石油类污染物的三维荧光光谱测量与识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油作为重要的能源和化工原料,在造福人类给社会带来巨大经济价值的同时,也对生态环境产生了极大的危害,海洋溢油事故频发,水中石油类物质污染严重,最终威胁到人类健康。石油类污染物质的识别和测量成为鉴别污染来源、控制污染状况,保护生态环境的重要手段。
     荧光光谱分析技术以其灵敏度高、选择性好、分析速度快、受风化程度影响小等特点成为石油类污染物质检测的重要手段之一。论文主要针对荧光光谱鉴别能力有限,多组分石油类物质混合体系光谱重叠严重难以区分的问题,应用三维荧光光谱法结合化学计量学中的二阶校正方法,充分利用荧光光谱信息,以对复杂体系的石油类物质进行有效识别和定量分析。
     分析荧光产生的机理,研究石油类污染物质的化学组成及其荧光特性,确定荧光法识别和测量原油或各种石油产品等石油类污染物的可行性。研究测量仪器的结构原理、工作性能、各种参数的设置以及散射对光谱的影响,以具有代表性的多种石油产品为测量对象,论述了从表观光谱到真实光谱的校正方法和实现手段,消除了各种因素使光谱的歪曲,并获得了样品的三维荧光光谱图。
     研究石油产品的荧光光谱随溶液浓度变化的现象,针对水中油类的溶解性、稳定性差的问题给出解决的办法。测量了不同的石油产品乙醇溶液及其多组乙醇稀释溶液的荧光光谱,通过对光谱特征及其差异性的分析,发现了光谱随浓度增大产生的连续红移现象,并从每种石油产品荧光成分化学组成上解释了产生这种现象的原因,确定每种石油产品的荧光强度随浓度线性变化的范围。研究了有序介质在荧光测量分析中的原理和方法,测量了每种石油产品在特定的有序介质中的荧光光谱,验证其用于增敏水中石油类物质荧光分析的可行性和定量分析的准确性。
     应用化学计量学中的二阶校正方法对混合石油类物质荧光光谱进行分析,以解决复杂多组分混合石油类物质的识别及定量的问题。分别以两种不同石油产品不同浓度的混合和三种不同石油产品不同浓度的混合为校正样品集和预测样品集,测量了每个样品集中各样品的荧光光谱,通过平行因子算法,应用核一致诊断法并综合考虑选择不同因子数时的解释方差,确定最佳的平行因子分析的因子数,对混合样品中特定组分的光谱进行正确的分辨。测量了混合样品加入特定的干扰成分时的荧光光谱并对其应用平行因子及自加权交替三线性分解算法进行分析,验证二阶校正法区别于其它方法的“二阶优势”。
Petroleum as an important energy and chemical raw materials bring benefit to humanbeing and create tremendous economic value for society, but also does harm to theecological environment. Marine oil spill accidents take place frequently, petroleumsubstances make water polluted seriously, and human health has been threatenedultimately. Identification and measurement of petroleum pollutants have became animportant tool in identifying pollution sources, controlling pollution and protecting theenvironment.
     Fluorescence Spectroscopy technology is an important means of detecting petroleumpollutants with the advantages of high sensitivity, good selectivity, analysis rapidly, smallweathering effects. Thesis focuses on limited identification capacity of fluorescencespectroscopy and serious spectral overlap problem of multi-component petroleumsubstances mixed system. Three-dimensional fluorescence spectroscopy combined withthe second-order calibration methods in chemometrics is applied to identify and analyzecomplex systems of petroleum substances effectively.
     Making good full use of the fluorescence spectrum information, chemicalcomposition and fluorescence characteristics of petroleum pollutant are researched, andthe feasibility of using fluorescence spectroscopy to identify and measure the variety ofpetroleum pollutants such as crude oil or petroleum products is determined. Structuralprinciple, performance, various parameter settings and scattering affects to measurementof the measuring instrument are researched. Correction methods from apparent spectrumto the true spectrum to eliminate various factors making the spectral distortion arediscussed in detail and three-dimensional fluorescence spectra of samples are obtained.
     The varying on the fluorescence spectra of petroleum products with concentration isresearched, and the problem on poor solubility, stability of oils in water is solved. Throughmeasuring fluorescence spectra of the same kinds of petroleum products in differentsolvents and different petroleum products in the same solvent, the differences betweenfluorescence spectra are discussed. The fluorescence spectra of various different concentrations petroleum products in ethanol diluted solution are measured, and spectralcharacteristics and differences on the composition of the chemical nature from each of thepetroleum diluted solution are verified. The concentration-dependent wavelength shifts inthree-dimensional fluorescence of petroleum samples and red-shift cascade areinvestigated. Linear relationship between concentration and fluorescent intensity ofpetroleum solution are ensured. The measurement principle and method of each petroleumproducts in surfactant micelle solution as an ordered medium are researched and thefluorescence spectra of them are measured. The feasibility and accuracy of quantitativeanalysis using it to enhance the fluorescent intensity are verified.
     Second-order calibration methods in chemometrics are used to analyze fluorescencespectra of mixed petroleum substances and solve identification and quantification problemof complex multi-component mixed petroleum pollutants. By mixing two or three type ofpetroleum products of different concentrations as calibration sample set and predictionsample set, the three-dimensional fluorescence spectra of samples in calibration set andprediction set are measured. Combining core consistency diagnosis and explained varianceof each factor to ensure optimal number of factor, PARAFAC model is built to analyze thethree-dimensional data and fluorescence loading spectra is obtained correctly.Fluorescence spectra of mixed samples added interference components in are measured,and the second-order advantage of second-order calibration methods is verified byPARAFAC and SWATLD algorithm.
引文
[1]张学佳,纪巍,康志军,等.石油类污染物对土壤生态环境的危害[J].化工科技,2008,16(6):60-65.
    [2] Edward A. Laws.水污染导论[M].余刚,张祖麟,译.北京:科学出版社,2004:432-445.
    [3] M.A. Cohen. Water pollution from oil spills[J]. Encyclopedia of Energy, Natural Resource, andEnvironmental Economics,2013,3:121-126.
    [4] Wang Z, Fingas M, Sigouin L. Using multiple criteria for fingerprinting unknown oil sampleshaving very similar chemical composition[J]. Environmental Forensics,2002,3(3-4):251-262.
    [5]詹研.中国土壤石油污染的危害及治理对策[J].环境污染与防治.2008,30(3):91-96.
    [6]陈虹.石油烃在土壤上的吸附行为及对其它有机污染物吸附的影响[D].大连:大连理工大学环境科学学科博士学位论文.2009:3-4.
    [7]中华人民共和国环境保护部.2007中国环境状况公报[R].北京:中华人民共和国环境保护部,2008,6:4-21.
    [8]中华人民共和国环境保护部.2008中国环境状况公报[R].北京:中华人民共和国环境保护部,2009,6:5-27.
    [9]中华人民共和国环境保护部.2009中国环境状况公报[R].北京:中华人民共和国环境保护部,2010,5:4-21.
    [10]中华人民共和国环境保护部.2010中国环境状况公报[R].北京:中华人民共和国环境保护部,2011,5:5-27.
    [11]中华人民共和国环境保护部.2011中国环境状况公报[R].北京:中华人民共和国环境保护部,2012,5:4-24.
    [12]中华人民共和国环境保护部.2011中国近岸海域环境质量公报[R].北京:中华人民共和国环境保护部,2012,11:36-45.
    [13]中华人民共和国环境保护部.2007中国近岸海域环境质量公报[R].北京:中华人民共和国环境保护部,2008,5:28.
    [14]中华人民共和国环境保护部.2008中国近岸海域环境质量公报[R].北京:中华人民共和国环境保护部,2009,6:28.
    [15]中华人民共和国环境保护部.2009中国近岸海域环境质量公报[R].北京:中华人民共和国环境保护部,2010,8:29.
    [16]中华人民共和国环境保护部.2010中国近岸海域环境质量公报[R].北京:中华人民共和国环境保护部,2011,7:27.
    [17]高振会,杨建强,王培刚,等.海洋溢油生态损害评估的理论、方法及案例研究[M].北京:海洋出版社,2007:4-11.
    [18] Paul F. Kingston. Long-term environmental impact of oil spills[J]. Spill Science&TechnologyBulletin,2002,7(1-2):53-61.
    [19] Marta G C, José E. An assessment of oil pollution in the coastal zone of Patagonia, Argentina[J].Environment Management,2007,40(5):814-821.
    [20] Odjegba V J, Sadiq A O. Effects of engine oil on the growth parameters, chlorophyll and proteinlevels of Amaranthus hybridus L[J]. The Environmentalist,2002,22(1):23-28.
    [21] Pérez B, Cadahía, Lafuente A, Cabaleiro T, et al. Initial study on the effects of Prestige oil onhuman health[J]. Environment International,2007,33(2):176-185.
    [22] Francisco Aguilera, Josefina Méndez, Eduardo Pásaro, et al. Review on the effects of exposure tospilled oils on human health[J]. Journal Applied Toxicology,2010,30:291-301.
    [23]吕江涛.基于荧光机理的水中油类污染物检测识别技术研究[D].秦皇岛:燕山大学仪器科学与技术学科学位论文,2009:6-7.
    [24]宋祖华,徐荣,凌娟.低浓度石油类测定过程中的问题探讨[J].中国环境监测,2009,25(5):68-69.
    [25]刘敏燕,孙维维,王志霞,等.水上溢油鉴别体系的研究[J].海洋环境科学,2009,3:341-344.
    [26] Yang C, Wang Z, Hollebone B. P., et al. Charaeteristies of bicyclic sesquiterpanes in crude oil andpetroleum products[J]. Journal of Chromatography A,2009,1216(20):4475-4484.
    [27] Lambert P. A literature review of portable fluorescence-based oil-in-water monitors[J]. Journal ofHazardous Materials,2003,102(1):39-55.
    [28] Deepa S, Sarathi R, Mishra A K. Synchronous fluorescence and excitation emissioncharacteristics of transformer oil ageing[J]. Talanta,2006,70(4):811-817.
    [29] Bugden J B C, Yeung C W, Kepkay P E, et al. Application of ultraviolet fluorometry andexcitation–emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oilin seawater[J]. Marine Pollution Bulletin,2008,56:677-685.
    [30] Patra D, Mishra A K. Study of diesel fuel contamination by excitation emission matrix spectralsubtraction fluorescence[J]. Analytica Chimica Acta,2002,454(2):209-215.
    [31] Patra D. Distinguishing motor oils at higher concentration range by evaluating total fluorescencequantum yield as a novel sensing tool[J]. Sensors and Actuators B: Chemical,2008,129(2):632-638.
    [32] Patra D, Mishra A K. Investigation on simultaneous analysis of multicomponent polycyclicaromatic hydrocarbon mixtures in water samples: a simple synchronous fluorimetric method[J].Talanta,2001,55(1):143-153.
    [33] Patra D, Mishra A K. Recent developments in multi-component synchronous fluorescence scananalysis[J]. Trends in Analytical Chemistry,2002,21(12):787-798.
    [34] Wang C, Li W, Luan X. Species identification and concentration quantification of crude oilsamples in petroleum exploration using the concentration-synchronous-matrix-fluorescencespectroscopy[J]. Talanta,2010,81(1-2):684-691.
    [35] Hua G, Killham K, Singleton I. Potential application of synchronous fluorescence spectros-copy to determine benzo[a]pyrene in soil extracts[J]. Environmental Pollution,2006,139(2):272-278.
    [36] Sharma H, Jain V K, Khan Z H. Identification of polycyclic aromatic hydrocarbons (PAHs) insuspended particulate matter by synchronous fluorescence spectroscopic technique[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2007,68(1):43-49.
    [37] Yang X, Shi B, Zhang Y, et al. Identification of polycyclic aromatic hydrocarbons (PAHs) in soilby contrast energy synchronous fluorescence detection[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008.69(2):400-406.
    [38] Kavanagh R J, Burnison K B, Frank R A. Detecting oil sands process-affected waters in theAlberta oil sands region using synchronous fluorescence spectroscopy[J]. Chemosphere,2009,76(1):120-126.
    [39] Saitoh T, Itoh H, Hiraide M. Admicelle-enhanced synchronous fluorescence spectrometry for theselective determination of polycyclic aromatic hydrocarbons in water[J]. Talanta,2009,79(2):177-182.
    [40]夏达英,张士魁,李宝华,等.水中矿物油荧光特性实验研究[J].黄渤海海洋,2002,20(2):91-98.
    [41]王春艳,王新顺,王延华,等.基于不同光谱技术的原油样品的荧光分析[J].光谱学与光谱分析,2006,26(4):728-732.
    [42]王春艳,江华鸿,高居伟,等.基于三维同步荧光光谱确定原油样品浓度的新方法[J].光谱学与光谱分析,2006,26(6):1080-1083.
    [43]王春艳,李文东,栾晓宁,等.基于浓度参量同步荧光光谱的相近油源溢油鉴别[J].光谱学与光谱分析,2010,30(110):2700-2705.
    [44]赵友全,路雪峰,梁瑛,等.石油馏分荧光光谱等高线特征谱分析研究[J].2012,33(6):1275-1280.
    [45]肖雪,张玉钧,王志刚,等.矿物油-乙醇溶液三维荧光光谱的实验研究[J].光谱学与光谱分析,2010,30(16):1549-1554.
    [46]杨仁杰,徐晓轩,尚丽平.三维荧光光谱差谱法测定柴油中的溶剂油[J].光谱学与光谱分析,2006,26(1):94-96.
    [47]徐仕荣,段明,张健,等.荧光法测定油田污水中的含油量[J].石油与天然气化工,2009,38(3):258-261.
    [48]蒋凤华,赵美丽,韩彬,等.同步荧光光谱分析法在海面溢油鉴别中的应用研究[J].光谱学与光谱分析,2011,31(1):154-157.
    [49]崔志成,刘文清,赵南京,等.水中油浓度快速测量方法研究[J].光谱学与光谱分析,2008,28(6):1332-1335.
    [50]赵彦,张世元,凌萍,等.三维荧光光谱法鉴别原油指标的探讨[J].光谱学与光谱分析,2009,29(12):3335-3338.
    [51]王玉田,张艳林,王金玉.基于三维荧光谱特征分析的油种鉴别技术的研究[J].光子学报,2010,39(7):1330-1333.
    [52]田广军.水中矿物油三维荧光谱的特征提取与光谱重构[J].光谱学与光谱分析,2008,28(14):895-899.
    [53]金丹,张玉均,李国刚,等.四种多环芳烃的三维荧光光谱分析[J].大气与环境光学学报,2008,3(6):448-453.
    [54]金丹,张玉均,李国刚,等.菲的三维荧光光谱特性研究[J].光谱学与光谱分析,2009,29(5):1319-1322.
    [55]黄殿男,景逵,李建华,等.同步荧光光谱法测定石油中的晕笨[J].光谱实验室,2009,26(1):85-89.
    [56]张伟,周娜,李呐,等.低温恒能量同步荧光法同时快速检测食品中多种多环芳烃[J].光谱学与光谱分析,2009,29(10):2806-2809.
    [57]章汝平,何立芳.多环芳烃混合物的快速同步荧光光谱分析[J].分析科学学报,2008,24(4):437-440.
    [58]钟润生,张锡辉,管运涛,等.三维荧光指纹光谱用于污染河流溶解性有机物来源示踪研究[J].光谱学与光谱分析,2008,28(2):347-351.
    [59] Smith C G, Sinski J F. Red-shift cascade: investigations into the concentration dependentwavelength shifts in3-dimensional fluorescence spectra of petroleum samples[J]. AppliedSpectroscopy,1999,53:1459-1469.
    [60] Divya O, Mishr A K. Understanding the concept of concentration-dependent red-shift insynchronous fluorescence spectra: Prediction of and optimization of and optimization of forsynchronous fluorescence scan[J]. Analytica Chimica Acta,2008,630(1):47-56.
    [61] Sinski J F, Compton B S, Nicoson M C, Perkins B S. Using3D-fluorescence’s Red Shift CascadeEffect to Monitor Monitor Myobacterium PRY-1Degradation of Aged Petroleum[J]. AppliedSpectroscopy,2004,58(l):91-95.
    [62] Sinski J F, Exner J. Concentration dependence in the spectra of polycyclic aromatic hydrocarbonmixtures by front surface fluorescence analysis[J]. Applied Spectroscopy,2007,61(9):970-977.
    [63] Bro R, Workman Jr J J, Mobley P, et al. Review of chemometrics applied to spectroscopy:1985-1995, part III: Multi-way analysis[J]. Applied Spectroscopy Reviews,1997,32(3):237-261.
    [64] Bro R. Review on Multiway Analysis in Chemistry-2000-2005[J]. Critical Reviews in AnalyticalChemistry,2006,36(3-4):279-293.
    [65] Verónica Gómez, María Pilar Callao. Analytical applications of second-order calibrationmethods[J]. analytica chimica acta,2008,627:169-183.
    [66] Divya O, Mishra A K. Multivariate methods on the excitation emission matrix fluorescencespectroscope data of diesel-kerosene mixtures: A comparative study[J]. Analytica Chimica Acta,2007,592(1):82-90.
    [67] Christensen J H, Hansen A B, Mortensen J. Characterization and matching of oil samples usingfluorescence spectroscopy and parallel factor analysis[J]. Analytical Chemistry,2005,77(7):2210-2217.
    [68] Christensen J H, Tomasi G. Practical aspects of chemometrics for oil spill fingerprinting[J].Journal of Chromatography A,2007,1169(12):1-22.
    [69] Li J, Fuller S, Cattle J. Matching fluorescence spectra of oil spills with spectra from suspectsources[J]. Analytica Chimica Acta,2004,514(1):51-56.
    [70] Andersen C M, Bro R. Practical aspects of PARAFAC modeling of fluorescenceexcitation-emission data[J]. Journal of Chemometrics,2003,17(4):200-215.
    [71] Sílvia Mas, Anna de Juan, Romà Tauler, et al. Application of chemometric methods toenvironmental analysis of organic pollutants: A review[J]. Talanta,2010,80:1052-1067.
    [72] Christensen J H, Tomasi G. Practical aspects of chemometrics for oil spill fingerprinting[J].Journal of Chromatography A,2007,1169(1):1-22.
    [73] Abbas O, Rebufa C, Dupuy N, et al. Application of chemometric methods to synchronous UVfluorescence spectra of petroleum oils[J]. Fuel,2006,85(17):2653-2661.
    [74] Zhou ZH ZH, Guo L D, Shiller A M, et al. Characterization of oil components from theDeepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFACtechniques[J]. Marine Chemistry,2013,148(20):10-21.
    [75]李宏斌,刘文清,王志刚,等.基于三维荧光光谱技术的多组分分析浓度校准方法研究[J].量子电子学报,2007,24(3):306-310.
    [76]潘钊,王玉田,邵小青,等.三维荧光光谱及平行因子分析在石油类污染物检测分析中的应用[J].光谱学与光谱分析,2012,32(3):714-718.
    [77]职统兴,尚丽平,邓琥,等.主成分回归荧光光谱法同时分析多组分混合体系[J].应用化工,2008,37(10):1231-1234.
    [78] Jiang F, Lee F S, Wan X, et al. The application of excitation/emission matrix spectroscopycombined with multivariate analysis for the characterization and source identification ofdissovled organic matter in seawater of Bohai Sea China[J]. Marine Chemistry,2008,110(1):109-119.
    [79] Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factoranalysis: a tutorial[J]. Limnology and Oceanography: Methods,2008,6:572-579.
    [80] Zhang Y L, Yin Y, Feng L Q, et al. Characterizing chromophoric dissolved organic matter in LakeTianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallelfactor analysis[J]. water research,2011,45(16):5110-5122.
    [81] Wang Z G, Liu W Q, Zhao N. Composition analysis of colored dissolved organic matter in TaihuLake based on three dimension excitation-emission fluorescence matrix and PARAFAC model,and the potential application in water quality monitoring[J]. Journal of Environmental Sciences,2007,19(7):787-791.
    [82] Bosco M V, Callao M P, Larrechi M S,et al. Simultaneous analysis of the photocatalyticdegradation of polycyclic aromatic hydrocarbons using three-dimensional excitation-emssionmatrix fluorescence and parallel factor analysis[J]. Analytica Chimica Acta,2006,576(2):184-194.
    [83]吕桂才,赵卫红,王江涛.平行因子分析在赤潮藻滤液三维荧光光谱特征提取中的应用[J].分析化学,2010,38(8):1144-1150.
    [84] Christensen J, N rgaard L, Bro R, et al. Multivariate autofluorescence of intact food systems[J].Chemical reviews,2006,106(6):1979-1994.
    [85] Hashemi J, Kram G A, Alizadeh N. Enhanced spectrofluorimetric determination of aflatoxin B1inwheat by second-order standard addition method[J]. Talanta,2008,75(4):1075-1081.
    [86] Callejón R M, Amigo J M, Pairo E, et al. Classification of Sherry vinegars by combiningmultidimensional fluorescence, parafac and different classification approaches[J]. Talanta,2012,88:456-462.
    [87] Airado-Rodríguez D, Galeano-Díaz T, Durán-Merás I, et al. Usefulness of fluorescenceexcitation-emission matrices in combination with PARAFAC, as fingerprints of red wines[J].Journal of Agricultural and Food Chemistry,2009,57(5):1711-1720.
    [88]刘海龙,吴希军,田广军.三维荧光光谱技术及平行因子分析法在绿茶分析及种类鉴别中的应用[J].中国激光,2008,35(5):685-689.
    [89]王雪梅,吴海龙,聂瑾芳,等.三维荧光二阶校正方法快速检测香蕉中双苯三唑醇含量[J].分析化学,2009,37(6):811-816.
    [90] Rodríguez Cáceres M I, Guiberteau Cabanillas A, Bohoyo Gil D, et al. Quantification ofdanofloxacin and difloxacin in chicken tissues in the presence of sarafloxacin as interference[J].Journal of Agricultural and Food Chemistry,2009,57(17):7627-7633.
    [91] Madrakian T, Afkhami A, Mohammadnejad M. Second-order advantage applied to simultaneousspectrofluorimetric determination of paracetamol and mefenamic acid in urine samples[J].Analytica Chimica Acta,2009,645(1):25-29.
    [92] Jiang J D, Wu H L, Xia A L, et al. Determination of honokiol and magnolol in both human plasmaand complex magnolia officinalis by second-order calibration coupled to three-dimensionalexcitation-emission fluorescence spectra[J]. Chemical Journal of Chinese Universities,2008,29(1):71-78.
    [93] Li S F, Wu H L, Huang L, et al. Quantitative analysis of fluphenazine hydrochloride in humanurine using excitation-emission matrix fluorescence based on oxidation derivatization combinedwith second-order calibration methods[J]. Analytical Methods,2010,2(8):1069-1077.
    [94]王建瑶,吴海龙,张娟,等.三维荧光光谱结合二阶校正方法测定细胞培养基中阿霉素的含量[J].中国科学:化学,2011,41(5):884-892.
    [95] Bernard V. Molecular Fluorescence Principles and Applications[M]. WCH, Weinheim, Germany,2001:34-165.
    [96]许金钩,王尊本.荧光分析法[M].第3版,北京:科技出版社,2006:11-152.
    [97]俆秉玖.仪器分析[M].北京:北京大学医学出版社.2005:243-245.
    [98]尚丽平,杨仁杰.现场荧光光谱技术及其应用[M].北京:科学出版社,2009:6-174.
    [99]王宝仁,孙乃有.石油产品分析[M],北京:化学工业出版社,2004,2-54.
    [100]孙培艳,高振会,崔文林.油指纹鉴别技术发展及应用[M].北京:海洋出版社,2007:38-40.
    [101]林世雄.石油炼制工程[M].第3版,北京:石油工业出版社,2000:33.
    [102] Joseph R. Lakowicz. Principles of Fluorescence Spectroscopy[M]. Third Edition. USA,Maryland, University of Maryland School of Medicine Baltimore,2006:27-49.
    [103]朱亚波,仲坤,方亮,等. SDS的荧光光谱及其寿命[J].重庆大学学报(自然科学版),2007,30(5):96-99.
    [104]冯泳兰,周雀.荧光素与阴离子表面活性剂的荧光性质研究[J].光谱实验室,2009,26(5):1260-1263.
    [105]于道永,邱宇,张建.无探针荧光光谱法测定十二烷基硫酸钠的临界胶束浓度[J].分析实验室,2010,29(5):13-16.
    [106] Lázaro E, San Andrés M P, Vera S. Determination of five polycyclic aromatic hydrocarbons inaqueous micellar media by fluorescence at room temperature[J]. Analytica Chimica Acta.2000,413(1):159-166.
    [107] Manzoori J L, Amjadi M. Spectrofluorimetric and micelle-enhanced spectrofluorimetric methodsfor the determination of gemfibrozil in pharmaceutical preparations[J]. Journal of Pharmaceuticaland Biomedical Analysis,2003,31(3):507-513.
    [108] Oca a J A, Barragán F J, Callejón M. Spectrofluorimetric and micelle-enhancedspectrofluorimetric determination of gatifloxacin in human urine and serum[J]. Journal ofPharma-ceutical and Biomedical Analysis,2005,37:327-332.
    [109]王晗,迟燕华,尚丽平,等.胶束增敏同步荧光光谱法测定水中微量芘和蒽[J].理化检验(化学分册),2010,46(7):803-806.
    [110]曾晓丹,贾丽华,郭祥峰,等.胶束增敏法测定盐酸左氧氟杀星的研究[J].分析实验室.2006,25(7):54-55.
    [111]敖登高娃,斯琴. β-CD, DBS协同增敏美他环素的荧光光谱研究及分析应用[J].光谱学与光谱分析,2008,28(11):2640-2643.
    [112]杜黎明,王静萍,王彩霞.环丙沙星在胶束体系中的荧光特性研究及应用[J].光谱学与光谱分析,2004,24(7):855-857
    [113]李满秀,任光明,赵二劳.胶束增强荧光法测定6-溴萘硫酸钾[J].理化检验-化学分册,2007,43(1):75-77.
    [114] Wang C Y, Li W D, Luan X N, et al. Species identification and concentration quantification ofcrude oil samples in petroleum exploration using the concentration-synchronous-matrix-fluorescence spectroscopy[J]. Talanta,2010,81:684-691.
    [115]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004:2-95.
    [116]褚小立.化学计量学方法与分子光谱分析技术[M].北京:化学工业出版社,2011:17-21.
    [117] Zhu S H, Wu H L, Li B R, et al. Determination of pesticides in honey using excitation-emissionmatrix fluorescence coupled with second-order calibration and second-order standard additionmethods[J]. Analytica chimica acta,2008,619(2):165-172.
    [118] Booksh K S, Kowalski B R. Theory of analytical chemistry[J]. Analytical Chemistry,1994,66(15):782A-791A.
    [119] Olivieri A C. Analytical advantages of multivariate data processing. One, two, three, infinity[J].Analytical Chemistry,2008,80(15):5713-5720.
    [120] Wu H L, Nie J F, Yu Y J, et al. Multi-way chemometric methodologies and applications: Acentral summary of our research work[J]. Analytica Chimica Acta,2009,650(1):131-142.
    [121] Liang Y, Kvaleiam O M, Manne R. White, grey and black multicomponent system-aclassification of mixture problems and methods for their quantitative analysis[J]. Chemometricsand Intelligent Laboratory Systems,1993,18(3):235-250.
    [122] Malinowski E R. Factor Analysis in Chemistry[M]. New York: Wiley,2002:73-130.
    [123] Bro R. Multivariate calibration: What is in chemometrics for the analytical chemist?[J].Analytica Chimica Acta,2003,500(12):185-194.
    [124] Booksh K S, Kowalski B R. Theory of analytical chemistry[J]. Analytical Chemistry,1994,66(15):782A-791A.
    [125]许禄,邵学广.化学计量学方法[M],第2版,北京:科学出版社,2004:148-201.
    [126] Ho C N, Christian G D, Davidson E R. Application of the method of rand annihilation toquantitative analysis of multicomponent fluorescence data from the video fluorometer[J].Analytical Chemistry,1978,50:1108-1113.
    [127] hman J, Geladi P, Wold S. Residual binlinearization. Part1: Theory and algorithms[J]. Journalof Chemometrics,1990,4:79-90.
    [128] hman J, Geladi P, Wold S. Residual binlinearization. Part2: Application to HPLC-diode arrarydata and comparison with rank annihilation factor analysis[J]. Journal of Chemometrics,1990,4:135-146.
    [129] Liang Y Z, Manne R, Kvalheim O M. Constrained background bilinearization[J]. Chemometricsand Intelligent Laboratory Systems,1992,14(1):175-184.
    [130] Smilde A, Bro R, Geladi P. Multi-way Analysis with Applications in the Chemical Sciences[M].England: Wiley,2004,257-346.
    [131] Sanchez E, Kowalski B R. Tensorial resolution: A direct trillinear decomposition[J]. Journal ofChemometrics,1990,4(1):29-45.
    [132] Gui M, Rutan S C, Agbodian A. Kinetic detection of overlapped amino acids in thin-layerchromatography with a direct trillinear decomposition method[J]. Analytical Chemistry,1995,67(18):3293-3299.
    [133] Li S, Hamilton C, Gemperline P J. Generalized rank annihilation method using similaritytransformations[J]. Analytical Chemistry,1992,64(6):599-607.
    [134] Harshman R A. Foundations of the PARAFAC procedure: model and conditions for an‘explanatory’ multi-mode factor analysis[J]. UCLA Working Papers in phonetics,1970,16:1-2.
    [135] Carrol J D, Chang J. Analysis of individual differernces in multidimensional scaling via anN-way generalization of and Eckart-Young decomposition[J]. Psychometrika,1970,35(3):283-319.
    [136] Juan A, Rutan S C, Tauler R, et al. Comparison between the direct trillinear decomposition andthe multivariate curve resolution-alternating least squares methods for the resolution of three-waydata sets[J]. Chemometrics and Intelligent Laboratory Systems,1998,40(1):19-32.
    [137] Paatero P. Construction and analysis of degenerate PARAFAC models[J]. Journal ofChemometrics,2000,14(3):285-299.
    [138] Wu H, Yu R, Oguma K. Trillinear component analysis in modern analytical chemistry[J].Analytical Sciences,2001,17(11):1483-1486.
    [139]孙翔宇,吴海龙,陆剑忠,等.三维荧光光谱法结合交替三线性分解算法同时分辨及定量测定秦皮中的秦皮甲素和秦皮乙素成分[J].分析科学学报,2005,21(2):149-151.
    [140]刘迪丝,吴海龙,朱绍华.交替三线性分解荧光二阶校正法同时直接测定口服液中氨基酸[J].分析化学,2007,35(4):579-581.
    [141] Tucker L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika,1966,31(3):279-311.
    [142] Kroonenberg P M, Leeuw de J. Principal components analysis of three-mode data by means ofalternating least-squares algorithms[J]. Psychometrika,1980,45(1):69-97.
    [143] Harshman R A. Foundations of the PARAFAC procedure: Models and conditions for anexplanatory multi-modal factor analysis[J]. UCLA Working Papers in Phonetics,1970,16:1-84.
    [144] Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via anN-way generalization of“Eckart-Young”decomposition[J]. Psychometrika,1970,35:283-319
    [145] Bro R. PARAFAC. Tutorial and applications[J]. Chemometrics and Intelligent LaboratorySystems,1997,38(2):149-171.
    [146] Escandar G M, Olivieri A C, Faber N K M, et al. Second-and third-order multivariate calibration:data, algorithms and applications[J]. TrAC Trends in Analytical Chemistry,2007,26(7):752-765.
    [147] Bro R. Multi-way Analysis in the Food Industry, Models, Algorithms, and Applications[D].Denmark: University of Amsterdam PhD. thesis,1998:110-121.
    [148] Harshman R A. Determination and proof of minimum uniqueness conditions for PARAFAC1[J].UCLA Working Papers in phonetics,1972,22:111-113.
    [149] Leurgans S, Ross R T, Abel R B. A composition for three-way arrays[J]. SIAM Journal onMatrix Analysis and Applications,1993,14(4):1064-1083.
    [150] Hu L Q, Wu H L, Jiang J H, et a1. Use of pseudo-sample extraction and the projection techniqueto estimate the chemical rank of three-way data arrays[J]. Analytical and BioanalyticalChemistry,h2006,384(7-8):1493-1500.
    [151] Hu L Q, Wu H L, Jiang J H, et a1. Estimating the chemical rank of three-Way data arrays by asimple linear transform incorporating Monte Carlo simulation[J]. Talanta.2007,71(1):373-380.
    [152] Harshman R A, Lundy M E. The PARAFAC model for three-way factor analysis andmulti-dimensional scaling[J]. Research Methods for Multi-mode Data Analysis,1984:122-215.
    [153] Chen Z P, Liu Z, Cao Y Z, et a1. Efficient way to estimate the optimum number of factors fortrilinear decomposition[J]. Analytica Chimica Acta.2001,444(2):295-307.
    [154] Louwerse D J, Smilde A K, Kiers H A L. Cross-validation of multiway component models[J].Journal of Chemometrics.1999,13(5):491-510.
    [155] Bro R, Kiers H A L. A new efficient method for determining the number of components inPARAFAC modes[J]. Journal of Chemometrics.2003,17(5):274-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700