CdSe_xS_(1-x)和CdSe_xS_(1-x)/ZnS系列量子点的光谱与光学非线性特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体量子点具有大的非线性吸收系数和非线性折射率,使之成为光开关、光限幅和光存储等光电子器件的优选材料。因此研究量子点的非线性光学特性,探索其产生各种光学特性的机理以及其潜在的应用具有非常重要的意义。本文以不同组分的非核壳CdSe_xS_(1-x),和核壳CdSe_xS_(1-x)/ZnS系列量子点为研究对象,围绕不同组分、包壳与未包壳量子点的光谱特性,非线性光学特性以及光限幅效应等方面进行了系统的研究。主要工作归纳如下:
     1.研究了不同组分的CdSe_xS_(1-x)和CdSe_xS_(1-x)/ZnS系列量子点的吸收光谱特征和荧光光谱特性。首先,通过吸收光谱与有效质量近似模型,确定了CdSe_xS_(1-x)和CdSe_xS_(1-x)/ZnS系列量子点的组分,比按投料计量的组分准确的多,并发现组分能够调谐吸收光谱波长与发射波长。其次,通过对吸收光谱进行高斯拟合,计算了CdSe_xS_(1-x)和CdSe_(1-x)S_x/ZnS系列量子点的本征复合寿命,发现通过壳层对量子点的修饰,能够缩短本征复合寿命,增加了振子强度;通过比较CdSe_(1-x)S_x和CdSe_(1-x)S_x/ZnS系列量子点荧光光谱,发现核壳结构的量子点荧光光谱强度明显增强;这表明包覆壳层对量子点修饰能够减少量子点表面缺陷密度,减小了无辐射跃迁的通道,从而能够提高量子点的荧光强度。
     2.在波长为1064nm皮秒激光激发下,用Z-扫描方法研究了不同组分的CdSe_xS_(1-x)和CdSe_xS_(1-x)/ZnS系列量子点非线性光学特性。结果表明CdSe_(0.5)S_(0.5)/ZnS量子点对1064nm的激发光存在非线性吸收,CdSe_(0.3)S_(0.7)、CdSe_(0.5)S_(0.5)、CdSe_(0.8)S_(0.2)、CdSe_(0.8)S_(0.2)/ZnS和CdSe_(0.3)S_(0.7)/ZnS量子点没有非线性吸收。首先建立双光子激发的动力学能级模型,解释了CdSe_(0.5)S_(0.5)/ZnS量子点的非线性折射率随入射光强的增加线性减小的变化规律,求得该量子点溶液的三阶非线性折射率γ_3=1.50×10~(-17)m~2/W(SI)(5.1×10~(-11)esu),自由载流子折射截面为σ_r=-6.74×10~(-24)cm~3,双光子吸收截面δ_(2 PA)达到10~4GM数量级。其次,通过闭孔Z-扫描技术求得CdSe_(0.3)S_(0.7)、CdSe_(0.5)S_(0.5)、CdSe_(0.8)S_(0.2)、CdSe_(0.8)S_(0.2)/ZnS和CdSe_(0.3)S_(0.7)/ZnS量子点不同入射光强的非线性折射率,发现其非线性折射率随入射光强的变化不大,这是因为1064nm的激发光不在量子点的吸收区内,所以其非线性折射率主要来源于价带的束缚电子,激发光只引起价带束缚电子的电子云畸变,对束缚电子的分布影响不大。还发现随着Se的增加,CdSe_xS_(1-x)和CdSe_xS_(1-x)/ZnS系列量子点的非线性折射率随之增大,并对此给出了定性的解释。这说明组分不仅可以调谐量子点的发射波长,还可以调谐量子点的非线性折射率。另外,包覆壳层量子点的非线性折射率比相同组分的非核壳量子点大,说明壳层包覆能够改善其光学非线性特性。
     3.在波长为532nm的皮秒激光激发下,用Z-扫描方法研究了不同组分的CdSe_xS_(1-x)和CdSe_xS_(1-x)/ZnS系列量子点非线性光学特性。结果表明这些量子点对532nm的激发光都存在非线性吸收,其中CdSe_(0.3)S_(0.7)量子点的非线性吸收源于双光子吸收和双光子诱导的激发态吸收过程,其余量子点的非线性吸收皆源于激发态吸收过程。首先建立双光子激发动力学能级模型解释了CdSe_(0.3)S_(0.7)量子点有效的双光子吸收系数随入射光强增大线性增大和非线性折射率随入射光强增大线性减小的现象,这表明其非线性折射率主要源于价带束缚电子和双光子产生的自由载流子的共同贡献,且双光子诱导的激发态吸收和自由载流子的非线性响应都是五阶非线性过程。求得双光子吸收系数1.2cm/GW,双光子吸收截面δ_(2PA)=1.5×10~4GM,双光子吸收诱导的激发态吸收截面δ_(eff)=0.63×10~(-19)cm~2,三阶非线性折射率为2.6×10~(-14)cm~2/W(8.7×10~(-12)esu),其自由载流子的折射截面σ_r,=-2.9×10~(-23)cm~3。其次,建立激发态吸收的动力学能级模型解释了CdSe_(0.5)S_(0.5)、CdSe_(0.8)S_(0.2)、CdSe_(0.3)S_(0.7)/ZnS、CdSe_(0.5)S_(0.5)/ZnS和CdSe_(0.8)S_(0.2)/ZnS量子点在单光子共振区的非线性吸收现象,证实其源于激发态吸收,并求得了这些量子点的有效的激发态吸收截面和非线性折射率,发现随着Se的增加,非线性折射率增加,而有效的激发态吸收截面减小,说明组分能够调谐量子点的光学非线性特性,并定性地解释了这种变化规律;另外,还发现包覆壳层的量子点的有效激发态吸收截面和非线性折射率都比同组分的未包壳量子点大,说明表面包覆能够有效地改善量子点的非线性光学特性。
     4.通过测量量子点的非线性透过率,发现随入射光强的增加,非线性透过率很快减小,表明这些量子点具有良好的光限幅行为,可以作为光限幅器的优选材料。
The quantum dots(QDs) possess the large nonlinear absorption coefficient and nonlinear refractive index, which enable them to be the candidates for the all-optical switching and optical limiter. Therefore, it is very significant that their optical nonlinearity, their physical mechanism and their potential application are investigated. In this dissertation, we chose a series of CdSe_xS_(1-x)and CdSe_xS_(1-x)/ZnS QDs as the research object, and discus the effects of the composition and shell of QDs on the spectra. Their nonlinear optical properties have been investigated by Z-scan technique. At last, the potential application in optical limiting also has been attempted for these QDs. The main results of the research work are as follows:
     1.A detailed analysis of the series of CdSe_xS_(1-x)and CdSe_xS_(1-x)/ZnS QDs was presented by means of absorption and fluorescence spectra. First, based on the absorption spectra and effective mass approximation, the composition of these QDs was determined, which is more accurate than feed ratio; it was also found that the spectra properties can be tuned by the composition. Second, the intrinsic radiative lifetime of these QDs was determined on the basis of the Gaussian fitting for the absorption spectra; it was found that the intrinsic radiative lifetime is decreased and the oscillator strength is enhanced by the surface modification of shell structure. Comparing the fluorescence spectra of core-shell QDs with that of their counterpart, it was found that the fluorescence intensity is enhanced by surface modification. These results indicate that surface modification can reduce their defect concentration, which results in the decrease of non-radiative channel and enhancement of fluorescent intensity.
     2.We investigated the optical nonlinearity of the different composition of the non-core/shell and core/shell QDs with 1064nm ps pulse by Z-scan technique. The Z-scan results show that two-photon absorption(TPA) occurred for core/shell CdSe_(0.5)S_(0.5)/ZnS QDs, and no TPA occurred for the others, including CdSe_(0.3)S_(0.7)、CdSe_(0.5)S_(0.5)、CdSe_(0.8)S_(0.2)、CdSe_(0.8)S_(0.2)、/ZnS and CdSe_(0.3)S_(0.7)/ZnS QDs. First, we established the energy level model of the optical physical process and interpreted the change of the nonlinear refractive indices with the increase of input intensity; the third-order nonlinear indices is determined to be 1.50×10~(-17)m~2/W(SI)(5.1×10~(-11)esu), the refraction cross section is 6.74×10~(-24)cm~3, their average TPA cross section is up to the order of 1.3×10~4GM. Second, the nonlinear refractive indices of CdSe_(0.3)S_(0.7)、CdSe_(0.5)S_(0.5)、CdSe_(0.8)S_(0.2)、CdSe_(0.8)S_(0.2)/ZnS and CdSe_(0.3)S_(0.7)/ZnS QDs is obtained by close-aperture Z-scan, it was found that their nonlinear refractive indices hardly vary with input intensity. Base on the experimental results, the optical nonlinearity in the nonresonant region is ascribed to the bound electronic response, which results from the distortion of electron clound and indicate that the input intensity have less influence on them. It was also found that the nonlinear refractive indices increase with the decrease of bandgap, which is caused by Se content in these QDs. Then we give a qualitative explanation for this phenomenon. This result shows that not only the peak wavelength of these QDs but their nonlinear optical properties can be altered by composition of these QDs. Moreover, the nonlinear refractive indices of core/shell QDs is larger than the counterpart with the same composition, which indicates that surface modification by coating shell structure on the QDs can improve their nonlinear optical properties.
     3. We investigated the optical nonlinearity of a series of CdSe_xS_(1-x) and CdSe_xS_(1-x)/ZnS QDs with 532nm ps pulse by Z-scan technique. The Z-scan results show that the nonlinear absorption occurred for all the QDs. Among them, the nonlinear absorption of CdSe_(0.3)S_(0.7) QDs originates from TPA process and the TPA-induced excited state absorption(TPESA) process, that of the other QDs originates from excited state absorption(ESA). First, based on the energy leve model of two-photon-excitation dynamics, we interpreted the phenomena that their TPA coefficients linearly increase with increase of input intensity and their nonlinear refractive indices linearly decrease with input intensity. This result shows that the nonlinear refractive index is ascribed to the contribution of bond electronics and TPA-generated free carriers. Both the TPESA and the nonlinear response of TPA-generated free carriers are fifth-order nonlinear process. The TPA coefficient of CdSe_(0.3)S_(0.7) QDs is 1.2cm/GW by open-aperture Z-scan, their TPA cross section is 1.5×10~4GM, the TPA-induced ESA cross section is 0.63×10~(-19)cm~2, the third-order nonlinear index is 2.6×10~(-14)cm~2/W(8.7×10~(-12)esu) and the refraction cross section of free carrier is -2.9×10~(-23)cm~3. Second, in order to interpret the nonlinear absorption of CdSe_(0.5)S_(0.5)、CdSe_(0.8)S_(0.2)、CdSe_(0.3)S_(0.7)/ZnS、CdSe_(0.5)S_(0.5)/ZnS and CdSe_(0.8)S_(0.2)/ZnS QDs in resonant region, the energy level model of ESA dynamics is established. It is confirmed that the nonlinear absorption originates from ESA. The ESA cross sections and the nonlinear refractive of these QDs are determined by Z-scan. It was found that the nonlinear refractive indices for these QDs increase with the increase of Se content while their ESA cross sections decrease with it, for which a qualitative explanation is presented by us. Moreover, we also found that the QDs with ZnS shell exhibit larger ESA cross section and nonlinear refractive indices than their counterpart, which confirms that surface modification can improve the nonlinear optical properties.
     4. Through the measure of nonlinear transmittance of these QDs, it was found that the nonlinear transmittance decreases fast with input intensty. The result shows that these QDs exhibit excellent optical limiting properties, which enable them to be a promising candidate material for optical limiters.
引文
[1] 孙真荣。PPV衍生物及金属有机配位化合物三阶光学非线性研究。华东师范大学博士论文,1998
    [2] 张福军。几种DMIT类金属有机配合物的三阶非线性光学性能和光传输特性的研究量子点非线性。山东大学博士论文,2007
    [3] 郑加金。激发态分子内质子转移有机分子光学非线性特性及其全光光开关效应。南开大学博士论文,2007
    [4] 张鹏,牛燕雄,郭志新等。碳纳米管在光限幅中的应用。激光与光电子学进展。2004,41(11):51-55
    [5] K. Jain, R. C. Lind. Degenerate four-wave mixing in semiconductor-doped glasses. J. Opt.Soc. Am., 1983, 73(5): 647-653
    [6] Lap-Tak Cheng, Norman Herron, Ying Wang. Nonresonent third optical nonlinearity of quantum-confined CdS clusters. J.Appl. Phys., 1989, 67(7): 3417-3419
    [7] T. Takagahara. Excitionic optical nonlinearity and excitonic dynamics in semicondutor quantumd dots. Phys. Rev. B, 1987, 36(17):9293~9296
    [8] Y. WANG Nonlinear Optical Properties of Nanometer-Sized Semiconductor Clusters. Acc. Chem. Res., 1991,24(5): 133-139
    [9] 田强,沈娇艳,杨永刚等。半导体量子点中双激子的双光子共振吸收。北京师范大学学报,2004,40(3):338-342
    [10] Xiaobo Feng, Guiguang Xiong. Third-order nonlinear optical susceptibilities associated with intersubband transitions in CdSe/ZnS core-shell quantum dots. Physica B, 2006, 383:207-212
    [11] Baolong Yu, Congshan Zhu, Fuxi Gan. Optical nonlinearity of B_(i2)O_3 nanoparticles studied by Z-scan technique. J. Appl. Phys., 1997, 82 (9): 4532-4537
    [12] Lazaro A. Padilha, Jie Fu, David J. Hagan, et al. Two-photon absorption in CdTe quantum dots. Optics Express, 2005, 13(17): 6460-6467
    [13] Amit D. Lad, P. Prem Kiran, Deepak More, et al. Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures. Appl. Phys. Lett., 2008, 92: 043126(6pp)
    [14] Xiaohui Wang, Yumin Du, Sha Ding, et al. Preparation and Third-Order Optical Nonlinearity of Self-Assembled Chitosan/CdSe-ZnS Core-Shell Quantum Dots Multilayer Films. J. Phys. Chem. B, 2006, 110(4): 1566-1570
    [15] Jianping Li,Minqiang Wang,Zhonghai Lin, et al. Optical linearity and nonlinearity of ZnSe nanocrystals embedded in epoxy resin matrix investigated by Z-scan technique. Ceramics International, 2008, 34: 1073-1076
    [16] JaeTae Seo, SeongMin Ma, Qiguang Yang, et al. Large Resonant Third-order Optical Nonlinearity of CdSe Nanocrystal Quantum Dots. Journal of Physics: Conference Series,2006, 38: 91-94
    [17] Y. Gao, A. Tonizzo, A. Walser, M. Potasek, et al. Enhanced optical nonlinearity of surfactant-capped CdS quantum dots embedded in an optically transparent polystyrene thin film. Appl. Phys. Lett., 2008 92: 033106(3pp)
    [18] Yingli Qu, Wei Ji, Yuangang Zheng, et al. Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots. Appl. Phys. Lett., 2007, 90:133112(3pp)
    [19] Alexander M. Malyarevich, Maxim S. Gaponenko, Vasili G Savitski, et al. Nonlinear optical properties of PbS quantum dots in boro-silicate glass. Journal of Non-Crystalline Solids, 2007, 353:1195-1200
    [20] Amit D. Lad, P. Prem Kiran, G. Ravindra, et al. KumarThree-photon absorption in ZnSe and ZnSe/ZnS quantum dots. Appl. Phys. Lett., 2007, 90:133113(3pp)
    [21] 邹炳所。量子限域超微粒的合成、表征与光学特性研究。吉林大学博士论文,1991
    [22] 余保龙。纳米微粒的线性与非线性光学特性研究。南开大学博士论文,2000。
    [23] 朱宝华,王芳芳,张琨等。CdSe量子点的线性和非线性光学特性。物理学报,2008,57(10):6557-6564
    [24] HaoWang, Kyu-Seung Lee, Jae-Hyoung Ryu, et al. White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins. Nanotechnology ,2008, 19: 145202 (4pp)
    [25] Hui Li, Wan Y Shih, Wei-Heng Shih. Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl) trimethoxysilane as a capping molecule. Nanotechnology,2007,18495605 (7pp)
    [26] 章伟光,钟昀,范军等。Q态硫化镉纳米晶的制备、形态、量子尺寸效应与光催化性能。中国科学B,2003,33(1):66-73
    [27] Bruchez MJr, Moronne M , Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science , 1998 , 281 : 2013-2016
    [28] Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016-2018
    [29] Ying Wang, N. Herron. Nanometer-sized semiconductor clusters: materials synthesis,quantum size effects, and photophysical properties. J. Phys. Chem. 1991, 95(2): 525-532
    [30] Hines M A., Guyot-Sionnest P.,Synthesis and characterization of strong luminescing ZnS-cappedCdSe nanocrystals. J.Phys.Chem.B, 1996, 100:468-471
    [31] Heath J R,Shiang J J.Covalency in semiconductor quantum dots.Chem.Soc.Rev.,1998,27(1):65-71
    [32] A. D. YOFFE. Advances in Physics, 2001, 50(1): 1-208
    [33] 罗莹。半导体量子点电子结构的理论研究。北京师范大学博士论文,1999
    [34] Al. L. Efros, M. Rosen. The electronics structure of semiconductor nanocrystals. Annu. Rev.Mater. Sci., 2000, 30: 475-521
    [35] By A. D. Yoffe. Advances in Physics, 1993, 42(2):173-266
    [36] Sameer Sapra, D. D. Sarma. Evolution of the electronic structure with size in Ⅱ-Ⅵ semiconductor nanocrystals. Phys. Rev. B, 2004,69:125304(7pp)
    [37] 费浩生。非线性光学。高等教育出版社,1990
    [38] 王奎雄。非线性光学。国防工业出版社,1988
    [39] 钱世雄,王恭明。非线性光学-原理与进展。复旦大学出版社,2001
    [40] Maciek E. Orczyk, Marek Samoc, Jacek Swiatkiewicz, et al. Dynamics of third-order nonlinearity of canthaxanthin carotenoid by the optically heterodyned phase-tuned femtosecond optical Kerr gate. The Journal of Chemical Physics, 1993,98(4): 2524-2533
    [41] KIM S, LIM Y T, SOLTESZ E G, et al. Near-infrared Fluorescent Type ⅡQuantum Dots for Sentinel Lymph Node Mapping. Nat Biotechnol, 2004, 22 (1): 93-97.
    [42] 王占国。半导体量子点激光器研究进展。物理,2000,29(11):643-648
    [43] G.T.Liu,A.Stintz,H.Li,et al.,Extremely low room-temperature threshold current density diode lasers using InAs dots in In_(0.15)Ga_(0.85)As quantum well, Electron.Lett., 1999, 35:1163-1165
    [44] Gyoungwon Park,Oleg B Shcheking,Sebastion et al.RT continuous-wave operation of a single-layered 1.3um quantum dot laser. Appl.Phys.Lett.,1999,75:3267~3269
    [45] 王占国,刘峰奇,粱基本等。组装InAs/GaAs量子点材料和量子点激光器。中国科学(A),2000,30:644-652
    [46] M. K. Zundel, K. Eberl, N.Y. Jin-Phillipp, et al. Self-assembled InP quantum dots for red LEDs on Si and injection lasers on GaAs. Journal of Crystal Growth, 1999, (201/202):1121-1125
    [47] Hans-Jurgen Eisler,Vikram C.Sundar,Moungi GBawendib,Color-selective semiconductor nanocrystal laser,Applied physics letters,2002,80:4614-4616
    [48] Miri Kazes,David Y.Lewis,Yuval Ebenstein,et al.,Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity,Advanced materials,2002,14:317-321
    [49] R. Prasanth, J. E. M. Haverkort, A. Deepthy, et al. All-optical switching due to state filling in quantum dots。 Appl. Phys. Lett., 2004, 84(20): 4059-4061
    [50] L. A. Padilha, A. A. R. Neves, E. Rodriguez, et al. Ultrafast optical switching with CdTe nanocrystals in a glass matrix. Appl. Phys. Lett., 2005, 86(16): 161111(3pp)
    [51] Nakamura Hitoshi, Yoshimasa Sugimoto, Kyozo Kanamoto, et al Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic network Opt. Express, 2004,12(26): 6606-6614
    [52] E. Rodriguez, G. Kellermann, A.F. Craievich, et al. All-optical switching device for infrared based on PbTe quantum dots. Superlattices and Microstructure, 2008, 43(5/6): 626-634(法布里-
    [53] Kiyoshi Asakawa, Yoshimasa Sugimoto, Yoshinori Watanabe, et al. Photonic crystal and quantum dot technologies for all-optical switch and logic device. New Journal of Physics,2006, 8: 208(26pp)
    [53] 牛燕雄,张雏,周增惠。低能激光武器的防护技术。光学技术,1998,(1):89-92.
    [54] 付伟。激光防护技术的发展现状。应用光学,2000,21(3):12-16.
    [55] KS. Bindra, S.M. Oak, K.C. Rustagi. Optical limiting in semiconductor-doped glasses. Opt. Commun., 1996, 124: 452-456
    [56] Baolong Yu a, Guosheng Yin, Congshan Zhu, et al. Optical nonlinear properties of PbS nanoparticles studied by the Z-scan technique. Optical Materials, 1998,11: 17-21
    [57]Wenling Jia, Elliot P. Douglas, Fenggi Guo, et al. Optical limiting of semiconductor nanoparticles for nanosecond laser pulses. Appl. Phys. Lett., 2004, 85(26): 6326-6328
    [58]N. Venkatram, M. A. Akundi, D. Narayana Rao. Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles.Opt. Express, 2005, 13: 867-872
    
    [1] Victor I. Klimov. Nanocrystal Quantum Dots From fundamental photophysics to multicolor lasing. Science, 2003,28: 214-220
    [2] Congjun Wang, Moonsub Shim. Philippe Guyot-Sionnest, Electrochromic Nanocrystal Quantum Dots. Science, 2001 ,291: 2390-2392
    [3] Y. Wang, N. Herron. Nanometer-Sized Semiconductor Clusters: Materials Synthesis,Quantum Size Effects, and Photophysical Properties. J. Phys. Chem., 1991, 95(2): 525-532
    [4] P. Maly', J. Kudrna, F. Troja'nek, et al. Dominant role of surface states in photoexcited carrier dynamics in CdSe nanocrystalline films prepared by chemical deposition. Appl. Phys.Lett., 2000, 77 (15):2352-2354
    [5] Trevor W. Roberti, Nerine J. Cherepy, Jin Z. Zhang. Nature of the power-dependent ultrafast relaxation process of photoexcited charge carriers in II-VI semiconductor quantum dots:Effects of particle size, surface, and electronic structure. J. Chem. Phys., 1998,108(5):2143-2151
    [6] Jin Z. Zhang. Ultrafast Studies of Electron Dynamics in Semiconductor and Metal Colloidal Nanoparticles: Effects of Size and Surface. Acc. Chem. Res., 1997, 30(10): 423-429
    [7] V.P. Kunets, N.R. Kulish, V.V. Strelchuk, et al. CdSSe quantum dots: effect of the hydrogen RF plasma treatment on exciton luminescence. Physica E, 2004, 22: 804-807
    [8] Yu-Yun Peng, Tsung-Eong Hsieh, Chia-Hung Hsu. Dielectric confinement effect in ZnO quantum dots embedded in amorphous SiO_2 matrix. J. Phys. D: Appl. Phys., 2007, 40:6071-6075
    [9] Nikolai Gaponik, Dmitri V. Talapin, Andrey L. Rogach, et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B, 2002,106(29): 7177-7185
    [10] Xinhua Zhong, Mingyong Han, Zhili Dong, et al. Composition-Tunable Zn_xCd_(1-x)Se Nanocrystals with High Luminescence and Stability. J.Am. Chem. Soc., 2003,125(28):8589-8594
    
    [11] Scott L. Cumberland, Khalid M. Hanif, Artjay Javier, et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials.Chem. Mater., 2002, 14(4): 1576-1584
    
    [12] Shinae Jun, Eunjoo Jang, Youngsu Chung. Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures. Nanotechnology., 2006, 17:4806-4810
    [13] T. Vossmeyer, L. Katsikas,t M. Gienig, et al. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy,and Reversible Absorbance Shift. J. Phys. Chem., 1994, 98(31): 7665-7673
    [14] DeaGwi Kim, Masashi Miyamoto, Masaaki Nakayama. Photoluminescence properties of CdS and CdMnS quantum dots prepared by a reverse-micelle method. Journal of Electron Microscopy. 2005, 54(supplement 1): i31-i34
    [15] B. Lounis, H.A. Bechtel, D.Gerion, et al. Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett., 2000, 399-404
    [16] C. B. Murray, D. J. Noms, M. G Bawendi, Synthesis and Characterization of Nearly Monodisperse CdE(E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc,1993,115(19): 8706-8715
    [17] Weiyong Mao, JiaGuo, Wuli Yang. Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method. Nanotechnology, 2007, 18: 485611(7pp)
    [18] Xinhua Zhong, Yaoyu Feng, Yuliang Zhang, et al. A facile route to violet- to orange-emitting Cd_xZn_(1-x)Se alloy nanocrystals via cation exchange reaction.Nanotechnology, 2007, 18: 385606 (6pp)
    [19] Yufeng Liao, Wenjiang Li, Sailing He. Properties of CdSe quantum dots coated with silica fabricated in a facile way. Nanotechnology, 2007, 18:375701 (5pp)
    [20] K Miyajima, M Ashida, T Itoh. Quantum-confined biexcitons in CuCl quantum dots and their unconventional optical properties. J. Phys.: Condens. Matter, 2007, 19: 445006 (21pp)
    [21] Hiromi Horiuchia, Noriya Iwamia, Fumi Tachibana. Complex formation of CdSe/ZnS/TOPO nanocrystal vs. molecular chaperone in aqueous solution by hydrophobic interaction.Journal of Luminescence, 2007, 127: 192-197
    [22] In Chan Baek, Sang Ⅱ Seok, Nimai Chand Pramanik, et al. Ligand-dependent particle size control of PbSe quantum dots. Journal of Colloid and Interface Science, 2007, 310:163-166
    [23] Hao Wang, Kyu-Seung Lee, Jae-Hyoung Ryu, et al. White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins. Nanotechnology ,2008, 19: 145202 (4pp)
    [24] Hui Li, Wan Y Shih, Wei-Heng Shih. Stable aqueous ZnS quantum dots obtained using (3-mercaptopropyl) trimethoxysilane as a capping molecule. Nanotechnology,2007,18495605 (7pp)
    [25] 章伟光,钟昀,范军等。Q态硫化镉纳米晶的制备、形态、量子尺寸效应与光催化性能。中国科学B,2003,33(1):66-73
    [26] 惠萍,黄纲明。CdSe量子点系统的库仑相互作用能的量子尺寸效应。中山大学学报,2004,43(4):38-40
    [27] 汤嘉立,吴访升,陈铭。溶剂热合成单分散硫化镉纳米晶。化学学报,2008,66(14):1647-1650
    [28] 孙伟,,江宏,张灿英等。功能化PbS量子点的水相合成及结构表征。化学研究,2006, 17(2):47-49
    [29]蒋茶,徐淑坤,杨冬芝等。CdS量子点的制备及细胞膜初步荧光标记。分析试验室,2007,26(5):1-5
    [30]师文生,陈正豪,刘宁宁等。Ce:BaTiO_3自组织量子点制备及其非线性光学性质。中国科学A,1999,29(8):724-728
    [31]郭幸,曾大文,谢长生。CuO表面修饰ZnO量子点及其光学性能。硅酸盐学报,2006,34(6):679-683
    [32]张道礼,张建兵,吴启明等。InP胶体量子点的合成及光谱性质。半导体学报,2006,27(7):1213-1216
    [33]张晓松,开桂云,李岚等。ZnS:Er量子点材料制备及其受激发光特性研究。光电子·激光,2006,17(12):1487-1491
    [34]罗志徽,贺俊芳,汪敏强等。ZnSe/SiO_2半导体量子点玻璃的光谱特性。光子学报,36(3):471-475
    [35]王伟,郝彦忠。量子点CdS修饰纳米结构TiO_2复合膜的光电化学研究。化学研究与应用,2007,19(2):199-202
    [36]吴文智,闫玉禧,郑植仁等。水溶性CdTe量子点的稳态和纳秒时间分辨光致发光光谱。物理学报,2:007,56(5):2926-2930
    [37]陈启凡,杨冬芝,徐淑坤等。微波辐射法制备水溶性CdTe量子点及其光谱学研究。光谱学与光谱分析,2007,27(4):650-653
    [38]江德生,李国华,韩和相等。玻璃中CdSeS量子点的结构和光学性质。半导体学报,22(8):996-1001
    [39]王引书,孙萍,丁硕等。玻璃中CdSeS纳米晶体的生长及其性能。物理学报,2002,51(12)2892-2895
    [40]王引书,郑东,孙萍等。玻璃中CdSeS纳米晶体的室温光致发光谱。发光学报,2003,24(2):139-143
    [41]李永升,田强。用非本征吸收区的透射系数研究CdSeS量子点玻璃的非线性系数。光学技术,2004,30(1):30-32
    [42]孙平,王引书,颜其礼等。CdS_(0.1)Se_(0.9)半导体纳米晶体的生长和吸收光谱的研究。北京师范大学学报,36(2):184-187
    [43]孙萍,王引书,王若祯等。CdS_(0.1)Se_(0.9)纳米晶体的光电性质。量子电子学报,2002,19(1):70-73
    [44]Jung-Chu Seo, Dongho Kim. Ultrafast photoinduced absorption dynamics of CdS_(0.4)Se_(0.6) nanostructure semiconductors doped in glass. Opt. Commun., 1998, 155: 43-46
    [45]P. A. M. Rodrigues, P. Y. Yu, G Tamulaitis. Laser-induced heating of nanocrystals embedded in glass matrices. J. Appl. Phys., 1996, 80 (10): 5963-5966
    [46]D. W. Hall, N. F. Borrelli. Absorption saturation in commercial and quantum-confined CdSe_xS_(1-x) doped glasses. J. Opt. Soc. Am. B,1988, 5(8): 1650-1654
    [47]V. D. Kulakovskii, K. Babocsi, M. Schmitt, et al. Biexciton and spin dephasing effects in quantum dots embedded in a glass matrix proved by four-wave mixing and pump-and-probe spectroscopy. Phys, Rev. B, 2003, 67: 113303(4pp)
    [48] Fred Moshary, S.R. Hartmann. Determination of inhomogeneous character of optical transitions in CdSSe semiconductor nanocrystals at band edge at 300 K. Op. Commun.,1996, 131:327-332
    [49] Junji Yumoto, Kenneth W. Delong. Naoshi Uesugi. Coherent transient in CdSSe microcrystallites doped in glasses. Phys. Rev. B, 1994, 49(16): 11322-11326
    [50] T. Breitkopf, H. Kalt, C. Klingshirn. Dynamics of the bleaching of tail states in CdS_(1-x)Se_x mixed crystals. J. Opt. Soc. Am. B, 1996, 13(6): 1251-1255
    [51] P. NEmec, F. TrojBnek, S. Santhi, et al. Effect of photodarkening on picosecond photoluminescence in CdSSe-doped glasses. Journal of Luminescence, 1997, 72-74:375-376
    [53] Se' rgio Tsuda, Carlos H. Brito Cruz. Femtosecond dynamics of the optical Stark effect in semiconductor-doped glass. Appl. Phys. Lett.,1996, 68 (8): 1093-1095
    [54] A. Dinger, R. Ell, A. Reznitsky, C. Klingshirn. Four-wave-mixing spectroscopy of localized excitons in CdS_(1-x)Se_x. Journal of Crystal Growth, 2000,214/215: 847-851
    [55] Kai Shum, W. B. Wang, R. R. Alfano. Observation of the 1P Excitonic States in Cd(S,Se)-Glass Quantum Dots. Phys. Rev. Lett., 1992,68(26): 3904-3907
    [56] Shintaro Nomura, Yusaburo Segawa, Kazuhiko Misawa, et al. Optical properties of semiconductor quantum dots in magnetic fields. Journal of Luminescence, 1996, 70:144-157
    [57] L. Grigoryan, P. Petrosyan, S. Petrosyan, V. Bellani, et al. Optical transmission spectra of a silicate glass containing nanocrystallites of cadmium sulphoselenide. Eur. Phys. J. B, 2003,34:415-419
    
    [58] Liu Bing-Can, Pan Xue-Long, Tian Qiang, et al. PLE spectra analysis of the sub-structure in the absorption spectra of CdSeS quantum dots. Chin. Phys., 2006, 15(05):1067-1070
    [59] N. F. Borrelli, D. W. Hall, H. J. Holland, et al. Quantum confinements effects of semiconducting microcrystallites in glass. J. Appl. Phys., 1987 61(12):5399-5409
    [60] Y. S. Wang, P. Sun, Y. H. Wang, and R. Z. Wang, et al. Sharp photoluminescence of CdSeS nanocrystals embedded in silica glass. Appl. Phys. Lett., 2003, 82(1): 49-51
    [61] P. D. Persans, M. Silvestri, G. Mlei, et al. Size Effect s in 11-VI Semiconductor Nanocrystals.Brazilian Journal of Pliysics, 1993,23(2): 144-150
    [62] S. Surendran, J. Pokorny, K. Jurek, et al. Temperature dependence of the optical energy gap of CdSSe nanocrystals in glass. Materials Science and Engineering B, 2003, 104: 54-57
    [63] P. Ne(?)mec, P. Maly'. Temperature study of trap-related photoluminescence decay in CdS_xSe_(1-x) nanocrystals in glass. J. Appl. Phys., 2000, 87(7): 3342-3348
    [64] S. M. Oak, K. S. Bindra, R. Chari, et al. Two-photon absorption in semiconductor-doped glasses. J. Opt. Soc. Am. B, 1993, 10(4): 613-619
    [65] Junji Yumoto, Seiji Fukushima, Ken-ichi Kubodera, Observation of optical bistability in CdS_xSe_(1-x)-doped glasses with 25-psec switching time. Opt. Lett., 1987, 12(10): 832-834
    [66] H. Giessen, B. Fluegel, G. Mohs, Y. Z. Hu, et al. Dephasing in the gain region of II—VI semiconductor nanocrystals. J. Opt. Soc. Am. B, 1996, 13(5): 1039-1044
    [67] Young-Nam Hwang, Cheon Min Kim, Sae Chae Jeoung, et al. Effect of glass electronic states on carrier dynamics in semiconductor quantum-dot structures. Phys. Rev. B, 2000,61(7): 4496-4499
    [68] Kai Shum, G. C. Tang, Mahesh R. Junnarkar, et al. Electron-hole recombination lifetimes in quasi-zero-dimensional electron system in CdS_xSe_(1-x). Appl. Phys. Lett., 1987, 51(22):1839-1841
    [69] H. Ma, Cid B. de Ara(?)jo. Interference between Third- and Fith-Order Polarizations in Semiconductor Doped Glasses. Phys. Rev. Lett., 1993, 71(22): 3649-3652
    [70] P. Roussignol, D. Ricard, C. Flytzanis. Phonon Broadening and Spectral Hole Burning in Very Small Semiconductor Particles. Phys. Rev. Lett., 1989, 62(3): 312-315
    [71] J. Warnock, D. D. Awschalom. Picosecond studies of electron confinement in simple colored glasses. Appl. Phys. Lett., 1986,48(6): 425-427
    [72] J. Warnock, D. D. Awschalom. Quantum size effects in simple colored glass. Phys. Rev. B,1985, 32(8): 5529-5531
    [73] C. O'Neil, P. Galarneau, M.-M. Denariez-Roberge. The Effect of the Relative Position of the Bandgap with Respect to Laser Wavelength on the Behaviour of DFWM in Semiconductor-Doped Glasses. Appl. Phys. B,1989, 49: 327-330
    [74] J.-C. Seo, D.Kim, HJ.Kong. Time-resolved photoinduced absorption spectroscopic study on trapped carriers at semiconductor-glass interfaces. Appl. Phys. A, 1997, 64: 445-449
    [75] Pragati Mukherjee. Theoretical study of optical absorption in cadmium sulphoselenide doped silicate glass. NanoStructunMd aterials, 1998, 10(7): 1189-1198
    [76] Najeh Al-Salim, Aidan G Young, Richard D. Tilley, et al. Synthesis of CdSeS Nanocrystals in Coordinating and Noncoordinating Solvents: Solvent's Role in Evolution of the Optical and Structural Properties. Chem. Mater. 2007, 19, 5185-5193
    [77] Eunjoo Jang, Shinae Jun, Lyongsun Pu. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem. Commun., 2003,2964-2965
    [78] By A. D. YOFFE. Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Advances in Physics, 1993, 42(2): 173-266
    [79] Sameer Sapra, D. D. Sarma. Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys. Rev. B, 2004,69:125304(7pp)
    [80] Shen V. Chong, Narayanaswamy Suresh, James Xia, et al. TiO_2 Nanobelts/CdSSe Quantum Dots Nanocomposite. J. Phys. Chem. C , 2007, 111(28): 10389-10393
    [81] J. He, W. Ji, G. H. Ma, S. H. Tang, et al. Excitonic nonlinear absorption in CdS nanocrystals studied using Z-scan technique. J. Appl. Phys., 2004, 95(11): 6381-6386
    [82] Victor I. Klimov. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals. J. Phys. Chem. B, 2000, 104(26): 6112-6123
    [83] G. Perna, S. Pagliara, V. Capozzi, et al. Optical characterization of CdS_xSe_(1-x) films grown on quartz substrate by pulsed laser ablation technique. Thin Solid Films, 1999, 349:220-224
    [84] V. S. Dneprovskii, E. A. Zhukov, D. A. Kabanin, et al. Nonlinear Absorption and Refraction of Light in a Colloidal Solution of CdSe/ZnS Quantum Dots upon Two-Photon Resonant Excitation. Low-Dimensional Systems and Surface Physics. 2007, 49 (2): 352-356.
    [1] P. D. Maker, R. W. Terhune, and C. M. Savage, Intensity-Dependent Changes in the Refractive Index of Liquids. Phys. Rev. Lett., 1964,12(18):507-509
    [2] Wliams, William E.; Soileau, M. J.; Van Stryland, Eric W. Optical switching and n_2 measurements in CS_2. Eric W., Opt.Comm., (1984),50(4):6-260
    [3] P YEH. Exact solution of a nonlinear model of two-wave mixing in Kerr media. Optical Society of America, J.Opt.Soc.Am.,B, 1986, 3(5):747-750
    [4] M J Weber, D Milam, WL Smith. Nonlinear refractive index of glasses and crystals. Opt. Eng., 1987,17:463-469
    [5] J Wang, M Sheik-Bahae, AA Said, et al. Time-resolved Z-scan measurements of optical nonlinearities. J. Opt.Soc. Am. B, 1994, 11(6): 1009-1017
    [6] R.Adair,L.L.Chase,et.al.,Nonlinear refractive-index measurements of glassed using three-wave frequency mixing, J.Opt.Soc.Am.B, 1987, 4(6):875-881
    [7] H.Coic,M.L.Roblin, Degenerate four-wave mixing in picosecond pulses: study of the temporal shape of the diffracted single as a function of the material response time,J.Opt.Soc.Am. B,(1994), 11(11):2232-2240
    [8] S.F.Frigerg, P.W.Smith,et.al.,Nonlinear optical glasses for ultra-fast optical switches, IEEE J.Quantum Electron, (1987), QE-23(12):2089-2094
    [9] M.Sheik-bahae,et.al., High-sensitivity single-beam measurements, Opt.Lett, (1989),14(17):955-957
    [10] Sheik-Bahae M., Said A. A., Wei, T. H., et al. Sensitive measurement of optical non-linearities using a single beam. IEEE. J. Quantum Electron., 1990,26(4)760-769
    [11] W. Zhao, P. Palffy-Muhoray. Z-scan technique using top-hat beams. Appl. Phys. Lett., 1993,63(12): 1613-1615
    [12] W. Zhao, P. Palffy-Muhoray. Z-scan measurement of χ~((3)) using top-hat beams. Appl. Phys.Lett., 1994,65(6):673-675
    [13] Jun Zhou, Edwin Y. B. Pun, Xiao Hong Zhang, et al. Nonlinear optical refractive indices and absorption coefficients of a, P-unsaturated ketone derivatives. J. Opt. Soc. Am. B, 2001,18(10): 1456-1463
    [14] 藏维平,田建国,张光寅。厚光学非线性介质Z-扫描理论分析。物理学报,1994,43(3):476-482
    [15] 臧维平,田建国,刘智波等。利用级数展开的Z扫描理论分析。光学学报,2003,23(12):1451-1455
    [16] 费浩生。非线性光学。高等教育出版社,1990
    [17] 王奎雄。非线性光学。国防工业出版社,1988
    [18] 钱世雄,王恭明。非线性光学-原理与进展。复旦大学出版社,2001
    [19] W. Kaiserand CGB Garrett, Two-Photon Excitation in CaF_2: Eu~(2+), Phys. Rev. Lett. , 1961, 7(6):229-231
    [20] Jiajin Zheng, Yangxue Guo, Xiangping Li, Guilan Zhang, Wenju Chen,Two-photon-induced excited state intramolecular proton transfer process and nonlinear optical properties of HBT in cyclohexane solution, Journal of Optics A: Pure and Applied Optics, 2006, 8(10): 835-839
    [21] Daniel R. Larson, Warren R. Zipfel, Rebecca M. Williams, Stephen W. Clark, Marcel P.Bruchez, Frank W. Wise,Watt W. Webb, Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo, Science (2003) 300: 1434-1436
    [22] Denk W, Strickler J , Webb W., Two-photon laser scanning fluorescence microscopy ,Science, (1990,248: 73-76
    [23] He G S, Yuan L, Cui Y P, et al. Studies of two-photon pumped frequency-upconverted lasing properties of anew dye material, J. Appl. Phys., 1997, 81(6): 2529-2537
    [24] He GS , Xu GC , Prasad P N , et al., Two-photon absorption and optical-limitting properties of novel organic compounds, Opt. Lett., 1995,20 (5) :435 -437
    [25] Spangler C W. Recent development in the design of organic materials for optical power limiting, J . Mater. Chem., 1999,9: 2013 -2020
    [26] Zhou W H , Kuebler S M, Braun K L, et al . An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication, Science, 2002,296: 1106 -1109
    [27] Fisher A M R, Murphree A L, Gomer C J. Clinical and proclinical photodynamic therapy, Laser Surg. Med. ,1995 , 17:2 -31
    [28] Parthenopoulos D A, Rentzepis P M., Three-dimensional Optical Storage Memory, Science,1989, 245 : 843-845
    [29] X. Zhang, H. Fang, S. Tang, W. Ji, Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beamZ-scan technique, Appl. Phys. B, 1997, 65:549-554
    [30] D.G.Mclean,R.L.Suther land,M.C.Brant etal., Nonlinear absorption study of a C_(60)-toluene solution.Opt.Lett., 1993,18(11):858-860
    [31] W.Ji,H.J.Du,S.H.Tang et al, Nanosecond reverse saturable absorption in cubanelike transition-metal clusters. J. Opt. Soc. Am., 1995,12(5):876-881
    [32] 宋瑛林,李峰,王瑞波,李淳飞.C_(60)/PMMA的单重态激发态吸收光限幅研究,光学学报,1996,16(10):1534-1536
    [33] 王沛,张为俊,高晓明,程平,葛传文,韩亚农,魏先文,徐正.C_(60)水溶胶激发态吸收截面的数值拟合,量子电子学报,1999,16(5):448-451
    [34] 宋瑛林,王玉晓,李俊庆,方光宇,董鉴奇.富勒烯衍生物的激发态吸收与光限幅特性研究,激光技术,1999,23(2):77-79
    [35] 王玉晓,杨淼,杨昆,李淳飞.罗丹明燃料激发态吸收及非线性荧光效应研究,光子学报,1997,26(3):256-260
    [36] Gary L. Wood, Mary J. Miller, et al. Investigation of tetrabenzporphyrin by the Z-scan technique, Opt. Lett., 1995, 20(9): 973-975
    [37] G. Tamulaitis, V. Gulbinas, G. Kodis, A. Dementjev, et al. Optical nonlinearities of glass doped with PbS nanocrystals, J. Appl. Phys., 2000, 88(1): 178-182
    [38] D. Udayakumar, A. John Kiran, A. Vasudeva Adhikari, et al. Third-order nonlinear optical studies of newly synthesized polyoxadiazoles containing 3,4-dialkoxythiophenes, Chemical Physics, 2006, 331: 125-130
    [39] Wenling Jia, Elliot P. Douglas, Fenggi Guo, et al. Optical limiting of semiconductor nanoparticles for nanosecond laser pulses, Appl. Phys. Lett.,, 2004, 85(26):6326-6328
    [40] Tiziana Cassano, Raffaele Tommasi, Andrew P. Meacham, et al. Investigation of the excited-state absorption of a Ru dioxolene complex by the Z-scan technique, The Journal of Chemical Physics, 2005, 122:154507(6pp)
    [41] Chuanlang Zhan, Dehua Li, Deqing Zhang, et al. The excited-state absorption and third-order optical nonlinearity from 1-dodecanethiol protected gold nanoparticles:Application for optical limiting, Optical Materials, 2004, 26:11-15
    [42] K. Yamanaka, K. Edamatsu, T. Itoh. Excited-state absorption of excitons confined in CuCl quantum dots, Journal of Luminescence, 2000, 87-89: 312-314
    [43] Shiliang Qu, Yingling Song, Chimin Du et al. Nonlinear optical properties in three novel nanocomposites with gold nanoparticles, Opt. Commun. 2001, 196: 317-323
    [1] 李永升,田强。用非本征吸收区的透射系数研究CdSeS量子点玻璃的非线性系数。光学技术,2004,30(1):30-32
    [2] 江德生,李国华,韩和相等。玻璃中CdSeS量子点的结构和光学性质。半导体学报,22(8):996-1001
    [3] 王引书,孙萍,丁硕等。玻璃中CdSeS纳米晶体的生长及其性能。物理学报,2002,51(12)2892-2895
    [4] 王引书,郑东,孙萍等。玻璃中CdSeS纳米晶体的室温光致发光谱。发光学报,2003,24(2):139-143
    [5] 李永升,田强。用非本征吸收区的透射系数研究CdSeS量子点玻璃的非线性系数。光学技术,2004,30(1):30-32
    [6] 孙平,王引书,颜其礼等。CdS_(0.1)Se_(0.9)半导体纳米晶体的生长和吸收光谱的研究。北京师范大学学报,36(2):184-187
    [7] 孙萍,王引书,王若祯等。CdS_(0.1)Se_(0.9)纳米晶体的光电性质。量子电子学报,2002,19(1):70-73
    [8] Jung-Chu Seo, Dongho Kim. Ultrafast photoinduced absorption dynamics of CdS_(0.4)Se_(0.6) nanostructure semiconductors doped in glass. Opt. Commun., 1998, 155: 43-46
    [9] P. A. M. Rodrigues, P. Y. Yu, G Tamulaitis. Laser-induced heating of nanocrystals embedded in glass matrices. J. Appl. Phys., 1996, 80 (10): 5963-5966
    [10] D. W. Hall, N. F. Borrelli. Absorption saturation in commercial and quantum-confined CdSe_xS_(1-x) doped glasses. J. Opt. Soc. Am. B,1988, 5(8): 1650-1654
    [11] D. C. Rogers, R. J. Manning, B. J. Ainslie, et al. Concentration dependence of nonresonant nonlinearity in CdS_xSe_(1-x) doped glasses. IEEE Photonics Technology Letters, 1994, 6(8):1017-1019
    [12] G. P. Banfi, V. Degiorgio, M. Ghigliazza, et al. Two-photon absorption in semiconductor nanocrystals, Phys. Rev. B, 1994, 50(8) 5699-570
    [13] Amit D. Lad, P. Prem Kiran, Deepak More, et al. Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures. Appl. Phys. Lett., 2008, 92: 043126(6pp)
    [14] Amit D. Lad, P. Prem Kiran, G Ravindra, et al. KumarThree-photon absorption in ZnSe and ZnSe/ZnS quantum dots. Appl. Phys. Lett., 2007, 90:133113(3pp)
    
    [15] Sheik-Bahae M., Said A. A., Wei, T. H., et al. Sensitive measurement of optical non-linearities using a single beam. IEEE. J. Quantum Electron., 1990, 26(4)760-769
    [16] Daniel R. Larson, Warren R. Zipfel, Rebecca M. Williams, et al. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science, 2003, 300(5624): 1434 -1436
    [17] Mansoor Sheik-Bahae, David Crichton Hutchings, David J. Hagan. Dispersion of Bound Electronic Nonlinear Refraction in Solids. IEEE. J. Quantum Electron., 27(6): 1296-1309
    [18] JaeTae Seo, SeongMin Ma, Qiguang Yang, et al. Large Resonant Third-order Optical Nonlinearity of CdSe Nanocrystal Quantum Dots. Journal of Physics: Conference Series,2006,38: 91-94
    [19] Y. Gao, A. Tonizzo, A. Walser, M. Potasek, et al. Enhanced optical nonlinearity of surfactant-capped CdS quantum dots embedded in an optically transparent polystyrene thin film. Appl. Phys. Lett., 2008 92: 033106(3pp)
    [20] Xiaohui Wang, Yumin Du, Sha Ding, et al. Preparation and Third-Order Optical Nonlinearity of Self-Assembled Chitosan/CdSe-ZnS Core-Shell Quantum Dots Multilayer Films. J. Phys. Chem. B, 2006,110(4): 1566-1570
    [21] K. S. Bindra, A. K. Kar. Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses. Appl. Phys. Lett., 2001, 79(23):3761-3763
    [22] Mark E. Schmidt, Sean A. Blanton, Margaret A. Hines, et al. Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals. Phys. Rev. B, 1996, 53(19): 12629-12632
    [23] Lazaro A. Padilha, Jie Fu, David J. Hagan, et al. Two-photon absorption in CdTe quantum dots. Optics Express, 2005, 13(17): 6460-6467
    [24] Amit D. Lad, P. Prem Kiran, Deepak More, et al. Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures. Appl. Phys. Lett., 2008, 92: 043126(6pp)
    [25] Lingyun Pan, Naoto Tamai, Kenji Kamada, et al. Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region. Appl. Phys. Lett., 2007, 91:051902(3pp)
    [26] Yingli Qu, Wei Ji, Yuangang Zheng, et al. Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots. Appl. Phys. Lett., 2007, 90:133112(3pp)
    [27] M. Sheik-Bahae, A. A. Said, T.-H. Wei, et al. Z-scan: a simple and sensitive technique for nonlinear refraction measurements, Proc. SPIE, 1989, 1148:41
    [28] Y. WANG Nonlinear Optical Properties of Nanometer-Sized Semiconductor Clusters. Acc.Chem. Res., 1991,24(5): 133-139
    [29] A. A. Said, M. Sheik-Bahae, D. J. Hagan, et al. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B, 1992, 9(3):405-414
    [30] Lap-Tak Cheng, Norman Herron, Ying Wang. Nonresonent third optical nonlinearity of quantum-confined CdS clusters. J.Appl. Phys., 1989, 67(7): 3417-3419
    [31] D. Cotter, M. G Burt, R. J. Manning. Below-band-Gap Third-Order Optical Nonlinearity of Nanometer-Size Semiconductor Crystallites. Phys. Rev. Lett., 1992, 68(8): 1200-1203
    [32] Guohong Ma, Wanxin Sun, Sing-Hai Tang, et al. Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt. Lett.,2002,27(12): 1043-1045
    [33] Litty Irimpan, V. P. N. Nampoori, P. Radhakrishnan, et al. Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO. J.Appl. Phys., 2008, 103 :033105(7pp)
    
    [1] Sheik-Bahae M., Said A. A., Wei, T. H., et al. Sensitive measurement of optical non-linearities using a single beam. IEEE. J. Quantum Electron., 1990,26(4)760-769
    [2] Yingli Qu, Wei Ji, Yuangang Zheng, et al. Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots. Appl. Phys. Lett., 2007, 90:133112(3 pp)
    [3] Lingyun Pan, Naoto Tamai, Kenji Kamada, et al. Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region. Appl. Phys. Lett., 2007, 91: 051902(3pp)
    [4] M. Y. Han, W. Huang, C. H. Chew, et al. Large Nonlinear Absorption in Coated Ag_2S/CdS Nanoparticles by Inverse Microemulsion. J. Phys. Chem. B, 1998, 102(11):1884~1887
    [5] Wenling Jia, Elliot P. Douglas, Fenggi Guo, et al. Optical limiting of semiconductor nanoparticles for nanosecond laser pulses. Appl. Phys. Lett., 2004, 85(26): 6326-6328
    [6] Shiliang Qu, Yinglin Song, Chimin Du, et al. Nonlinear optical properties in three novel nanocomposites with gold nanoparticles. Opt. Commun., 2001, 196:317-323
    [7] Chuanlang Zhan, Dehua Li, Deqing Zhang, et al. The excited-state absorption and third-order optical nonlinearity from 1-dodecanethiol protected gold nanoparticles: Application for optical limiting Optical Materials, 2004, 26 11-15
    [8] Quanshui Li, Chunling Liu, Leyun Zang, et al. Nonlinear scattering, absorption, and refraction processes in the colloidal suspensions of Bi_2S_3 and CuS nanoparticles and their combined effects for broadband optical limiting. J. Opt. Soc. Am. B, 2008, 25(12):1978-1983
    [9] M. G. Bawendi, P. J. Carroll, William L. Wilson, et al. Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states. J. Chem.Phys., 1992, 96(2): 946-953
    [10] Germar Schlegel, Jolanta Bohnenberger, Inga Potapova, et al. Fluorescence Decay Time of Single Semiconductor Nanocrystals. Phys. Rev. Lett., 2002, 88(3): 137401(4pp)
    [11] C. de Mello Donega, M. Bode, A. Meijerink. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. Lett., 2006, 74: 085320(9pp)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700