.
    [2] DIEBOLD U. The surface science of titanium dioxide. Surface Science Reports, 2003, 48(5-8): 53-229.
    [3] DILL K, CHAN S D H, et al. Detection of plasmids using DNA and RNA probes and the light-addressable potentiometric sensor. Journal of Biochemical and Biophysical Methods, 1997, 35(3): 197-202.
    [4] EKLUND S E, CLIFFEL D E, et al. Modification of the Cytosensor? microphysiometer to simultaneously measure extracellular acidification and oxygen consumption rates. Analytica Chimica Aeta, 2003, 496(1-2): 93-101.
    [5] GIACOMELLI C E, AVENA M J, et al. Adsorption of Bovine Serum Albumin onto TiO_2 Particles. Journal of Colloid and Interface Science, 1997, 188(2): 387-395.
    [6] GIACOMELLI C E, ESPLANDIU M J, et al. Ellipsometric Study of Bovine Serum Albumin Adsorbed onto Ti/TiO_2 Electrodes. Journal of Colloid and Interface Science,1999, 218(2): 404-411.
    [7] HAFEMAN D F, PARCE J W, et al. Lightoaddressable potentiometric sensor for biochemical systems. Science, 1988, 240(4856): 1182-1185.
    [8] HETHERINGTON W M I, SHULTZ A N, et al. Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O_2 healing of Ti~(3+) defects on (110) rutile TiO_2 surfaces. Surface Science, 1995, 339(1): 114-124.
    [9] KARUPPUCHAMY S, JEONG J M. Superohydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition. Materials Chemistry and Physics, 2005, 93(2-3): 251-254.
    [10] KARUPPUCHMY S, JEONG J M, et al. Photoinduced hydrophilicity of titanium dioxide thin films prepared by cathodic electrodeposition. Vacuum, 2006, 80(5): 494-498.
    [11] LUNDSTROM I, ERLANDSSON R, et al. Artificial 'olfactory' images from a chemical sensor using a light-pulse technique. Nature, 1991,352(6330): 47-50.
    [12] MAKSYMOVYCH P, MEZHENNY S, et al. STM study of water adsorption on the TiO_2 (110)-(1×2) surface. Chemical Physics Letters, 2003, 382(3-4): 270-276.
    [13] MOURZINA Y, YOSHINOBU T, et al. Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition. Sensors and Actuators B: Chemical, 2001, 80(2): 136-140.
    [14] NAKAMURA R, UEDA K, et al. In Situ Observation of the Photoenhanced Adsorption of Water on TiO_2 Films by Surface-Enhanced IR Absorption Spectroscopy. Langmuir, 2001, 17(8): 2298-2300.
    [15] OLWA F Y, AVALLE L B, et al. Adsorption of human serum albumin (HSA) onto colloidal TiO_2 particles, Part Ⅰ. Journal of Colloid and Interface Science, 2003.261(2): 299-311.
    [16] WANG R, et al. Photogeneration of Highly Amphiphilic TiO_2 Surfaces. Advanced Materials, 1998, 10(2): 135-138.
    [17] SCHAUB R, THOSTRUP P, et al. Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO_2 (110). Physical Review Letters, 2001, 87(26): 266104.
    [18] SONG M J, YUN D H, et al. Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode. Journal of Bioseienee and Bioengineering, 2007, 103(1): 32-37.
    [19] SOUTEYRAND E, CLOAREC J P, et al. Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect. J. Phys. Chem. B, 1997, 101(15): 2980-2985.
    [20] TAKEUCHI M, SAKAMOTO K, et al.Mechanism of Photoinduced Superhydrophilicity on the TiO_2 Photocatalyst Surface. J. Phys. Chem. B, 2005, 109(32): 15422-15428.
    [21] TOPOGLIDIS E, CASS A E G, et al. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO_2 and ZnO films. Journal of Electroanalytieal Chemistry, 2001,517(1-2): 20-27.
    [22] WANG R, HASHIMOTO K, et al. Light-induced amphiphilic surfaces. Nature, 1997,388(6641): 431.
    [23] WATANABE T, NAKAJIMA A, et al. Potocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 1999, 351(1-2): 260-263.
    [24] XU G, YE X, et al.Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosensors and Bioelectronics, 2005, 20(9): 1757-1763.
    [25] YOSHINOBU T, IWASAKI H, et al. The light-addressable potentiometric sensor for multi-ion sensing and imaging. Methods, 2005, 37(1): 94-102.
    [26] 王玲,张振伟等.玻璃上透明纳米TiO_2薄膜的制备.济南大学学报:自然科学版,2005,19(001):17-20.
    [27] 王贺权,沈辉等.靶基距对直流反应磁控溅射制备TiO_2薄膜光学性质的影响.真空,2005,42(001):11-14.
    [28] 门洪,重金属离子选择传感器及其在海水分析中应用的研究,博士学位论文,2005.
    [29] 沈杰,沃松涛等.射频磁控溅射制备纳米TiO_2薄膜及其光致特性研究.真空科学与技术学报,2004,24(002):81-86.
    [30] 宗祥福,朱永强.紫外辐照纳米尺度TiO_2薄膜亲水性转变的机理.复旦学报:自然科学版,2002,41(002):208-211.
    [31] 夏天,曹望等.TiO_2纳米晶和薄膜的制备及微观性质研究.精细化工,2004,21(z1):75-78.
    [32] 崔晓莉,江志裕.纳米TiO_2薄膜的制备方法.化学进展,2002,14(005):325-331.
    [33] 关凯书,尹衍升等.TiO_2-SiO_2复合薄膜光催化活性与亲水性关系的研究.硅酸盐学报,2003,1(003):219-223.
    [34] 刘宗怀.纳米二氧化钛光催化剂的研究进展.钛工业进展,2007,(01).
    [35] 陈建华 龚竹青,二氧化钛半导体光催化材料离子掺杂,科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700