单细胞离子光电联合检测系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞内外离子的动态平衡是细胞赖以生存的基础,其不平衡往往会导致疾病的发生。深入研究单个细胞内外离子活动不仅有助于了解细胞生命活动规律,也有助于揭示疾病的发病机理并促进新药的开发与筛选。应用光、电信号联合检测单细胞离子活动和其浓度变化是近年来生命科学研究的重要方法和研究热点。
     单细胞离子光电联合检测系统将膜片钳技术、钙离子荧光检测技术及钙离子紫外光释放技术等联合起来,并且还可以实现膜电容分泌信号和碳纤电极信号的同步测量。因而适合于在单细胞水平研究高时间分辨率的钙依赖的生理功能,为细胞生物学和膜生物物理学等领域的研究提供一种重要的工具。本文的工作主要是研究与开发一种新型的单细胞离子光电联合检测系统。主要内容如下:
     1.研究并实现了计算机控制膜片钳放大器的自动校准算法。在详细分析探头动态特性基础上提出了一种简化的探头传递函数,从而简化了探头放大器补偿环节的自动校准算法。实验结果表明,使用该算法能快速准确地完成探头补偿电路的校准,有效提高系统响应速度和带宽。所设计的自动校准程序模块能快速准确地获得系统相关参数,为提高膜片钳放大器测量的精度奠定基础。
     2.研究并实现了计算机控制膜片钳放大器的自动测试算法。自动测试模块能在4~5分钟内完成对膜片钳放大器各个功能模块的测试,包括增益、噪声和失调等性能参数,并根据测试协议判断每个模块是否工作正常,并在潜在的故障位置给出提示,帮助用户和开发人员对仪器进行测试和故障诊断。
     3.完成和改进了膜片钳实验参数的自动补偿算法。实现膜片钳实验过程中电极失调电位、快慢电容等参数的自动补偿,并根据实验测试过程中发现的问题对电路和算法进行了改进。
     4.为了克服传统膜片钳在电流钳模式下的固有缺陷,在传统膜片钳放大器中实现电压钳控制电流钳模式。重新设计了探头放大器电路,并对膜片钳放大器系统电路进行一定的改进,从而实现了钳位膜电位的同时记录瞬态膜电位变化。
     5.设计了基于双波长荧光显微测量原理的单细胞内游离钙离子浓度检测软件模块,分别实现系统参数校准和设置、实验刺激协议设置以及实验结果计算和显示等部分的功能。
Homeostasis between intracellular and extracellular ion concentrations is of critical importance for a variety of the life functions and is tightly related to some disease. Deep study of the intracellular and extracellular ion activities of single cell will be helpful for understanding the mechanisms underlying cellular life functions as well as exploring the pathogenesis of disease and facilitating the discovery or filtration of the new drugs. Studying the ion activity and the transformation of ion concentrations in single cell by employing the optical and electrical signals detection technology becomes an important methodology and of highly interest among researchers around the world.
     The patch-clamp technique, technique of fluorometric measurement of intracellular Ca2+ concentration and flash photolysis of caged Ca2+ were combined to found a photoelectric associated detection system for single cellular ion activities, which also can be used to record membrane capacitance and carbon fiber electrode signals of secretion. As a consequence, the detection system is fit for studying the calcium-dependent life function in single cell with high temporal resolution and acts as a key tool in cell biology and membrane biophysics fields. This dissertation is mainly dedicated to study and develop the novel photoelectric associated detection system. It consists of following aspects:
     1. The automatic calibration algorithm of computer-controlled patch-clamp amplifier was studied and implemented. This thesis advanced an approximate transfer function by experience and test results. Further more, a simplified automatic regulation method of frequency compensation system in resistor-feedback patch-clamp amplifier is proposed and implemented. Experimental results demonstrate that the bandwidth of the amplifier can be substantially extended and the step response error of the headstage can be minimized after the frequency compensation system was regulated using this method. The system parameters can be obtained quickly and exactly by the automatic calibration routine. Thereby, applying the calibration routine resulted in distinct and effective improvements of the performance and accuracy of the patch-clamp amplifier.
     2. The automatic test algorithm of computer-controlled patch-clamp amplifier was studied and implemented. All parameters of each functional circuit in the amplifier, such as gain, noise and offset, can be obtained by automatic test routine within four to five minutes, and the operating state of each functional circuit can be evaluated according to the comparison between the test results and test protocol. The automatic test routine helps the manufactures and users for performance evaluation and troubleshooting.
     3. The circuit modules and algorithms used for automatic adjustment of the parameters in patch-clamp experiments were researched and improved. Based on the theoretical analysis of the parameters, the algorithm was implemented to remove the electrode offset and capacitance transient currents, and moreover, the circuits and algorithms of the automatic adjustment modules were improved according to the problems that were found in the experiments at our laboratory.
     4. In order to overcome the essential limitations of the conventional patch-clamp amplifier in current-clamp experiments, a new headstage was designed. Furthermore, voltage-clamp-controlled current-clamp technique was developed by design a new circuit. As a consequence, transient changes of the membrane potential can be recorded by injecting the command current into the cell while the clamp voltage is kept at a constant value.
     5. Base on the principle of the dual-wavelength fluorescence probe, the routines for fluorometric measurement of intracellular free calcium ion concentration were designed. The routine modules, such as system parameters calibration and setup module, experimental protocols setup module, experimental data processing and display module were implemented.
引文
[1]康华光,康国新.膜片钳技术及其应用(第1版).北京:科学出版社, 2003
    [2] Penner R. A pratical guide to patch clamping. In Single Channel Recording, Sakmann B and Neher E, 2nd Edition. New York: Plenum Publishing Corp., 1995:3~28
    [3] Sigworth J. Electronic Design of the Patch Clamp, In Single Channel Recording, B. Sakmann and E. Neher, 2nd Edition. New York: Plenum Publishing Corp., 1995:95~126
    [4] Schwake L, Henkel AW, Riedel HD et al. Patch-Clamp Capacitance Measurements: New Insights into the Endocytic Uptake of Transferrin. Blood Cells, Molecules, and Diseases ,2002, Vol 29: 459~464
    [5] Sutor B, Grimm C, Polder HR. Voltage-clamp-controlled current-clamp recordings from neurons:an electrophysiological technique enabling the detection of fast potential changes at preset holding potentials., Pflugers Arch - Eur J Physiol, 2003, Vol 446: 133~141
    [6] Johnson SL, Thomas MV, Kros CJ. Membrane capacitance measurement using patch clamp with integrated self-balancing lock-in amplifier. Pflügers Arch - Eur J Physiol ,2002, Vol 443:653~663
    [7] Takahashi A, Camacho P, Lechleiter J D, et al. Measurement of intracellular calcium. Physiol Rev, 1999, 79: 1089~1125
    [8] Kasai H. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci, 1999, 22(2): 88~93
    [9] Verkhratsky A, Krishtal OA, Petersen OH. From Galvani to patch clamp: the development of electrophysiology. Eur J Physiol. 2006,453:233-247
    [10] Neher E, Sakmann B. Single-channel currents recorded from membrane ofdenervated frog muscle fibres. Nature 1976,260:799-802
    [11] Sigworth FJ, Neher E. Single Na+ channel currents observed in cultured rat muscle cells. Nature.1980, 287:447-449
    [12] Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell free patches. Pflugers Arch. 1981, 391:85~100.
    [13] Bernd N. Pflugers Archiv and the advent of modern electrophysiology:from the first action potential to patch clamp. Pflugers Arch-Eur J Physiol. 2003.447:267~271
    [14] Eberwin J,Yeh H, Miyashiro K, et al. Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA,1992,89:3010~3014
    [15]刘乃江,于英心,韩济生.膜片钳技术与其他技术的结合在神经科学中的应用.生理科学进展.1996,27(2):113~117
    [16] Sigworth FJ. Design of the EPC-9, a Computer-Controlled Patch-Clamp Amplifier. 1. Hardware. Journal of Neuroscience Methods, 1995, 56: 195~202
    [17] Sigworth FJ, Afolter H, Neher E. Design of the EPC-9, a Computer- Controlled Patch-Clamp Amplifier. 2. Software. Journal of Neuroscience Methods, 1995, 56: 203-215
    [18]周专,康华光.国产膜片钳仪研制成功.生物化学与生物物理进展. 1990, 17(4): 327~328
    [19]曹忠升,邹寿彬,康华光.第二代膜片钳放大器中的关键电路设计.华中科技大学学报.1995,23,supII:92~96
    [20] Hertzberg RP, Pope AJ. High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol, 2000,4:445~451
    [21] Xu J,Chen Y, Li M. High-throughout technologies for studying potassium channels-progress and challenges. Drug Discov Today, 2004,3:32~38
    [22] Sigworth FJ, Klemic KG. Patch clamp on a Chip. Biophysic J, 2002. 82: 2831~2832
    [23] Klemic KG, Klemic JF, Reed MA, et al. Micromolded PDMS planar electrodeallows patch clamp electrical recording from cells. Biosens Bioelectron, 2002.17:592~604
    [24] Bennett PB, Guthrie HR. Trends in ion channel drug discovery: advances in screening technology. Trends Biotechnol, 2003,21:563~569
    [25] Mathes C. Ion channels in drug discovery and development. Drug Discov Today, 2003, 8: 1022~1024.
    [26] Heyward PM, Shipley MT. A device for automated control of pipette internal pressure for patch-clamp recording. J. Neurosci Methods. 2003. 123:109-115.
    [27] Joshi PR, Suryanarayanan A, Schulte MK. A vertical flow chamber for Xenopus oocyte electrophysiology and automated drug screening. J. Neurosci Methods, 2004, 132:69~ 79
    [28] Wood C, Williams C, Waldron CJ. Patch clamping by numbers. Drug Discov Today,2004,9(10):434-441
    [29]陈良怡,徐涛,邹寿彬等.胞内游离钙离子的定量检测技术.中国医疗器械杂志. 2000,24 (6) :349~353
    [30] Ridgeway EB, Ashley CC. Calcium transients in single musle fibers. Biochem Biophys Res Commun, 1967, 29: 229~234
    [31] Axel M, Christian M. Aequorin-based measurements of intracellular Ca2+-signatures in plant cells. Biol Proced Online,2002, 4(1): 105~118
    [32] Prendergast FG. Bioluminescence illuminated. Nature, 2000, 405(6784): 291-293
    [33] Deng L, Markova SV, Vysotski ES, et al. Crystal structure of a Ca2+-discharged photoprotein: implications for mechanisms of the calcium trigger and bioluminescence. J Biol Chem, 2004, 279(32): 33647-33652
    [34] Tsien RY. Fluorescent probes of cell signaling. Annu Rev Neurosci, 1989, 12: 227-253
    [35] Williams DA, Fogarty KE, Tsien RY, et al. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature, 1985,318(6046): 558-561
    [36] Tsien RY, Rink TJ, Poenie M. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium, 1985, 6(1-2): 145-157
    [37] Tsien RY. Fluorescent indicators of ion concentrations. Methods Cell Biol, 1989, 30: 127-156
    [38] Tsien RY. Measuring and manipulating cytosolic Ca2+ with trapped indicators. Kroc Found Ser.1984,17:147~155.
    [39] Neher, E. Combined fura-2 and patch clamp measurements in rat peritoneal mast cells. In Neuromuscular junction, Sellin LC, Libelius R, Thesleff S, eds. Elsevier Science Publishers.1989:65-76
    [40]徐涛,刘乃江,瞿安连等. SH-SY5Y细胞胞内钙库特性研究.生物物理学报,1996, 12(2):234~238
    [41] Alzaher H,Ismail M. Digitally tuned analog integrated filters using the R-2R ladder. Electronics, Circuits and Systems (ICECS), 2000: 383~385
    [42] Hu G, Zhu QH and Qu AL. Designing a signal conditioning system with software calibration for resistor-feedback patch clamp amplifier. The 27th Annual International Conference of the IEEE-EMBC, 2005: 6729~6732
    [43] Reichman J. Handbook of optical filters for fluorescence microscopy. Chroma Technology Corp, 2000
    [44]秦泰然.荧光显微检测系统单色激发光源的研制:[硕士学位论文].武汉:华中科技大学图书馆, 2007:4~19
    [45]周云燕,兰李,杨智勇.荧光测钙装置中单色激发光源的设计和应用. 2004,31(7):24~27
    [46]罗虎,张利芬,瞿安连.基于FPGA技术的新型膜片钳数字接口逻辑设计.现代科学仪器. 2007(3):34~37
    [47]张利芬,罗虎,瞿安连.全自动膜片钳USB2.0数据采集系统的硬件设计.微计算机信息(测控自动化). 2007, 23(1):120~122
    [48]毛俊峰,熊俊,瞿安连.全自动膜片钳数据采集控制系统USB接口的设计.上海生物医学工程. 2007,28(1):8~11
    [49]易敏,胡刚,熊俊等.膜片钳放大器自动校准方法的研究.计算机测量与控制,2007, 15(1):34~36
    [50] Rivka, S.G. Instrumentation for measuring bioelectric signals from cells. In: The Axon Guide for Electrophysiology and Biophysics Techniques, Axon Instruments Inc., Foster City, CA, 1993: 25-80
    [51] Sigworth, F.J. Electronic design of the patch clamp. In: Sakmann, B., Neher, E. (Eds.), Single Channel Recording, 2nd edn., Plenum, New York, 1994: 95-127
    [52]胡刚.新型膜片钳放大器的研制开发:[博士学位论文].武汉:华中科技大学图书馆, 2006:20~28
    [53] Hu, G., Zhu, Q.H. and Qu, A.L. Designing a signal conditioning system with software calibration for resistor-feedback patch clamp amplifier. The 27th Annual International Conference of the IEEE-EMBC, 2005: 6729-6732.
    [54] Ljung, L. System Identification: Theory for the User. Prentice Hall. 1999
    [55] D’Azzo, J., Houpis, C. and Sheldon, S. Linear Control System Analysis and Design With Matlab, Marcel Dekker Inc., New York, 2003: 88~106
    [56]易敏.全自动膜片钳系统校准和测试的设计与实现:[硕士学位论文].武汉:华中科技大学图书馆, 2006:20~28
    [57] Neher E. Voltage offsets in Patch-Clamp Experiments. In Single Channel Recording, Sakmann B and Neher E, 2nd Edition. New York: Plenum Publishing Corp., 1995:147~154
    [58] Neher E. Correction for liquid junction potentials in patch clamp experiments. Method Enzymol. 1992.207:123~131
    [59] Barry PH, JPCalc. A software package for calculating liquid junction potential corrections in patch-clamp;intracellular, epithelial and bilayer measurements and forcorrecting junction potential measurements, J.Neurosci.Methods,1994,51:107~116.
    [60] Ng B, Barry PH. Measuremenst of additional ionic mobilities for use in junction potential corrections in patch-clamping and other electrophysiological measure- ments, Proc. Aust. Neurosci. Soc, 1994,5:141
    [61] Sakmann B, Neher E. Geometric Parameters of Pipettes and Membrane Patches. In Single Channel Recording, Sakmann B and Neher E, 2nd Edition. New York: Plenum Publishing Corp., 1995:637~650
    [62] Rae JL, Levis RA. Glass technology for patch clamp electrodes. Methods Enzymol. 1992,207:66~93
    [63]高刚强,瞿安连.膜片钳放大器瞬态电流伪差的自动补偿.华中科技大学学报(自然科学版). 2004, 32(10):63~65
    [64]叶燚,胡刚,瞿安连.全自动膜片钳放大器快电容补偿技术改进.上海生物医学工程. 2007,28(2):98~101
    [65]叶燚.全自动膜片钳放大器的瞬态伪差信号补偿的改进:[硕士学位论文].武汉:华中科技大学图书馆, 2006:10~24
    [66] Lollike K., Lindau M. Membrane capacitance techniques to monitor granule exocytosis in neutrophils. J Immunol Methods, 1999, 232(1-2): 111-120
    [67] Gentet L. J., Stuart G. J., Clements J. D. Direct measurement of specific membrane capacitance in neurons. Biophys J, 2000, 79(1): 314-320
    [68] Sherman AJ, Shrier A, Cooper E. Series Resistance Compensation for Whole-Cell Patch-Clamp Studies Using a Membrane State Estimator. Biophysical Journal, 1999, 77: 2590~2601.
    [69] Gillis KD. Techniques for Membrane Capacitance Measurements. In Single Channel Recording, Sakmann B and Neher E, 2nd Edition. New York: Plenum Publishing Corp., 1995:155~198
    [70] Gillis KD. Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier. Pflugers Arch-Eur J Physiol. 2000, 439:655~664
    [71]刘振伟,李立君,刘传缋. Axon公司膜片钳系统的漏减分析.中国应用生理学杂志. 2003,19(1):98~101
    [72]刘振伟,李立君,刘传缋.膜片钳pClamp采样软件中的P/N漏减分析.生理学报. 2000,52(5):440~443
    [73] Kandel E R, Schwartz J H, Jessell T M. Principles of Neural Science, 4th ed. New York: McGraw-Hill, 2000. 152-153
    [74] Stern P, Edwards F A, Sakmann B. Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. The Journal of Physiology, 1992, 449:247-278
    [75] Jung H Y, Staff N P, Spruston N. Action Potential Bursting in Subicular Pyramidal Neurons Is Driven by a Calcium Tail Current. The Journal of Neuroscience, 2001, 21(10):3312-3321
    [76] Magistretti J, Mantegazza M, Guatteo E, et al. Action potentials recorded with patch-clamp amplifiers: are they genuine? Trends Neuroscience, 1996, 19:530~534
    [77] Magistretti J, Mantegazza M, Curtis M, et al. Modalities of Distortion of Physiological Voltage Signals by Patch-Clamp Amplifiers: A modeling Study. Biophysical Journal, 1999, 74:831~842
    [78]樊枫.电压钳控制的电流钳电路设计:[硕士学位论文].武汉:华中科技大学图书馆, 2005:7~20
    [79] Peters F, Gennerich A, Czesnik D, et al. Low frequency voltage clamp: recording of voltage transients at constant average command voltage. Journal of Neuroscience Methods. 2000, 99: 129~135
    [80] Sutor B, Grimm C, Polder H R. Voltage-clamp-controlled current-clamp recording from neurons: an electrophysiological technique enabling the detection of fast potential changes at preset holding potentials. Pflugers Arch-Eur J Physiol, 2003, 446:133~141
    [81] Rivka SG. Instrumentation for measuring bioelectric signals from cells. In: TheAxon Guide for Electrophysiology & Biophysics Techniques, Foster City, CA: Axon Instruments Inc., 1993. 27~43
    [82] HEKA elektronik GmbH. EPC10 Patch-clamp Amplifier User’s Manual 8.6. 65~65
    [83]樊枫,瞿安连.电压钳控制电流钳电路设计.上海生物医学工程.2005, 26(2):91~93
    [84] Polder HR, Swandulla D. The use of control theory for the design of voltage clamp systems: a simple and standardized procedure for evaluating system parameters. Journal of Neuroscience Methods, 2001, 109:97~109
    [85] Filder N, Fernandez JM. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophysics J.,1989,56:1153~1989
    [86] Neher E. Combined fura-2 and patch-clamp measurement in rat peritoneal mast cells. In: Neuromuscular Junction 5, edited by Sellin LC, Liberlius R, and Thesleff S. Amsterdam: Elsevier, 1989, pp. 65~76.
    [87] Wang XB, Li M. Automated Electrophysiology: High Throughout of Art. Assay and Drug Development Technologies,2003,1(5):695~708
    [88]刘振伟.实用膜片钳技术.北京:军事医学科学出版社. 2006:93~104
    [89] Lindau M, Debus K. Resolution of Patch Capacitance Recordings and of Fusion Pore Conductances in Small Vesicles. Biophysical Journal, 2000, 78: 2983~2997.
    [90] Albillos A, Dernick, G, Horstmann H, et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature, 1997,389(2):509~512
    [91] Tabares L, Lindau M, and Toledo GA, et al. Relationship between fusion pore opening and release during mast cell exocytosis studied with patch amperometry. Biochem. Soc. Trans, 2003,31: 837~841
    [92] Johnson SL, Thomas MV, Kros GJ.Membrane capacitance measurement using patch clamp with integrated self-balancing lock-in amplifier. Pflugers Arch-Eur J Physiol, 2002, 443:623~663
    [93] Seoul Semiconductor Co.,LTD, LU532 UV Lamp LED Specifications, Seoul:SeoulSemiconductor Co., LTD.
    [94] Seoul Semiconductor Co., LTD. S340T3B-2 UV LED Specifications, Seoul: Seoul Semiconductor Co., LTD.
    [95] Whitters CJ, Rousseau C, Girkin JM et al. Application of a fibre-optic confocal microscope to the detection of artificial enamel lesions. International Congress Series, 2003, 1248:191~196
    [96] Ng BK, Ng JS, and Hambleton PJ et al. Design consideration for high-speed, low noise avalanche photodiodes, Proceedings of SPIE, 2001,Vol.4594:1~9
    [97] David JP, Tan CH, and Plimmer SA, et al. Design of low-noise avalanche photodiodes. Proceeding of SPIE. 2000, Vol.3950:30~38
    [98] Kanbe H, Kimura T, and Mizushima Y, et al. Silicon avalanche photodiodes with low multiplication niose and high-speed response. IEEE translocation on Electron Device, 1976, Vol.23(12):1337~1343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700