新型有机双光子探针的制备及其在生物成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1990年W. Denk等人第一次将双光子激发引入到荧光显微镜后,双光子激发荧光显微成像逐渐引起了人们极大的关注。相对于单光子荧光显微成像,双光子荧光显微成像具有很多优点,双光子激发只发生在焦点附近的极小区域,不需要共焦小孔便可实现三维高分辨成像。同时,双光子激发采用近红外激光作为激发光源,不仅可以提高穿透深度,并且能减少生物样品的光毒性和背景荧光的影响。
     双光子荧光显微成像要求双光子荧光探针有较大的双光子激发截面和较好特异性能等。近二十年来,虽然很多具有优良的双光子特性的分子被报道,但是这些被报道的双光子吸收分子很少能应用到双光子荧光显微成像中。在本论文中,设计和合成了一些在双光子荧光显微成像中有较好应用前景的双光子探针。主要的内容和结果如下:
     (1)设计和合成了一系列的基于2-羟基嘧啶的单枝(D-π-A,D:电子给体,π:π-共轭键桥, A:电子受体)和双枝类型(D-π-A-π-D,或Y型)的有机双光子探针分子(1a-4a和1b-4b)。系统研究了这些分子的光物理特性及Hep G2细胞的单光子和双光子荧光显微与成像的应用。结果表明,双枝分子(2a-4a和2b-4b)的双光子吸收截面是相应单枝分子(1a和1b)的12倍以上。另外,从疏水性分子(酯类, 1a-4a)到相应的两亲性分子(羧酸钠类型, 1b-4b),分子的单光子和双光子光谱特性没有很大的变化。但是,在相同的实验条件下,两亲性分子能对Hep G2细胞的细胞质部分进行有效的染色,而疏水性分子不易进入到Hep G2细胞内。
     (2)设计和绿色合成了三个基于2-氨基嘧啶的有机双光子探针(5-7)。探针分子是在没有任何有机溶剂参与的条件下通过Aldol缩合反应制备,化合物(5-7)的制备具有反应时间短(化合物5-7分别为1 h、1.5 h和0.5 h)、产率高(化合物5-7分别为84%、75%和94%)及分离和纯化简单的特点。探针5-7具有较大的双光子吸收截面,例如探针7在甲苯溶液中的双光子吸收截面值达到819 GM,是相应标准物荧光素的22倍。另外,这三个分子在质子化或去质子化的作用下,分子的单光子和双光子荧光光谱的发射波长和强度都发生了很大的变化,探针的单光子和双光子荧光光谱随pH值的敏感性质使得这些探针将有可能被应用为pH传感器。
     (3)合成了一个基于2-异硫氰嘧啶的和生物分子上的氨基能进行共价结合的有机双光子荧光探针8,探针8和D-氨基葡萄糖连接生成模型化合物9。探针8和模型化合物9的单光子特性和荧光量子产率没有很大的改变,但是其双光子吸收截面值却急剧的增大(在极性溶剂氯仿中),是探针8的3倍以上。探针8和转铁蛋白偶联后的产物(Tf-8)和转铁蛋白的竞争成像实验表明,连接探针8没有改变转铁蛋白的特性,依然能够在细胞表面的转铁蛋白受体的介导作用下进入到细胞内,并主要分布在细胞质部分。
     (4)为了研究炔烃的衍生物对紫外光的光稳定性能,设计和合成了两个不对称(D-π-A)含炔烃的有机双光子探针(10-11)。系统研究了分子10和11的光物理特性、光稳定性和抗光漂白性能及Hep G2细胞的单光子和双光子荧光显微与成像的应用。结果表明,分子10和11对紫外光(λirr = 365 nm; I0 = 4 mW/cm2)有较好的光稳定性。这两个炔烃的衍生物具有较大的双光子吸收截面值,例如分子10在甲苯溶液中达到690 GM。
     (5)设计和合成了四个对称结构(D–π–D)含炔烃的有机双光子吸收分子。通过调节分子π-共轭键的长度来调控分子的双光子吸收波长。发现在π-共轭键桥中间插入蒽环后分子的双光子吸收峰在820 nm附近,处在飞秒激光的最佳工作波长(800 nm)附近。为新型双光子探针的设计及性能调控提供了新的策略。
Since W. Denk et al. introduced the two-photon excitation method into fluorescence microscopy in 1990, there is an increasing interest in two-photon excitation fluorescence microscopic imaging (2PM). 2PM has some significant advantages over conventional single-photon fluorescence imaging techniques, including a capacity for a highly confined excitation, intrinsic three-dimensional resolution and the possibility of imaging at an increased penetration depth in tissue with reduced photodamage and background fluorescence.
     2PM of biological systems will benefit from probes with large two-photon excitation cross-sections and good specificity. Over the past 20 years, numerous organic two-photon absorption (2PA) molecules with good 2PA properties have been reported. However, few efforts have been made on using efficient 2PA molecules as organic probes in practical 2PM. In this thesis, some 2PA probes with good prospects in 2PM application have been designed and synthesized. The main contents and results are summarized as follows:
     (1) A series of 2-hydroxy-pyrimidine-based mono-substituted D-π-A (D: donor,π:π-conjugation, A: acceptor) and disubstituted D-π-A-π-D type (Y shape) organic 2PA probes (1a-4a and 1b-4b) have been designed and synthesized. Photophysical properties and sing- and two-photon fluorescence Hep G2 Cell imaging of the molecules are investigated systematically. The results indicate that the two-photon absorption cross-sections were found to have significant (up to 12 times) increase when changing from monosubstituted molecules(1a and 1b) to their disubstituted counterparts (2a-4a and 2b-4b). In addition, no significant difference in the single- and two-photon spectroscopic properties of these molecules can be observed when comparing the hydrophobic molecules (ethyl ester, 1a-4a) to the corresponding amphiphilic molecules (carboxylic acid salt, 1b-4b). However, single- and two-photon fluorescence microscopic imaging experiments revealed that the disubstituted amphiphilic molecules can efficiently stain the cytoplasmic region of HepG2 cells, while little or no dye uptake happened when incubating those cells with the hydrophobic molecules under the same experimental conditions.
     (2) Three new organic 2PA probes (5-7) based on 2-amino-pyrimidine core were designed and greenly synthesized by Aldol condensation in the absence of any organic solvents. Compounds 5-7 could be prepared after short reaction times (1 h, 1.5 h and 0.5 h for compounds 5-7, respectively), high yields (84%, 75% and 94% for compounds 5-7, respectively) and simple separation and purification. Probes 5-7 were found to have large two-photon absorption cross-sections. Probe 7 has the largest two-photon absorption cross-section value (819 GM) in toluene, which is 22 times larger than that of fluorescein standard. In addition, strong modulation of single-photon and two-photon fluorescent spectra of these molecules by (de)protonation makes them promising candidates for two-photon pH sensor.
     (3) An amine-reactive organic 2PA probe (8) based on 2-pyrimidinyl- isothiocyanate for covalent attachment onto amine-containing biomolecules was prepared. A model probe-adduct (9) was prepared by reacted (8) with D-glucosamine. Although no significant changes in the single-photon spectroscopic properties and the quantum yield could be observed between 8 and the modle adduct, the 2PA cross-sections of molecule 9 sharp increases in polar CHCl3 solvent, which is 3 times larger than that of probe 8. Tf-8 conjugates were produced by coupling molecule 8 to transferrin (Tf). Competirion experiment between Tf-8 and Tf indicate that Tf-8 was recognized by and bound to the transferrin receptor on the membrane, and delivered into cytoplasm.
     (4) In order to study the photostability of alkynes derivatives under UV light, two asymmetrical (D-π-A) organic 2PA probes with substituted acetylene as central rigid elongated conjugation have been designed and synthesized. Photophysical properties, photostability, antiphotobleaching and sing- and two-photon fluorescence Hep G2 Cell imaging of the molecules 10 and 11 are investigated systematically. The results indicate that the acetylene-substituted molecules (10 and 11) were found to have good photostability under UV light (λirr = 365 nm; I0 = 4 mW/cm2). In addition, these acetylene-substituted molecules were found to have high two-photon absorption cross-sections (for example, 690 GM for molecule 10 in toluene).
     (5) Four symmetrical organic 2PA molecules (D–π–D) with substituted acetylene as central rigid elongated conjugation have been designed and synthesized. One derivative with great enhancement on the two-photon absorption cross-section in 820 nm, which is among the best output wavelength range of a typical Ti:Sapphire femtosecond laser, could be obtained by inserting an anthracene ring into the rigid elongatedπ-conjugation. Such kind of structure modification is expected to be helpful in designing better organic 2PA probes for biological imaging.
引文
[1] Prasad P. N., Williams D. J., Introduction to nonlinear optical effects in molecules and polymers, New York: John Wiley and Sons, 1991.
    [2] Marder S. R., Organic nonlinear optical materials: where we have been and where we are going, Chem. Commun., 2006, 131-134.
    [3]费浩生,非线性光学.第一版.北京:高等教育出版社,1990,1-10.
    [4] Zyss J., Chemla D. S., Nonlinear optical properties of organic molecules and crystals. Vol. 1. Orlando: Academic, 1987.
    [5]石顺祥,陈国夫,赵卫,等.非线性光学.第一版.西安:西安电子科技大学出版社,2003,113-225.
    [6] G?ppert-Mayer M., Uber elementarakte mit zwei quantensprungen. Ann. Phys. 1931, 9: 273-295.
    [7] Kaiser W., Garrett C. G. B., Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett., 1961, 7: 229-231.
    [8]武汉大学化学系,仪器分析.第一版.北京:高等教育出版社,2001,135-136.
    [9] Albota M. A., Xu C., Webb W. W., Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl. Optics, 1998, 37:7352-7356.
    [10]刘志强,有机硼(Ⅲ)化合物的合成与三阶非线性光学性质.山东大学博士学位论文,2003,2-3.
    [11] Denk W., Strickler J. H., Webb W. W., Two-photon laser scanning fluorescence microscopy. Science, 1990, 248: 73-76.
    [12] Parthenopoulos D. A., Renezepis P. M., Three-dimensional optical storage memory. Science, 1989, 245: 843-845.
    [13] Corredor C. C., Huang Z. L., Belfield K. D., Two-photon 3D optical data storage via fluorescence modulation of efficient fluorene dye by a photochromic diarylethene. Adv. Mater., 2006, 18: 2910-2914.
    [14] Belfield K. D., Schafer K. J., A new photosensitive polymeric material for WORM optical data storage using multichannel two-photon fluorescence readout. Chem.Mater., 2002, 14: 3656-3662.
    [15] Belfield K. D., Liu Y., Negres R. A. et al. Two-photon photochromism of an organic material for holographic recording. Chem, Mater., 2002, 14: 3663-3667.
    [16] Bhawalkar J. D., He G. S., Prasad P. N., Nonlinear multiphoton processes in organic and polymeric mareials. Rep. Prog. Phys., 1996, 59: 1014-1070.
    [17] Zhao C. F., He G. S., Behawalkar J. D., et al. Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing. Chem. Mater., 1995, 7: 1979-1983.
    [18]雷虹,黄振立,汪河洲,有机材料的双光子吸收物理特性及其应用.物理, 2003, 32:19-26.
    [19] Tutt L. W., Boggess T. F., A review of optical limiting mechanisms and devices using organics, fullerence, semiconductors, and other materials. Prog. Quantum Electron., 1993, 17: 299-338.
    [20] He G. S., Weder C., Smith P., et al. Optical power limiting and stabilization based on a novel polymer compound. IEEE J. Quantum Electron., 1998, 34: 2279-2285.
    [21] He G. S., Zheng Q. D., Lu C. G., et al. Two- and three-photon absorption based optical limiting and stabilization using a liquid dye. IEEE J. Quantum Electron., 2005, 41: 1037-1043.
    [22] Bhawalkar J. D., Kumar N. D., Zhao C. F., et al. Two-photon photodynamic therapy. J. Clin. Laser Med. Sur., 1997, 15: 201-204.
    [23] Roy I., Ohulchanskyy T. Y., Pudavar H. E., et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc., 2003, 125: 7680-7685.
    [24] Wu E. S., Strickler J. H., Harrell W. R., et al. Two-photon lithography for microelectronic application. Proc. SPIE, 1992, 1674: 776-782.
    [25] Kawata S., Sun H. B., Tanaka T., et al. Finer features for functional microdevices micromachines can be created with higher resolution using two-photon absorption. Nature, 2001, 412: 697-698.
    [26] Kim H. M., Jeong M., Ahn H. C., et al. Two-photon sensor for metal ions derived from azacrown ether. J. Org. Chem., 2004, 69: 5749-5751.
    [27] Pond S. J. K., Tsutsumi O., Rumi M., et al. Metal-ion sensing fluorophores with large two-photon absorption cross sections: aza-crown ether substituted donor-acceptor- donor distyrylbenzenes. J. Am. Chem. Soc., 2004, 126: 9291-9306.
    [28] Wei J., Gostkowski M. L., Gordon M. J., et al. Determination of fluorogen-labeled neurotransmitters at the zeptomole level using two-photon excited fluorescence with capillary electrophoresis. Anal. Chem., 1998, 70: 3470-3475.
    [29]陈胜,毛细管电泳-连续光多光子激发荧光检测系统的研制和应用研究:华中科技大学博士学位论文,2007.
    [30] Bewersdorf J., Pick R., Hell S. W., Multifocal nultiphoton microscopy. Opt. Lett., 1998, 23: 655-657.
    [31] Sanchez E. J., Novotny L., Xie X. S., Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett., 1999, 82: 4014-4017.
    [32]吕晓华,占成,张红民,等.随机扫描多光子荧光显微成像系统.光学学报,2006,26:1823-1828.
    [33] Zeng S., Lv X., Zhan C., et al. Simultaneous compensation of spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. Opt. Lett., 2006, 31: 1091-1093.
    [34] Zeng S., Lv X., Bi K., et al. Analysis of the dispersion compensation of acousto-optic deflectors used for multiphoton imaging. J. Biomed. Opt., 2007, 12: 024015-1- 024015-7.
    [35] Williams R. M., Zipfel W. R., Webb W. W., Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol., 2001, 5: 603-608.
    [36] Kong K., Multiphoton microscopy in life sciences. J. Microscopy, 2000, 200: 83-104.
    [37] Diaspro A., Robello M., Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures. J. Photochem. Photobiol. B:Biol., 2000, 55:1-8.
    [38] Zhou G. J., Wong W. Y., Cui D., et al. Large optical-limiting response in some solution-processable polyplatinaynes. Chem. Mater., 2005, 17: 5209-5217.
    [39] Sheik-Bahae M., Said A. A., Wei T. H., et al. Sensitive measurement of opticalnonlinearties using a single beam. IEEE J. Quantum Electron., 1990, 26: 760-769.
    [40] Xu C., Webb W. W., Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B, 1996, 13: 481-491.
    [41] Oulianov D. A., Tomov I. V., Dvornikov A. S., et al. Observations on the measurement of two-photon absorption cross-section. Opt. Commun., 2001, 191: 235-243.
    [42]何国华,王刚,叶莉华等.双光子吸收截面的测量方法.激光杂志,2003,24(6):4-6.
    [43] Beljonne D., Kogej T., Marder S. R., Theoretical design of organic chromophores with large two-photon absorption cross-sections. Nonlinear Opt., 1999, 21: 461-480.
    [44] Albota M., Beljonne D., Bredas J. L., et al. Design of organic molecules with large two-photon absorption cross sections. Science, 1998, 281: 1653-1656.
    [45] Yang W. J., Kim D. Y., Jeong M., et al. Two-photon absorption properties of 2,6-bis(styryl)anthracene derivatives: effects of donor-acceptor substituents and theπcenter. Chem. Eur. J. 2005, 11: 4191-4198.
    [46] Parent M., Mongin O., Kamada K., et al. New chromophores from click chemistry for two-photon absorption and tunable photoluminescence. Chem. Commun., 2005, 2029-2031.
    [47] Wang X., Wang D., Zhou G. Y., et al. Symmetric and asymmetric charge transfer process of two-photon absorbing chromophores: bis-donor substituted stilbenes, and substituted styrylquinolinium and stytylpyridinium derivatives. J. Mater. Chem., 2001, 11: 1600-1605.
    [48] He G. S., Yuan L., Cheng N., et al., Nonlinear optical properties of a new chromophore. J. Opt. Soc. Am. B, 1997, 14:1079-1087.
    [49] Rumi M., Ehrlich J. E., Heikal A. A., et al. Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives. J. Am. Chem. Soc., 2000, 122: 9500-9510.
    [50] Chung S. J., Rumi M., Alain V., et al. Strong, Low-energy two-photon absorption in extended amine-terminated cyano-substituted phenylenevinylene oligomers. J. Am.Chem. Soc., 2005, 127: 10644-10645.
    [51] Blanchard-Desce M., Molecular engineering of NLO-phores for new NLO microscopies. C. R. Physique, 2002, 3: 439-448.
    [52] Barzoukas M., Balnchard-Desce M., Molecular engineering of push-pull dipolar and quadrupolar molecular for two-photon absorption: A multivalence-bond states approach. J. Chem. Phys., 2000, 113: 3951-3959.
    [53] Lee W. H., Cho M., Jeon S. J., et al. Two-photon absorption and second hyperpolarizability of the linear quadrupolar molecule. J. Phys. Chem. A, 2000, 104: 1033-1040.
    [54] Ventelon L., Moreaux L., Mertz J., et al. New quadrupolar fluorophores with high two-photon excited fluorescence. Chem. Commun., 1999, 2055-2056.
    [55] Ventelon L., Moreaux L., Mertz J., et al. Optimization of quadrupolar chromophores for molecular two-photon absorption. Synth. Met., 2002, 127: 17-21.
    [56] Ventelon L., Morel Y., Baldeck P., et al. Novel quadrupolar extended biphenyl derivatives with enhanced nonlinear absorptivities for optical liminting applications. Nonlinear Opt, 2001, 27: 249-258.
    [57] Ventelon L., Charier S., Moreaux L., et al. Nanoscale push-push dihydrophenanthrene derivatives as novel fluorophores for two-photon excited fluorescence. Angew. Chem. Int. Ed., 2001, 40: 2098-2101.
    [58] Mongin O., Porrès L., Moreaux L., et al. Synthesis and photophysical properties of new conjugated fluorophores designed for two-photon excited fluorescence. Org. Lett., 2002, 4: 719-722.
    [59] Kim O. K., Lee K. S., Woo H. Y., et al. New class of two-photon-absorbing chromophores based on dithienothiophene. Chem. Mater., 2000, 12: 284-286.
    [60] Reinhardt B. A., Brott L. L., Clarson S. J., et al. Highly active two-photon dyes: design, synthesis and characterization toward application. Chem. Mater., 1998, 10: 1863-1874.
    [61] Belfield K. D., Bondar M. V., Corredor C. C., et al. Two-photon photochromism of a diarylethene enhanced by forster resonance energy transfer from two-photon absorbing fluorenes. Chemphyschem., 2006, 7: 2514-2519.
    [62] Morales A. R., Belfield K. D., Hales J. M., et al. Synthesis of two-photon absorbingunsymmetrical fluorenyl-based chromophores. Chem. Mater., 2006, 18: 4972-4980.
    [63] Yao S., Belfield K. D., Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris(bromomethylation) of fluorene. J. Org. Chem., 2005, 70: 5126-5132.
    [64] Belfield K. D., Morales A. R., Kang B.-S., et al. Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives. Chem. Mater., 2004, 16: 4634-4641.
    [65] Belfield K. D., Morales A. R., Hales J. M., et al. Linear and two-photon photophysical properties of a series of symmetrical diphenylaminofluorenes. Chem. Mater., 2004, 16: 2267-2273.
    [66] Wang D., Ren Y., Zhou G. Y., et al. Two-photon pumped upconversion and nonlinear optical properties of a new lasing dye: HMASPS. J. Mod. Opt., 2001, 11: 1743-1748.
    [67] Wang D., Wang X. M., Zhou G. Y., et al. Two-photon absorption-induced optical properties of a new lasing dye in two solvents. Appl. phys. B, 2001, 73: 227-231.
    [68] Wang D., Zhou G. Y., Xu X. G., et al. Nonlinear absorption and upconversion properties of two-photon absorption dye: ASPI. Opt. Laser Technol., 2002, 34: 55-58.
    [69] Wang X. M., Wang D., Jiang W., et al. Optical properties of new two-photon-pumped lasing dyes. Opt. Mater., 2002, 20: 217-223.
    [70] Liu Z. Q., Fang F., Wang D., et al. Trivalent boron as acceptor in D-π-A chromophores: synthesis, structure and fluorescence following single- and two-photon excitation. Chem. Comm., 2002, 23: 2900-2901.
    [71] Liu Z. Q., Fang Q., Wang D., et al. Trivalent Boron as an acceptor in Donor-π-acceptor-type compounds for single- and two-photon excited fluorescence. Chem. Eur. J., 2003, 9: 5074-5084.
    [72] Liu Z. Q., Fang Q., Cao D. X., Triaryl boron-based A-π-A vs triaryl nitrogen-based D-π-D quadrupolar compounds for single- and two-photon excited fluorescence. Org. Lett., 2004, 6: 2933-2966.
    [73] Woo H. Y., Liu B., Kohler B., et al. Solvent effects on the two-photon absorption ofdistyrylbenzene chromophores. J. Am. Chem. Soc., 2005, 127:14721-14729.
    [74]王筱梅,电荷转移的对称性与分子的双光子吸收/辐射(荧光、激射)性能关系的研究。山东大学博士论文,2001.
    [75] Li B., Tong R., Zhu R. G., et al. The ultrafast dynamics and nonlinear optical properties of tribranched styryl derivatives based on 1,3,5-triazine. J. Phys. Chem. B, 2005, 109: 10705-10710.
    [76] Chung S. J., Lin T. C., Kim K. S., et al. Two-photon absorption and excited-state energy-transfer properties of a new multibranched molecule. Chem. Mater., 2001, 13: 4071-4076.
    [77] Droumaguet C. L., Maongin O., Wert M. H. V., et al. Towards“smart”multiphoton fluorophores: strongly solvatochromic probes for two-photon sensing of micropolarity. Chem. Commun., 2005, 2802-2804.
    [78] Drobizhev M., Karotki A., Dzenis Y., et al. Strong cooperative enhancement of two-photon absorption in dendrimers. J. Phys. Chem. B, 2003, 107: 7540-7543.
    [79] Bartholomew G. P., Rumi M., Pond S. J. K., et al. Two-photon absorption in three-dimensional chromophores based on [2.2]-paracyclophane. J. Am. Chem. Soc., 2004, 126: 11529-11542.
    [80] Zheng Q. D., He G. S., Prasad P. N.,π-conjugated dendritic nanosized chromophore with enhanced two-photon absorption. Chem. Mater., 2005, 17: 6004-6011.
    [81] Ren Y., Xin Q., Tao X. T., et al. Novel multi-branched organic compounds with enhanced two-photon absorption benefiting from the strong electronic coupling. Chem. Phys. Lett., 2005, 414: 253-258.
    [82] Mongin O., Brunel J., Porres L., et al. Synthesis and two-photon absorption of triphenylbenzene-cored dendritic chromophores. Tetrahedron Lett., 2003, 44: 2812-2816.
    [83] Yoo J., Yang S. K., Jeong M. Y., et al. Bis-1,4-(p-diarylaminostryl)-2,5- dicyanobenzene derivatives with large two-photon absorption cross-sections. Org. Lett., 2003, 5: 645-648.
    [84] Abbotto A., Beverina L., Bozio R., et al. Novel heteroaromatic-based multi-branched dyes with enhanced two-photon absorption activity. Chem. Commun.,2003, 2144-2145.
    [85] Zyss J., Octupolar organic systems in quadratic nonlinear optics: molecules and materials. Nonlinear opt., 1991, 1: 3-18.
    [86] Zyss J., Ledoux I., Nonlinear optics in multipolar media: theory and experiments. Chem. Rev., 1994, 94: 77-105.
    [87] Cho B. R., Son K. H., Lee S. H., et al. Two photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives. J. Am. Chem. Soc., 2001, 123: 10039-10045.
    [88] Woo H. Y., Korystov D., Milhailovsky A., et al. Two-photon absorption in aqueous micellar solutions. J. Am. Chem. Soc., 2005, 127: 13794-13795.
    [89] Belfield K. D., Yao S., Morales A. R., et al. Synthesis and characterization of novel rigid two-photon absorbing polymers. Polym. Adv. Technol., 2005, 16: 150-155.
    [90] Hohenau A., Cagran C., Kranzelbinder G. K., et al. Efficient continuous-wave two-photon absorption in para-phenylene-type polymers. Adv. Mater., 2001, 13: 1303-1307.
    [91] Canhalan M. D. Parker I., Wei S. H., et al. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat. Rev. Immunol. 2002, 2: 872-880.
    [92] Xu C., Zipfel W., Shear J. B., et al. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA, 1996, 93: 10763-10768.
    [93] Chung S. J., Kim K. S., Lin T. C., et al. Cooperative enhancement of two-photon absorption in multi-branched structures. J. Phys. Chem. B, 1999, 103: 10741-10745.
    [94] Huang Z. L., Lei H., Li N., et al. Novel heterocycle-based organic molecules with two-photon induced blue fluorescent emission. J. Mater. Chem. 2003, 13: 708-711.
    [95] Wei P., Bi X. D., Wu Z., et al. Synthesis of triphenylamine-cored dendritic two-photon absorbing chromophores. Org. Lett., 2005, 7: 3199-3202.
    [96] Lee S. K., Yang W. J., Choi J. J., et al. 2,6-bis[4-(p-dihexylaminostytyl)styryl] anthrcene derivatives with large two-photon cross sections. Org. Lett., 2005, 7: 323-326.
    [97] Ogawa K., Hasegawa H., Inaba Y., et al. Water-soluble bis(imidazolylporphyrin) self-assemblies with large two-photon absorption cross section as potential agentsfor photodynamic therapy. J. Med. Chem., 2006, 49: 2276-2283.
    [98] Schafer-Hales K. J., Belfield K. D., Yao S., et al. Fluorene-based fluorescent probes with high two-photon action cross-sections for biological multiphoton imaging applications. J. Biomed. Opt., 2005, 10: 051402-1- 051402-8.
    [99] Kato S. I., Matsumoto T., Ishi-I T., et al. Strong red-fluorescent novel donor-π-bridge -acceptor-π-bridge-donor (D-π-A-π-D) type 2,1,3-benzothiad- iazoles with enhances two-photon absorption cross-section. Chem. Commun. 2004, 20: 2342-2343.
    [100] Feng K., De Boni L., Misoguti L., et al. Y-shaped two-photon absorbing molecules with an imidazole-thiazole core. Chem. Commun. 2004, 10: 1178-1180.
    [101]刚典臣,殷斌烈,蔡庄红,2-羟基-4,6-二甲基嘧啶盐酸盐的合成研究.武汉化工学院学报,1993,15:10-12.
    [102] Hale W. J., The constitution of acetylacetone-urea. J. Am. Chem. Soc., 1914, 36: 104-115.
    [103] Traber B., Wolff J. J., Rominger F., et al. Hexasubstituted donor-acceptor benzenes as nonlinear optically active molecules with multiple charge-transfer transitions. Chem. Eur. J., 2004, 10: 1227-1238.
    [104]付春玲,陈时忠,有机化学实验,第一版.杭州:浙江大学出版社. 2000,20-21.
    [105] Demas J. N., Crosby G. A., The measurement of photolumineseence quantum yields. J. Phys. Chem., 1971, 75: 991-1024.
    [106] Huang Z. L., Li N., Lei H., et al. Two-photon induced blue fluorescent emission of heterocycle-based organic molecule. Chem. Comm., 2002, 23: 2400-2401.
    [107] Brown D. M., Kon G. A. R., Some heterocyclic analogues of stilbenes. J. Chem. Soc. 1948, 2147-2154.
    [108]徐力恒,空穴传输类树枝状分子中间体的合成,华东理工大学硕士论文,2003,39-40.
    [109]杨学干,咔唑类和三苯胺类药物中间体的研制,华东理工大学硕士论文,2003,36-37.
    [110] Kim H. M., Yang W. J., Kim C. H., et al. Two-photon dyes containing heterocyclic rings with enhanced photostability. Chem. Eur. J. 2005, 11: 6386-6391.
    [111] Yang J.-S., Chiou S.-Y., Liau K.-L., Fluorescence enhancement of trans-4-aminostilbene by N-phenyl substitutions: the“amino conjugation effect”. J. Am. Chem. Soc., 2002, 124: 2518-2527.
    [112] Reichardt C., Solvatochromic dyes as solvent polarity indicators. Chem. Rev., 1994, 94: 2319-2358.
    [113] Yang W. J., Kim D. Y., Jeong M.-Y., et al. 2,6-bis(stytyl)anthracene derivatives with large two-photon cross-sections. Chem. Commun., 2003, 9: 2618-2619.
    [114] Liu Z. J., Chen T., Liu B., et al. Two-photon absorption of a series of V-shape molecules: The influence of acceptor’s strength on two-photon absorption in noncentrosymmetric D-π-A-π-D system. J. Mater. Chem., 2007, In Press.
    [115] Zelazny A., Bibi E., Biogenesis and topology of integral membrane proteins: characterization of lactose permease-chloramphenicol acetyltransferase hybrids. Biochemistry, 1996, 35: 10872-10878.
    [116] Ahn H. C., Yang S. K., Kim H. M., et al. Molecular two-photon sensor for metal ions derived from bis(2-pyridyl)amine. Chem. Phys. Lett., 2005, 410: 312-315.
    [117] Das S., Nag A., Goswami D., et al. Zinc(II)- and copper(I)-mediated large two- photon absorption cross section in a bis-cinnamaldiminato Schiff base. J. Am. Chem. Soc., 2006, 128: 402-403.
    [118] Bozio R., Cecchetto E., Fabbrini G., et al. One- and two-photon absorption and emission properties of a Zn(II) chemosensor. J. Phys. Chem. A, 2006, 110: 6459-6464.
    [119] Kim S., Pudavar H. E., Prasad P. N., Dye-concentrated organically modified silica nanoparticles as a ratiometric fluorescent pH probe by one- and two-photon excitation. Chem. Commun., 2006, 2071-2073.
    [120]胡宏纹,有机化学;第二版.北京:高等教育出版社. 1990, 627.
    [121]薛思佳,陈乔,王海涛等,2-氨基-4, 6-二取代嘧啶的合成.华中师范大学学报(自然科学版),1992,12: 465-470.
    [122]罗学才,黄永明,高士祥.四丁基溴化铵和四丁基硫酸氢铵的制备,化学试剂,1997,19: 188-188.
    [123] Batterham T. J., Brown D. J., Paddon-Row M. N., Simple pyrimidines part IX.deuterium exchange of C-methyl protons. J. Chem. Soc. (B), 1967, 171-173.
    [124] Vanden Eynde J. J., Pascal L., Van Haverbeke Y., et al. Quaternary ammonium salt- assisted synthesis of extendedπ-systems from methyldiazines and aromatic aldehydes. Synth. Commun. 2001, 31: 3167-3173.
    [125] Bhattacharyya K., Chowdhury, M., Environmental and magnetic field effects on exciplex and twisted charge transfer emission. Chem. Rev. 1993, 93: 507-535.
    [126] Grabowski Z. R., Rotkiewicz K., Rettig W., Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003, 103: 3899-4032.
    [127] Katan C., Terenziani F., Mongin O., et al. Effects of (multi)branching of dipolar chromophores on photophysical properties and two-photon absorption. J. Phys. Chem. A, 2005, 109: 3024-3037.
    [128]王明德,分析化学实验,第一版.北京:高等教育出版社,1986,112-116.
    [129] Li H. Y., Qian Z. M., Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev, 2002, 22: 225-250
    [130] Chan W. C., Nie S. M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281: 2016-2018.
    [131] Ohkata K., Ohsugi M., Yamamoto K., et al. Structural features of tetraazathiapentalenes fused with pyrimidine and/or pyridine rings. experimental evaluation of the nature of hypervalent N-S-N bond by restricted internal rotation of the pyrimidine ring. J. Am. Chem. Soc., 1996, 118: 6355-6369.
    [132] Pons T., Moreaux L., Mertz J., Photoinduced flip-flop of amphiphilic molecules in lipid bilayer membranes. Phys. Rev. Lett., 2002, 89: 288104-1-288104-4.
    [133] He G. S., Lin T.-C., Dai J., et al. Degenerate two-photon-absorption spectral studies of highly two-photon active organic chromophores. J. Chem. Phys., 2004, 120: 5275-5284.
    [134] Yang W. J., Kim C. H., Jeong M.-Y., et al. Synthesis and two-photon absorption properties of 9,10-bis(arylethynyl)anthracene derivatives. Chem. Mater., 2004, 16: 2783-2789.
    [135]程能林,溶剂手册.第二版.北京:化学工业出版社,1994.
    [136] Belfield K. D., Bondar M. V., Przhonska O. V., et al. Photostability of a series of two-photon absorbing fluorene derivatives. J. Photochem. Photonbio. A: Chem., 2004, 162: 489-496.
    [137] Belfield K. D., Bondar M. V., Przhonska O. V., et al. One- and two-photon photostability of 9,9-didecyl-2,7-bis(N,N-diphenylamino)fluorine. Photochem. Photonbio. Sci., 2004, 3:138-141.
    [138] Huang J.-H., Wen W.-H., Sun Y.-Y., et al. Two-stage sensing property via a conjugated donor-acceptor-donor constitution: application to the visual detection of mercuric ion. J. Org. Chem., 2005, 70: 5827-5832.
    [139] Ciana L. D., Haim A., Synthesis of 1,4-bis(4-pyridyl)butadiyne. J. Heterocyclic Chem., 1984, 21: 607-608.
    [140]李金,刘京萍,姜巍等,三乙基苄基氯化铵合成反应动力学研究.北京联合大学学报,1998,12:61-64.
    [141] Elangovan A., Wang Y. H., Ho T. I., Sonogashira coupling reaction with diminished homocoupling. Org. Lett., 2003, 15: 1841-1844.
    [142] Buncel E., Rajagopal S., Solvatochromism and solvent polarity scales. Acc. Chem. Res., 1990, 23: 226-231.
    [143] Chan W. C. W., Nie S. M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016-2018.
    [144] Lei H., Huang Z. L., Wang H. Z., et al. Two-photon absorption spectra of new organic compounds. Chem. Phys. Lett., 2002, 352: 240-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700