铝酸盐基质发光材料的制备新工艺及铁杂质猝灭研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以SrAl_2O_4:Eu~(2+),Dy~(3+)为代表的铝酸盐长余辉材料,激发光谱范围广,发射光谱在可见光区,发光亮度高,余辉时间长,化学稳定性好,无毒无放射性,是一种环境友好材料。因此在安全应急、交通运输、建筑装潢、仪器仪表、电力、矿山、服装和工艺品等诸多领域有广泛应用。目前,研究制备新工艺提高发光粉的发光强度和余辉性能,完善长余辉发光机理,增加发光颜色品种以扩大发光材料应用范围是这一领域的研究热点。
     本论文对超细高亮度发光粉制备、铁杂质的猝灭效应、纳米氧化铕的制备及在长余辉材料中的应用、铝酸锂红色荧光粉的制备等多个方面进行系统的研究。本课题研究的结果对于粉体制备工艺的改进与创新、制备成本的降低、产品配方设计以及材料发光性能的改善等具有十分重要的意义。
     1.本文采用以聚环氧乙烷为模板的水热合成方法制备了无需研磨的高亮度SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉发光粉。借助于TG-DTG、XRD、TEM、SEM和荧光分光光度计等表征手段,对产物的形成过程、结构、形貌以及光谱性能进行了分析。结果表明,模板水热法能够制备尺寸均匀的介孔前驱物,有利于烧结反应充分进行,有利于降低烧结温度,得到的发光粉颗粒在几个微米左右,余辉起始发光强度高。模板水热法制备的发光粉样品Eu~(2+)的临界猝灭浓度大约在10%左右,这一数值比采用高温固相法合成发光粉的临界猝灭浓度6.6%高得多。
     本章还系统地探讨了发光粉各个组分与发光性能之间的关系:通过改变SrO与Al_2O_3的比率,考察基质相组成与发光性能变化的关系,寻找相组成变化引起的材料发光强度的变化规律;通过研究助熔剂H_3BO_3与材料发光性能的关系,来考察H_3BO_3的最佳添加量:研究了Eu~(2+)和Dy~(3+)在SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉材料发光中的作用,结果表明Eu~(2+)离子是发光中心,是引起材料发光的决定因素,Dy~(3+)离子对Eu~(2+)离子发光中心有辅助增强作用。
     2.但是,模板水热法工艺相对复杂,因此本文还开发了溶胶-凝胶纳米包覆法制备SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉发光粉,该制备方法工艺简单,适合大规模工艺生产。文中通过TEM研究了纳米包覆过程,结果表明纳米纤维状或絮状水合氧化铝均匀的包覆在碳酸锶表面,形成具有微小核壳结构的前驱物。TG和XRD分析结果证明烧结核壳结构的前驱物能够降低反应温度和提高产物晶相纯度,当烧结温度升到1000℃生成了单一的单斜晶系的SrAl_2O_4晶相,这一温度比固相法低300℃左右。SEM结果表明纳米包覆法制备的样品颗粒松散,平均尺寸在3μm左右。与高温固相法相比,纳米包覆法制备的材料发光强度和余辉时间都显著提高,这大大提高了长余辉产品的应用范围。
     SrAl_2O_4:Eu~(2+),Dy~(3+)发光粉中点缺陷的形成及其在发光材料中的作用研究表明,缺陷Eu_(Sr)~x中的Eu~(2+)既是发光中心也是余辉中心;Dy_(Sr)~·带有正电荷,具有捕获电子的能力,因而可作为电子陷阱:V_(Sr)~"带有负电荷,能捕获空穴,可作为空穴陷阱。
     3.考察了铁杂质对SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉材料发光性能的影响。结果表明,铁杂质对长余辉发光粉具有发光猝灭效应,铁浓度越高,长余辉发光越弱,这可以解释为铁杂质竞争能量抑制了Eu~(2+)发光中心吸收能量,降低了电子和空穴的复合机率。实验数据验证了上述解释,同时证实了Fe~(3+)离子是引起长余辉发光猝灭的主要因素。针对这个结果,本章提出了在前驱物制备过程中掺加Pr~(3+)或者Bi~(3+)离子,可以有效的抑制了Fe~(3+)离子的猝灭影响。
     4.利用无模板水热方法制备了Eu(OH)_3和Eu_2O_3纳米棒,并将Eu_2O_3纳米棒应用到SrAl_2O_4:Eu~(2+),Dy~(3+)发光粉制备中。结果表明纳米棒Eu(OH)_3为六方晶系,纳米棒Eu_2O_3为立方晶系,二者的直径分别为57nm和76nm。实验证明使用纳米氧化铕制备SrAl_2O_4:Eu~(2+),Dy~(3+)发光粉,有利于Eu~(2+)离子进入基质晶格,增加发光中心浓度,从而提高材料长余辉发光。
     5.采用溶胶-凝胶纳米包覆技术制备了新颖的γ-LiAlO_2:Eu~(3+)红色荧光粉,对该材料的结构,形貌和发光性能进行系统的研究。研究结果表明产物结构为四方晶系,颗粒呈准球形,平均粒径约为1.5μm。该产品具有典型的Eu~(3+)发射特征,发射主峰在612nm,发光颜色为红色。实验证明适宜的Eu~(3+)离子浓度,烧结温度以及助熔剂H_3BO_3的加入量有助于增加材料的发光性能。
SrAl_2O_4:Eu~(2+), Dy~(3+) system long afterglow materials have been accepted as one of the most important luminescent materials, due to the advantages of its wide excitation spectrum, visible emission range, high luminescent intensity, long duration, well chemical stability, no radiation, and environmental capability. These good luminescent properties result in an unexpectedly large field of applications, such as safety exigence, transportation, building and decorating, instruments and apparatuses, electricity, mines, clothing and arts. Currently, the researches focus on improving emission intensity and afterglow time, perfecting long afterglow luminescent mechanism and increasing the red luminescent production.
     In this paper, the synthesis of ultrafine and high intensity phosphors, quenching research of iron, preperation of Eu_2O_3 nano rod and its application in SrAl_2O_4:Eu~(2+), Dy~(3+) phosphor, and the synthesis of redγ-LiAlO_2:Eu~(3+) fluorescent were studied and investigated systematically. The results will bring on important significance at the side of improving preparation method, decreasing cost, perfecting recipe formulation and luminescent properties.
     1. SrAl_2O_4:Eu~(2+), Dy~(3+)phosphors with high intensity and none milling were prepared by template-based hydrothermal method using nonionic polyethylene oxide as surfactants. The forming process, structure, morphology and luminescent properties of obtained products were characterized by means of TG-DTG, XRD, TEM, SEM and fluorescence spectrophotometer. The analysis results indicat that the precursor prepared by hydrothermal synthesis method are homogeneously mixed at the molecular level, leading to high reactivity of starting materials and the reduction of sintering temperature, the obtained phosphor powders are consist of uniform small grains and have better luminescence compared with that of solid state method. The critical quenching concentration of Eu~(2+) of the phosphors prepared by templating synthesis is about 10mol%, which is higher than that of solid state method of 6.6mol%.
     In this section, the relationship between composition of SrAl_2O_4:Eu~(2+), Dy~(3+) phosphor and its luminescence properities were researched. Through changing the ratio of SrO and Al_2O_3, the relation between the host phase and persistent luminescence was studied in order to search the changing regularity; the relation between B_3HO_3 and luminescence properities of product were also studied in order to confirm the optimal doped quantity; the roles of Eu~(2+) and Dy~(3+) in SrAl_2O_4:Eu~(2+), Dy~(3+)phosphors were studies, and the results suggest that Eu~(2+) ions are luminescent center, which is the crucial factor, and Dy~(3+) ions play a role of assistant.
     2. Because of the cost problem of hydrothermal synthesis method, we explored sol-gel nano-coating method using to prepared SrAl_2O_4:Eu~(2+), Dy~(3+) phosphors. The method has the advantages of esay process, low cost and fitting for large production. In this section, the coasting process has been studied by TEM method, the results insicate that nanometer Al_2O_3 coat in the surface of SrCO_3 and become core-shell precursor. The TG and XRD results prove that reaction temperature is decreased and crystal purity is improved by shintering the core-shell precursor, pure monoclinic phase of SrAl_O_4 has fomed when the sintering temperature reach to 1000℃, which is lower 300℃than solid state method. The SEM results indicate that the phosphors prepared by sol-gel nano-coating method have the average grain of 3μm. Compared with solid state method, sol-gel nano-coating method can improve the luminescence intensity and long afterglow time of SrAl_2O_4:Eu~(2+), Dy~(3+) phosphors, which expand the application.
     The research results for the roles of crystal defects in SrAl_2O_4:Eu~(2+), Dy~(3+) phosphors showed that Eu_(Sr)~x is not only luminescent center, but also afterglow center, Dy_(Sr)~·can be aselectron trap because of its positive charge which can capture electron, and V_(Sr)~" can be ashole trap because of its negative charge which can capture hole.
     3. The luminescence effect on SrAl_2O_4: Eu~(2+), Dy~(3+) phosphors arising from iron impurity was systemically studied in this paper. The results revealed that iron impurity cause quenching for persistent luminescence of SrAl_2O_4:Eu~(2+), Dy~(3+) phosphors, the higher the concentration of the iron is, the lower the persistent luminescence performance is. This can be explained that iron restricts the function of Eu~(2+) luminescent center and decreases the recombination probability between electrons and holes. The explaination was approved by further exploration, and it was observed that Fe~(3+) ions is the central factor which cause quenching for persistent luminescence. Aim at above result, it can be put forword that doping Pr~(3+) or Bi~(3+) ioins at the preparation of precursor can restrain the quchening effect of Fe~(3+) ions.
     4. Eu(OH)_3 and Eu_2O_3 nanorods were synthesized by a facile hydrothermal procedure without template, Eu_2O_3 nanorods was successfully applied for the preparation of SrAl_2O_4:Eu~(2+), Dy~(3+) phosphors. The results revealed that the obtained Eu(OH)_3 nanorods show hexagonal phase and Eu_2O_3 nanorods show cubic phase. The average size of Eu_2O_3 nanorods can be calculated of 90nm using Scherrer equation, which agrees with TEM results. Further exploration proved that Eu~(2+) ions can enter into SrAl_2O_4 host crystal lattice more easy when use Eu_2O_3 nanorods as the starting materials, which increase the concentrations of Eu~(2+) luminescent centre and improve the persistent luminescence of the SrAl_2O_4:Eu~(2+), Dy~(3+) phosphor.
     5. A novel Eu~(3+)-dopedγ-LiAlO_2 phosphor was successfully prepared by sol-gel nano-coating process. The structure, morphology and luminescence properties of the phosphor were detailed investigated. The results indicate that the obtained products show pure tetragonal phase and narrow size-distribution of about 1.5μm for the particles with sphere-like shape. Luminescence test indicated that theγ-LiAlO_2:Eu~(3+) phosphor emits an intense characteristic luminescence of Eu~(3+) ions with main peak 612nm, which show red colour. Further experiments proved that feasible concentration of Eu~(3+), sintering temperature and amount of H_3BO_3 can useful to improved the luminescence of the phosphor.
引文
[1]徐叙珞,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    
    [2] Donald S. McClure, Luminescence and spectroscopy. Journal of luminescence, 2002, 100(2):47-55.
    
    [3] Wu X, Hommerich U, MacKenzie J D. Photoluminescence study of Er-doped AlN. Journal of luminescence, 1977, 72-74:284-286.
    
    [4]潘科夫著,李维楠译.电致发光.北京:科学出版社,1987.
    
    [5] Xing R L, Xiao J W, Zhong K W. Selectively excited emission and Tb~(3+)→Ce~(3+) energy transfer in yttrium aluminum garnet. Physical Review B, 1989(39):10633-10639.
    
    [6] Ohzu A. Enhancement of soft X-ray plasma for pre-ionization. Optics emission from pinch plasma using ratating and Laser Technology, 2000, 32(5):379-383.
    
    [7] Ashokkumar M, Hall R, Mulvaney P at el. Sonoluminescence from aqueous alcohol and surfactant solution. Journal of physical chemistry B, 1997, 246(3):189-196
    
    [8]孙家跃,杜海燕,胡文祥.固体发光材料.北京:化学工业出版社,2003.
    
    [9]余宪恩.实用发光材料与光致发光机理.北京:中国轻工业出版社,1997
    
    [10]吴郑,石春山.稀土元素价态及变价稀土元素.稀土,1994,15(5):37-41.
    
    [11]肖纪美,霍明远.中国稀土理论与应用研究.北京:高等教育出版社,1992.
    
    [12]肖志国,蓄光型发光材料及其制备.北京:化学工业出版社,2002.
    
    [13] Blasse G. Chemistry and physics of R-activated phosphors. Handbook on the Physics and Chemistry of Rare Earths, 1979, 4: 237-245.
    
    [14]王慧琴。复旦学报(自然科学版),1997,36(1)65-71
    
    [15] Nichols E L, Wilber D T. Flame Excitation of Luminescence. Physical Review, 1920, 17:453-459.
    
    [16] Jia D D, Zhu J, Wu B Q. Correction of excitation spectra of long persistent phosphors.Journal of Luminescence, 2000, 90(1-2):33-37.
    
    [17] Kynev K, Schanda J D. Afterglow of manganese centres in pulse-excited ZnS: Mn. Journalof Luminescence, 1982, 27(2):199-205.
    
    [18] Lord M P, Rees A L G. Note on the behaviour of zinc sulphide phosphors under conditionsof periodic excitation, Proc. Phys. Soc. 1946, 58: 280-289.
    
    [19] Froelich Y. US Patent 2392814, 1946.
    
    [20] Blasse G. Crystal chemistry and some magnetic properties of mixed metal oxides withspinel structure. Philips Research Report Supplement, 1964, 3:1-139.
    
    [21] Palilla F C, Luvine A K, Tomkus M R. Fluorescent properties of alkaline earth aluminatesof the type MAl_2O_4 activated by divalent europium. Journal of Electrochemistry Society,1968, 115(6):642-648.
    
    [22] Abbruscato V. Optical and electrical properties of SrAl_2O_4:Eu~(2+). Journal ofElectrochemistry Society, 1971, 118(4):930-933.
    
    [23] Smers B, Rutten J, Hoeks G et al. 2SrO · 3Al_2O_3:Eu~(2+) and 1. 29(Ba, Ca)O·3Al_2O_3:Eu~(2+) TwoNew Blue-Emitting Phosphors. Journal of Electrochemistry Society, 1989 ,136(7):2119-2123.
    
    [24] Poort S H M, Van J W H, Stomphorst R. Luminescence of Eu~(2+) in host lattices with three alkaline earth ions in a row. Journal of Solid State Chemistry, 1996, 122(2): 432-435.
    
    [25]耿杰,吴召平,陈玮等.SrAl_2O_4:Eu~(2+),Dy~(3+)发光粉体的长余辉特性研究.无机材料学报,2003, 18(2):480-484.
    
    [26]林元华,张中太,张枫等.掺杂稀土的xSrO.yAl_2O_3系长余辉发光材料的制备及其光学性能.功 能材料,2001,32(3):325-329.
    
    [27]姜伟棣.长余辉发光材料的研究进展.材料导报,2007,21(8):106-111.
    
    [28]宋庆梅,陈耀.掺镁的铝酸锶铕磷光体的发光特性.发光学报,1991,12(2):144-149.
    
    [29] Aitasalo T, Holsa J, Jungner H. Eu~(2+) doped calcium aluminate coatings by sol - gel methods.Optical Materials, 2005, 27(9):1537-1540.
    
    [30] Chang C K, Yuan Z X, Mao D L. Eu~(2+) activated long persistent strontium aluminate nanoscaledphosphor prepared by precipitation method. Journal of Alloys and Compounds, 2006415(1): 220-224.
    
    [31] Purificacio E, Monica M, Maria L S et al. Low-temperature synthesis of SrAl_2O_4 by amodified sol-gel route: XRD and Raman characterization. Journal of Solid StateChemistry, 2005, 178(6):1978-1987.
    
    [32] Fabienne P, Tuomas A, Mika L et al. Optically stimulated luminescence of persistentluminescence materials. Journal of Luminescence, 2006, 119:64-68.
    
    [33] Liu Z F, Li Y X, Xiong Y H et al. Electroluminescence of SrAl_2O_4: Eu~(2+) phosphor.Microelectronics Journal, 2004, 35(4): 375-377.
    
    [34] Zhang J Y, Zhang Z T, Wang T M et al. Preparation and characterization of a new longafterglow Ca_(12)Al_(14)O_(33): Nd, Eu. Materials Letters, 2003, 57(27): 4315-4318.
    
    [35] Katsumata T, Sakai R, Komuro S et al. Growth and characteristics of long durationphosphor crystals. Journal of Crystal Growth, 1999, 198-199:869-871.
    
    [36] Katsumata T, Nabae T, Sasajima K et al. Growth and characteristics of longpersistentSrAl_2O_4- and CaAl_2O_4- based phosphor crystals by a floating zone technique. Journal ofCrystal Growth, 1998, 183(3):361-365.
    
    [37]林元华,张中太,陈清明.长余辉光致发光玻璃的制备及其性能研究.材料科学与工程,2000,8: 1-5.
    
    [38] Qiu J R, Kawasaki M, Tanaka K et al. Phenomenon and mechanism of long-lasting phosphorescence in Eu~(2+)-doped aluminosilicate glasses. Journal Physics and Chemistry Solids, 1998, 59(9): 1521-1525.
    
    [39] Qiu J R, Hirao K. Long Lasting Phosphorescence in Eu~(2+) -Doped Calcium AluminoborateGlasses. Solid State Communications, 1998, 106(12): 795-798.
    
    [40] Kato K, Tsutai I, Kamimura T et al. Thermoluminescence properties of SrAl_2O_4: Eu sputteredfilms with long phosphorescence. Journal of Luminescence, 1999, 82:213-220.
    
    [41]任新光,孟继武.电弧法SrAl_2O_4:Eu~(2+)长余辉发光陶瓷的制备及其光谱分析.光谱学与光谱分 析,2000,20(3):268-269.
    
    [42]吕兴栋,盖国胜,余泉茂.蓄光型发光材料的应用改性研究进展.现代化 工,2007,27(10):16-19.
    
    [43] Haranath D, ShankerV, Chander H et al. Studies on the decaycharacteristics of strontiumaluminate phosphor on thermal treatment. Materials Chemistry and PHysics, 2002, 78:6-10.
    
    [44] Lin Y H, Zhang Z T, Tang Z L et al. The characterization and mechanism of long afterglowin alkaline earth aluminates phosphors co-doped by Eu_2O_3 and Dy_2O_3, Materials Chemistryand Physics, 2001, 70: 156-169.
    
    [45]黄汉生.新型蓄光性材料.化工新型材料,1999,27(7):28-31.
    
    [46] Matusuazawa T, Aoki Y, Takeuchi N et al. A new long phosphorescentphosphor with highbrightness SrAl_2O_4:Eu~(2+), Dy~(3+). Journal of Electrochemistry Society, 1996, 143(8):2670-2675.
    
    [47] Kamada M, Murakami J, Ohno N. Excitation Spectra of a Long-persistentPhosphor SrAl_2O_4:Eu, Dy in Vacuum Ultraviolet Region. Journal of Luminescence, 2000, 87-89:1042-1046.
    
    [48] Tang Z L, Zhang F, Zhang Z T et al. Luminescent properties of SrAl_2O_4: Eu, Dy materialprepared by the gel method. Journal of European Ceramic Society, 2000, 20: 2129-2132.
    
    [49] Aitasalo T, Holsa J, Hogne J et al. Sol-gel processed Eu~(2+) -doped alkaline earthaluminates. Journal of Alloys and Compounds, 2002, 341:76-78.
    
    [50] Lu Y Q, Li Y X, Xiong Y H et al. SrAl_2O_4: Eu~(2+), Dy~(3+) phosphors derived from a new sol - gelroute. Microelectronics Journal, 2004, 35: 379-382.
    
    [51] Peng T Y, Liu H J, Yang H P et al. Synthesis of SrAl_2O_4: Eu, Dy phosphor nanometer powdersby sol-gel processes and its optical properties. Materials Chemistry and Physics,2004, 85: 68-72.
    
    [52]袁曦明,许永胜,于江波等.溶胶一凝胶法制备长余辉发光材料SrAl_2O_4:Eu~(2+),Dy~(3+)的研究.稀土, 2002,23:33-38.
    
    [53] Fumo D A, Mrelli M R, Segadaes A M. Combustion Synthesis of Calcium Aluminates.Materials Research Bulletin, 1996, 31(10): 1243-1255.
    
    [54] Ekambaram S, Patil K C. Synthesis and properties of activated blue phosphors. Journalof Alloys and compounds, 1997, 248: 7-12.
    
    [55] Ramos F E, Garcia R, Hirata G A. A New Combustion Synthesis Technique for Rare EarthDoped Nitride Luminescenct Powders. Modern Physics Letters B, 2001, 15(17-19):655-658.
    
    [56] Peng T Y, Yang H P, Pu X L. Combustion synthesis and photoluminescence of SrAl_O_4:Eu, Dyphosphor nanoparticles, Materials Letters, 2004,58: 352-356.
    
    [57] Zhao C L, Chen D H, Yuan Y H et al. Synthesis of Sr_4Al_(14)O_(25):Eu~(2+), Dy~(3+) phosphor nanometerpowders by combustion processes and its optical properties, Materials Science andEngineering B, 2006, 133: 200-204.
    
    [58] Ravichandran D, Johnson S T, Erdei S et al. Crystal chemistry and luminescence of theEu~(2+) activated alkaline earth aluminate phosphors. Displays, 1999, 19: 197-203.
    
    [59] Strek W, Deren P, Bednarkiewicz A et al. Emission properties of nanostructured Eu~(3+)doped zinc aluminate spinets. Journal of Alloys and Compounds, 2000, 300-301: 456-458.
    
    [60] Kutty T R N, Jagannathan R, Rao R P. Luminescence of Eu~(2+) in strontium aluminates preparedby the hydrothermal method. Materials Research Bulletin, 1990, 25:1355-1362.
    
    [61] Ekambaram S, Patil K C. Synthesis and properties of Eu~(2+) activated blue phosphors.Journal of Alloys and Compounds, 1997, 248:7-12.
    
    [62] Lin Y H, Zhang Z T, Tang Z L et al. Preparation of the ultrafine SrAl_2O_4: Eu, Dyneedle-like phosphor and its optical properties. Materials Chemistry and PHysics, 2000,65: 103-106.
    
    [63]袁曦明,田熙科,于江波等.共沉淀法制备长余辉发光材料SrAl_2O_4:Eu~(2+),Dy~(3+)的研究.材料开发 与应用,2002,19(2):26-30.
    
    [64] Liu Y L, Feng DX, Yang P H. Preparation of Phosphors MAl_2O_4:Eu~(2+) (M=Ca, Sr, Ba) by Microwave Heating Technique and Their Phosphorescence. Rare Metals, 1999, 19: 297-301.
    
    [65] Manoharan S S, Goyal S, Manju L R et al. Microwavesynthesis and characterization of doped ZnS based phosphor materials. Materials Research Bulletin, 2001, 36:1039-1047.
    
    [66]李君君,张迈生,严纯华.微波合成的纳米球形Cas:Ag~+荧光体的荧光光谱.光学学报,2003 23: 604-608.
    
    [67]任新光,孟继武.电弧法SrAl_2O_4:Eu~(2+)长余辉发光陶瓷的制备及其光谱分析.光谱学与光谱分 析,2000,20(3):268-269.
    
    [68] Abbruscato V J, Banks E, McGarvey B R. Interpretation of the Optical Spectrum of Yb~(3+)in CdF_2 with the Aid of ESR Spectroscopy. The Journal of Chemical Physics, 1968,49(2): 903-911.
    
    [69] Yamatoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl_2O_4: Eu~(2+), Dy~(3+) andCaAl_2O_4: Eu~(2+), Nd~(3+). Journal of Luminescence, 1997, 72-74: 287-289.
    
    [70] Jia W Y, Yuan H B, Lu L Z et al. Phosphorescent dynamics in SrAl_2O_4:Eu~(2+), Dy~(3+) singlecrystal fibers. Journal of Luminescence, 1998, 76-77: 424-428.
    
    [71] Jia W Y, Yuan H B, Holmstrom S et al. Photo-stimulated luminescence in SrAl_2O_4:Eu~(2+),Dy~(3+)single crystal fibers. Journal of Luminescence, 1999, 83-84:469-465.
    
    [72] Qiu J R, Miuro K,Inouye K et al. Blue emission induced in Eu~(2+)-doped glasses by aninfraredfemtosecond laser. Journal of non-crystalline solids, 1999, 244(2-3) : 185-188.
    
    [73]张天之,苏锵,王淑彬.M Al_2O_4:Eu~(2+),Re~(3+)长余辉发光性质的研究.发光学报,1999,20:170-174.
    
    [74] Aitasalo T, Holsa J, Jungner H et al. Mechanisms of persistent luminescence in Eu~(2+), RE~(3+) doped alkaline earth aluminates. Journal of Luminescence, 2001, 94-95: 59-63.
    
    [75] Aitasalo T, Deren P, Holsa J et al. Persistent luminescence phenomena inmaterials doped with rare earth ions. Journal of Solid State Chemistry, 2003, 171: 114-122.
    
    [76]张玉军,刘援朝,朱仲力等.发光搪瓷釉料研究.发光学报,1999,20(4):376-379.
    
    [77]肖志国,罗昔贤,夏威等.长余辉发光材料在陶瓷行业中的应用研究.2001,19(6):561-565.
    
    [78]王文锋.荧光陶瓷彩釉砖的研究.辽宁建材,1987,3:4-7.
    
    [79]陈清明,林元华,张中太等.长余辉蓄光玻璃的制备及其性能研究.功能材料,2001,32(2): 208-209.
    
    [80]武卫莉.荧光橡胶的制备及其性能,合成橡胶工业,2005,28(6):432-434.
    
    [81]南静生,赵小刚。丝网印刷夜光型荧光油墨在单透视广告上的应用。网印工业,2006,9:7-8.
    
    [82]张晓伟,张定军,顾玉芬等.水性内墙发光涂料的制备与研究.现代涂料与涂装,2008,11(2): 15-23.
    
    [83]喻胜飞,皮丕辉,文秀芳.稀土铝酸盐长余辉蓄能发光涂料的研究进展.涂料工 业,2007,37(3):47-50.
    
    [84]王少艳.长余辉发光材料在陶瓷工艺中的应用.河北理工大学学报(自然科学版),2008, 30(2):49-51.
    
    [85]吕兴栋,舒万艮.SrAl_2O_4:Eu,Dy发光粉的机械发光与机械碎灭研究.第十届全国发光学术会议 论文集,2004,43-44.
    
    [86]徐如人,庞文琴.分子筛与多孔材料化学.第一版.北京:科学出版社,2004.
    
    [87] Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of Mesoporous Molecular Sieves byNonionic Polyethylene Oxide Surfactants. Science, 1995, 269: 1242-1245.
    
    [88] Chang C K, Xu J, Jiang L et al. Luminescence of long-lasting CaAl_2O_4:Eu~(2+), Nd~(3+) phosphorby co-precipitation method. Materials Chemistry and Physics, 2006 98 : 509-513.
    
    [89] Chen C Y, Li H Y, Burkett S L et al. Studies on mesoporous materials II. SynthesisMechanism of MCM-41. Microporous Materials, 1993, 2: 27-32.
    
    [90] Dong W G, Yin Q G, Li Y X et al. Concentration quenching of Eu~(2+) in SrO. Al_2O_3:Eu~(2+) phosphor.Journal of Luminescence, 2002, 97(1):1-6.
    
    [91] Kee S S, Yoon Y C, Kyoung H K et al. Effect of inter-ionic interaction onphotoluminescence property of yttrium aluminate garnet phosphors, Journal ofMaterials Science, 2001, 12(3):179-186.
    
    [92] Matasuzawa T, Nabae T, Katsumata T. Effects of composition on the long phosphorescentSrAl_2O_4: Eu~(2+), Dy3+ phosphor crystals. Journal of Electrochemistry Society, 1997, 144:L243-245.
    
    [93] Niittykoski J, Aitasalo T, Holsa J. Effect of boron substitution on the preparationand luminescenceof Eu~(2+) doped strontium aluminates. Journal of Alloys and Compounds,??2004,374:108-111.
    
    [94]宋华杰,尹盛玉,赵长亮等.长余辉发光材料性能的影响.中南民族大学学报(自然科学版), 2006,25(3):16-19.
    
    [95]郝庆隆,滕晓明,崔文秀等.碱土硼铝酸盐长余辉发光粉晶体结构研究及发光机理讨论.中国照 明电器,2007,10:5-10.
    
    [96]宁桂玲.Al_2O_3纳米粉的制备过程及不同形状颗粒形成机理的研究:(博士学位论文).大连:大连 理工大学,1995.
    
    [97] Jorma H, Jungner H, Mika L et al. Persistent luminescence of Eu doped alkaline earth aluminates Mal_2O_4:Eu~(2+), Journal of Alloys and Compounds, 2001, 323-324: 326-330.
    
    [98]崔国文.缺陷、扩散与烧结.北京:清华大学出版社,1990.
    
    [99] Chang C K, Mao D L. Long lasting phosphorescence of Sr_4Al_(14)O_(25):Eu~(2+), Dy~(3+) thin films bymagnetron sputtering. Thin Solid Films, 2004, 460(1-2):48-52
    
    [100] Haranath, Shanker V, Chander H et al. Studies on the decay characteristics of strontiumaluminate phosphor on thermal treatment. Materials Chemistry and Physics, 2003,78(1) :6-10.
    
    [101]刘祖武.现代无机合成.北京:化学工业出版社,2001.
    
    [102]黄志陨.用1,10-二氮菲法测量高铝锌合金中铁的含量.铸造技术,1997,4:27-29.
    
    [103]邹宗祥.EDTA-H2O2分光光度法测定铝及铝合金中的铁.四川有色金属,2001,3:59-62.
    
    [104]张现华,朱海燕.化学品中铁杂质含量的几种测定方法与比较.河北化工,1996,1:55-57.
    
    [105]刘杰,宁桂玲,李淑珍等.螯合-蒸馏法脱除异丙醇铝中痕量铁的研究.大连理工大学学报, 2005,45(5):649-652.
    
    [106] Akiyama M, Xu C N, Liu Y et al. Influence of Eu, Dy co-doped strontium aluminatecomposition on mechanoluminescence intensity. Journal of Luminescence, 2002, 97:13-17.
    
    [107] Nakazawa E, Mochida T. Traps in SrAl_2O_4:Eu~(2+) phosphor with rare-earth ion doping.Journal of Luminescence, 1997, 72-74: 236-241.
    
    [108] Katsumata T, Toyomane S, Tonegawa A. Characterization of trap levels in long-durationphosphor crystals. Journal of Crystal Growth, 2002,237-239: 361-366.
    
    [109]张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出社,2000.
    
    [110] Fu L, Liu Z M, Liu Y Q et al. Ga_2O_3 Nanoribbons-Eu_2O_3 Multisheaths Heterostructure and Energy Transfer. Journal of Physics and Chemistry B, 2004, 108(35):13074-13078.
    
    [111] Xu A W, Fang Y P, You L P . et al A Simple Method to Synthesize Dy(OH)_3 and Dy_2O_3 Nanotubes. Journal of American Chemistry Socity, 2003, 125(6):1494-1495.
    
    [112] Wang X, Sun X M, Yu D P et al. Rare Earth Compound Nanotubes. Advanced Materials, 2003, 15(17):1442-1445.
    
    [113] Wu G S, Zhang L D, Cheng B C et al. Synthesis of Eu_2O_3 Nanotube Arrays through a FacileSol-Gel Template Approach. Journal of American Chemistry Socity, 2004,126(19):5976-5977.
    
    [114] Patra A, Sominska E, Ramesh S et al. Sonochemical Preparation and Characterizationof Eu_2O_3 and Tb_2O_3 Doped in and Coated on Silica and Alumina Nanoparticles, Journalof Physics and Chemistry B, 1999, 103(17):3361-3365.
    
    [115] Becerril J, Bosch P, Bulbulian S. Synthesis and Characterization of γ-LiAlO_2. Journalof Nuclear Materials, 1991, 185(3):304-307.
    
    [116] Kopasz J P, Seils C A, Johnson C E. Spatial Tritium Transport in Single Crystal LithiumAluminate. Journal of Nuclear Materials, 1994, 212(1):912-916.
    
    [117]李飞,胡克鳌,张栋.燃烧合成制备γ-偏铝酸锂粉体.材料科学与工程,2002,20(3): 313-316.
    
    [118] Tian L H, Yu B Y, Pyun C H et al. New Red Phosphors BaZr(BO_3)_2 and SrAl_2B_2O_7 Doped withEu~(3+) for PDP Applications. Solid State Communication, 2004, 129(1):43 - 46.
    
    [119] Moine B, Bizarri G. Rare-earth Doped Phosphors: Oldies or Goldies. Materials Scienceand Engineering B, 2003, 105(1-3):2 - 7.
    
    [120] Kim C H, Kwon E, Park C H et al. Phosphors for Plasma Display Panels. Journal of Alloysand Compounds, 2000, 311(1)33-39.
    
    [121] Sun Y, Qi L, Lee M et al. Photoluminescent Properties of Y_2O_3:Eu~(3+) Phosphors Preparedvia Urea Precipitation in Non-aqueous Solution. Journal of Luminescence, 2004, 109(2):85-91.
    
    [122]郭常新,潘俊.Na_5Eu(WO_4)_4单晶的光学性质研究.发光学报,1993,14(1):32-37.
    
    [123]袁秋华,李友芬,杨儒等.稀土激活剂在发光材料中作用机理的研究.稀土,2005,26(3): 73-75.
    
    [124] Judd B R. Optical Absorption Intensities of Rare-earth Ions. Phys. Rev. 1962, 127:750-761.
    
    [125] Ofelt G S. Intensities of Crystal Spectra and Cooperative Optical Transitions inRare-earth Doped Inorganic Materials. J. Chem. Phys, 1962, 37:511-520.
    
    [126] Lu Z, Wei J, Tang Y et al. Synthesis and photoluminescence of Eu~(3+)-doped Y_2Sn_2O_7nanocrystals. J. Solid State Chem. 2004, 177:3075-3080.
    
    [127]王喜贵,吴红英,谢大驶等。掺硅基材料的发光性质。光谱学与光谱分析,2002,22(2): 270-271.
    
    [128] Li F, Hu K, Li J L et al. Combustion synthesis of γ -lithium aluminate by using various fuels. Journal of Nuclear Materials, 2002, 300: 82-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700