若干新型高灵敏度荧光检测系统的构建与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分离度与高检测灵敏度是液相色谱追求的永恒目标。得益于各种先进分离和检测手段的发展,多数样品已经能够得到良好的分离分析,但是对于超低含量物质的分析,检测灵敏度的提高仍具有极大的挑战性。荧光检测法具有高选择性和高灵敏度的特征,与高效液相色谱(HPLC)和毛细管电泳(CE)方法联用可充分结合两者的优势,是复杂样品分析的有利工具。
     采用473nm固体激光器和365nm、335nm发光二极管(LED)为光源,构建了多种HPLC用荧光检测器。将激光诱导检测器(LIFD)与HPLC结合构建成新型HPLC-LIFD系统。基于精密三维调节架的使用及光路优化设计,LIFD对FITC的最低检测浓度达到10-12mol/L。使用该系统分析水中微量生物胺,亚精胺、腐胺和组胺的检测限分别为0.13、0.22和0.23(?)nmol/L,回收率:95%-105%。进一步将该系统用于不同类型茶叶茶水中荧光物质及胺类物质的分析,共检测到15-35荧光物质和48种以上胺类物质,也揭示了不同茶叶茶水中荧光物质和胺类物质种类和含量上的差异。
     基于铕离子(Eu)荧光探针的窄范围发射光谱和大斯托克斯位移优势,设计通用的模块化共聚焦光路系统,构建了铕离子荧光探针专用HPLC-LED-IFD分析系统。对Eu荧光探针BHHCT-Eu衍生的BSA进行分析,检测限达到10-8mol/L。考察了Eu荧光探针衍生化物质在不同模式HPLC中的分离特征,证实BHHCT-Eu衍生化蛋白质可在反相色谱模式下操作。通过置换LED光源和滤光片,也搭建了适用于苯并检测的365nm LED-IFD。
     充分考虑中空纤维透析膜的截留大分子及小分子置换的特征,设计了一种新型高效毛细管电泳蛋白质柱后衍生膜反应器,并将之与CE系统和LIFD结合,构建了基于蛋白质柱后衍生膜反应器的CE-LIFD检测系统。在优化的反应器膜长、毛细管内径及分离缓冲液和衍生溶液等条件下,对BSA的最低检测浓度可达到3.3nmol/L,并成功应用于实际蛋白样品的分析。
     构建的LIFD具有调节简单,灵敏度高等特点,而LED-IFD具有结构通用性,可便捷地置换光源等组件,以完成不同的分析目的,为LIFD和LED-IFD的规模化生产和应用范围的拓宽奠定了基础。蛋白质柱后衍生膜反应器中的化学环境可以通过在衍生溶液中添加对应物质进行调节,同时可避免了样品的损失。通过选择不同种类的膜,可构建能够满足不同分析目的需要的膜反应器,并与HPLC\μHPLC以及CE系统联用,用于蛋白质、DNA等大分子的分离分析。
High separation efficiency and high detection sensitivity are the eternal goals of liquid chromatography. Benefit by the development of various kinds of advanced separation and detection methods, most samples can be well analyzed. But the analysis of ultra-low concentration materials needs further improvement of detection methods sensitivity. Fluorescence detection is sensitive and selective. Novel analysis systems with high separation efficiency and sensitivity can be built by coupling fluorescence detection with high performance liquid chromatography (HPLC) or capillary electrophoresis (CE), and the systems shall be effective tools for complex samples analysis.
     Multiple fluorescence detectors were built using473nm laser,365nm and335nm light emitting diode (LED) as light source in this paper. Then a novel HPLC-LIFD system was constructed by coupling laser induced fluorescence detector (LIFD) with HPLC. Since a three-dimensional adjustable supportor of reflector and optimized structure were used in the LIFD, a10"12mol/L LOD of FITC was achieved when using the novel LIFD as detector. The trace bioamines in water were analyzed by the HPLC-LIFD system, and LODs of spermidine, putrescine and histamine were0.13、0.22and0.23nmol/L respectively, the recoveries were in the range of95%-105%. The HPLC-LIFD system was also used to analy fluorescent materials and amines in tea, about15~35fluorescent materials and more than48amines were detected in7teas, the type and content differences of the fluorescent materials and amines among the7teas were discovered.
     Base on the advantage of shape emission profile and large stokes shift of Eu fluorescence probes, a HPLC-LED-IFD system special for Eu fluorescence probes was built, using a universal and modularized confocal optical system. The BSA, which was derivatized by BHHCT-Eu, was analyzed by the HPLC-LED-IFD system, and a10-8mol/L LOD was achieved. Then several materials derivatized by BHHCT-Eu were analyzed by the HPLC-LED-IFD system with different HPLC modes. It was confirmed that the BHHCT-Eu derivatized proteins might be analyzed by the reversed phase HPLC-LED-IFD system. Furthermore, base on the Eu fluorescence probes specialized LED-IFD, a365nm LED-IFD was built by changing the LED and optical filters, and the365nm LED-IFD might be used to detect benzopyrene.
     Base on the macromolecules holding and small molecules exchange characteristic of the hollow fiber dialysis membrane, a novel post-column derivatization membrane reactor for protein analysis in CE has been designed. And a protein post-column derivatization membrane reactor based CE-LIFD system was constructed by combining the reactor, CE and LIFD. The membrane length, capillary inner diameter, separation buffer and derivatization solution were optimized. Under the optimized conditions, BSA was detected and a3.3nmol/L LOD was achieved. The system was furtherly successfully applied in the real protein samples analysis.
     The LIFD built in this paper was sample and sensitive. The structure of the LED-IFD was universal, and other LED-IFD can be built for other samples analysis by changing the LED and filters. The foundation of the large scale production and broaden application range of LIFD and LED-IFD was strengthened by this paper. The chemical conditions in the post-column derivatization membrane reactor could be adjusted by the derivatization solution without sample loss, and other membrane reactors can be built using different membranes to satisfy the requirements of different samples analysis. The membrane reactor can be used in the HPLC, μHPLC or CE system for analysis of macromolecules, such as proteins and DNA.
引文
[1]. Garcia-Valls, R., A. Hrdlicka, J. Perutka, J. Havel, N.V. Deorkar, L.L. Tavlarides, M. Munoz, M. Valiente. Separation of rare earth elements by high performance liquid chromatography using a covalent modified silica gel column. Analytica Chimica Acta.2001, 439(2):247-253.
    [2]. Schwantes, J.M., R.S. Rundberg, W.A. Taylor, D.J. Vieira. Rapid, high-purity, lanthanide separations using HPLC. J. Alloys Compd.2006,418(1-2):189-194.
    [3]. Song, Y., M. Noguchi, K. Takatsuki, T. Sekiguchi, J. Mizuno, T. Funatsu, S. Shoji, M. Tsunoda. Integration of Pillar Array Columns into a Gradient Elution System for Pressure-Driven Liquid Chromatography. Analytical Chemistry.2012,84(11):4739-4745.
    [4]. Sanchez-Machado, D.I., B. Chavira-Willys, J. Lopez-Cervantes. High-performance liquid chromatography with fluorescence detection for quantitation of tryptophan and tyrosine in a shrimp waste protein concentrate. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences.2008,863(1):88-93.
    [5]. Biggs, W.R., J.C. Fetzer. Electronic spectral detection in liquid chromatography. Anal Bioanal Chem.2002,373(6):368-77.
    [6]. Roth, M, D. Uebelhart. Liquid chromatography with fluorescence detection in the analysis of biological fluids. Anal. Lett.2000,33(12):2353-2372.
    [7]. Nouadje, G., J. Amsellem, B. Couderc, P. Verdeguer, F. Couderc. Capillary electrophoresis with laser-induced fluorescence detection:optical designs and applications. Prog. HPLC-HPCE.1997,5(Capillary Electrophoresis in Biotechnology and Environmental Analysis):49-72.
    [8]. Haselberg, R., G.J. de Jong, G.W. Somsen. Capillary electrophoresis-mass spectrometry for the analysis of intact proteins 2007-2010. Electrophoresis.2011,32(1):66-82.
    [9]. Dolnik, V. Capillary electrophoresis of proteins 2005-2007. Electrophoresis.2008,29(1): 143-156.
    [10]. Huang, Y.F., C.C. Huang, C.C. Hu, H.T. Chang. Capillary electrophoresis-based separation techniques for the analysis of proteins. Electrophoresis.2006,27(18):3503-3522.
    [11]. Hutterer, K., V. Dolnik. Capillary electrophoresis of proteins 2001-2003. Electrophoresis. 2003,24(22-23):3998-4012.
    [12]. Righetti, P.G., C. Gelfi, A. Bossi, E. Olivieri, L. Castelletti, B. Verzola, A.V. Stoyanov. Capillary electrophoresis of peptides and proteins in isoelectric buffers:An update. Electrophoresis.2000,21(18):4046-4053.
    [13]. Li, D., L. Zhang, Z. Wang, A. Intisar, W. Zhang. Development of a Parallel-Tandem Column Interface in a Two-Dimensional Liquid Chromatography System. Chromatographia. 2011,73(9-10):871-877.
    [14]. Gascooke, J.R., U.N. Alexander, W.D. Lawrance. Two dimensional laser induced fluorescence spectroscopy:A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules. Journal of Chemical Physics.2011,134(18).
    [15].张维冰,李笃信,刘翻,宋伦,李彤,杜一平.HILIC-RP连续二维系统的构建.第十七届全国色谱学术报告会论文集2009.
    [16]. Zare, R.N. My life with LIF:a personal account of developing laser-induced fluorescence. Annu. Rev. Anal. Chem.2012,5:1-14.
    [17]. Szoeko, E., T. Tabi. Analysis of biological samples by capillary electrophoresis with laser induced fluorescence detection. J. Pharm. Biomed. Anal.2010,53(5):1180-1192.
    [18]. Riddick, L., W.C. Brumley. Capillary electrophoresis with laser-induced fluorescence: environmental applications. Methods Mol. Biol. (Totowa, NJ, U. S.).2008,384(Capillary Electrophoresis):119-134.
    [19]. Lacroix, M., V. Poinsot, C. Fournier, F. Couderc. Laser-induced fluorescence detection schemes for the analysis of proteins and peptides using capillary electrophoresis. Electrophoresis.2005,26(13):2608-2621.
    [20]. He, J., B.D. Yang, T.C. Zhang, J.M. Wang. Improvement of the signal-to-noise ratio of laser-induced-fluorescence photon-counting signals of single-atoms magneto-optical trap. Journal of Physics D-Applied Physics.2011,44(13).
    [21]. Katzenmeyer, J.B., C.V. Eddy, E.A. Arriaga. Tandem Laser-Induced Fluorescence and Mass Spectrometry Detection for High-Performance Liquid Chromatography Analysis of the in Vitro Metabolism of Doxorubicin. Analytical Chemistry.2010,82(19):8113-8120.
    [22]. Zhou, F., Y. Lu, S.B. Ficarro, J.T. Webber, J.A. Marto. Nanoflow Low Pressure High Peak Capacity Single Dimension LC-MS/MS Platform for High-Throughput, In-Depth Analysis of Mammalian Proteomes. Analytical Chemistry.2012,84(11):5133-5139.
    [23]. Huhn, C., C. Neususs, M. Pelzing, U. Pyell, J. Mannhardt, M. Putz. Capillary electrophoresis-laser induced fluorescence-electrospray ionization-mass spectrometry:a case study. Electrophoresis.2005,26(7-8):1389-97.
    [24]. West, G.M., J.W. Thompson, E.J. Soderblom, L.G. Dubois, P.D. DeArmond, M.A. Moseley, M.C. Fitzgerald. Mass Spectrometry-Based Thermal Shift Assay for Protein-Ligand Binding Analysis. Analytical Chemistry.2010,82(13):5573-5581.
    [25]. Yang, J., R.M. Caprioli. Matrix Sublimation/Recrystallization for Imaging Proteins by Mass Spectrometry at High Spatial Resolution. Analytical Chemistry.2011:null-null.
    [26]. Kinsey, J.L. Laser-Induced Fluorescence. Annual Review of Physical Chemistry.1977, 28(1):349-372.
    [27]. Lingeman, H., d.N.R.J. Van, U.A.T. Brinkman, C. Gooijer, N.H. Velthorst. Laser-induced fluorescence as a detection mode in column liquid chromatography. Methodol. Surv. Biochem. Anal.1990,20(Anal. Drugs Metab., Incl. Anti-Infect. Agents):355-63.
    [28]. Mank, A.J.G., H. Lingeman, C. Gooijer. Diode laser-induced fluorescence detection in chromatography. Trends Anal. Chem.1992,11(6):210-17.
    [29]. Li, T., R.T. Kennedy. Laser-induced fluorescence detection in microcolumn separations. TrAC, Trends Anal. Chem.1998,17(8+9):484-491.
    [30]. Coates, J. Considerations in the fluorescence detection of low levels of dissolved species in HPLC and other related in liquid flow techniques. Appl. Spectrosc. Rev.2001,36(4): 299-314.
    [31]. Garcia-Campana, A.M., M. Taverna, H. Fabre. LIF detection of peptides and proteins in CE. Electrophoresis.2007,28(1-2):208-232.
    [32]. Xiao, D., L. Yan, H.Y. Yuan, S.L. Zhao, X.P. Yang, M.M.F. Choi. CE with LED-based detection:An update. Electrophoresis.2009,30(1):189-202.
    [33]. Dasgupta, P.K., I.-Y. Eom, K.J. Morris, J. Li. Light emitting diode-based detectors: Absorbance, fluorescence and spectroelectrochemical measurements in a planar flow-through cell. Analytica Chimica Acta.2003,500(1-2):337-364.
    [34]. Lin, S.-W., C.-H. Chang, C.-H. Lin. High-throughput Fluorescence Detections in Microfluidic Systems. Genomic Medicine, Biomarkers, and Health Sciences.2011,3(1): 27-38.
    [35]. de Kort, B.J., G.J. de Jong, G.W. Somsen. Native fluorescence detection of biomolecular and pharmaceutical compounds in capillary electrophoresis:detector designs, performance and applications:a review. Anal Chim Acta.2013,766:13-33.
    [36]. Aman., L毛细管电泳用荧光检测器.国外分析仪器技术与应用.1993(1).
    [37]. Waters. ACQUITY UPLC FLR Detector. http://www.waters.com/waters/zh_CN/ACQUITY-UPLC-FLR-Detector/nav.htm?locale=zh_C N&cid=514222.2007.
    [38]. Agilent.1260 Infinity Fluorescence Detector User Manual. http://www.chem.agilent.com/en-US/Technical-Support/Instruments-Systems/Liquid-Chromat ography/1260-Infinity-Binary-LC/Pages/default.aspx.2012.
    [39].梁锡辉,区伟能,任豪,付治新.激光诱导荧光检测技术.激光与光电子学进展.2008,45(1):8.
    [40]. Gonzalez, E., J.J. Laserna. Laser induced fluorescence detection in capillary electrophoresis. A review of instrumental advances and analytical applications. Quim. Anal. (Barcelona).1997,16(1):3-15.
    [41]. Schulze, P., M. Ludwig, D. Belder. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis. Electrophoresis.2008,29(24): 4894-4899.
    [42]. Beyreiss, R., S. Ohla, S. Nagl, D. Belder. Label-free analysis in chip electrophoresis applying deep UV fluorescence lifetime detection. Electrophoresis.2011,32(22):3108-3114.
    [43].刘翻.新型激光诱导荧光检测器的研制及评价.现代仪器.2008,14(6).
    [44]. Cataldi, T.R.I., D. Nardiello, L. Scrano, A. Scopa. Assay of Riboflavin in Sample Wines by Capillary Zone Electrophoresis and Laser-Induced Fluorescence Detection. J. Agric. Food Chem.2002,50(23):6643-6647.
    [45]. Bayle, C., N. Siri, V. Poinsot, M. Treilhou, E. Causse, F. Couderc. Analysis of tryptophan and tyrosine in cerebrospinal fluid by capillary electrophoresis and "ball lens" UV-pulsed laser-induced fluorescence detection. J. Chromatogr., A.2003,1013(1-2): 123-130.
    [46]. Tseng, H.-M., D.A. Barrett. Micellar electrokinetic biofluid analysis of biogenic amines using on-line sample concentration and UV laser-induced native fluorescence detection. J. Chromatogr., A.2009,1216(15):3387-3391.
    [47]. Huang, T., X.-Z. Wu, J. Pawliszyn. Capillary Isoelectric Focusing without Carrier Ampholytes. Anal. Chem.2000,72(19):4758-4761.
    [48]. Liu, Z., J. Pawliszyn. Applications of capillary isoelectric focusing with liquid-core waveguide laser-induced fluorescence whole-column imaging detection. Anal. Biochem.2005, 336(1):94-101.
    [49]. Bayle, C., F. Couderc, P. Froehlich. Enhanced sensitivity using laser-induced fluorescence detection with HPLC and capillary electrophoresis. Am. Biotechnol. Lab.2003, 21(5):30,32,34.
    [50]. Xiao, D., S. Zhao, H. Yuan, X. Yang. CE detector based on light-emitting diodes. Electrophoresis.2007,28(1-2):233-242.
    [51]. Bruno, A.E., F. Maystre, B. Krattiger, P. Nussbaum, E. Gassmann. The pigtailing approach to optical detection in capillary electrophoresis. Trends Anal. Chem.1994,13(5): 190-8.
    [52]. Hillebrand, S., J.R. Schoffen, M. Mandaji, C. Termignoni, H.P.H. Grieneisen, T.B.L. Kist. Performance of an ultraviolet light-emitting diode-induced fluorescence detector in capillary electrophoresis. Electrophoresis.2002,23(15):2445-2448.
    [53]. Uchiyama, K., W. Xu, J. Qiu, T. Hobo. Polyester microchannel chip for electrophoresis-incorporation of a blue LED as light source. Fresenius'J. Anal. Chem.2001,371(2):209-211.
    [54]. Su, A.-K., C.-H. Lin. Determination of riboflavin in urine by capillary electrophoresis-blue light emitting diode-induced fluorescence detection combined with a stacking technique. J. Chromatogr., B:Anal. Technol. Biomed. Life Sci.2003,785(1):39-46.
    [55]. Yang, B., Y. Guan. Light-emitting-diode-induced fluorescence detector for capillary electrophoresis using optical fiber with spherical end. Talanta.2003,59(3):509-514.
    [56]. Sluszny, C., Y. He, E.S. Yeung. Light-emitting diode-induced fluorescence detection of native proteins in capillary electrophoresis. Electrophoresis.2005,26(21):4197-4203.
    [57]. Chen, S.-J., M.-J. Chen, H.-T. Chang. Light-emitting diode-based indirect fluorescence detection for simultaneous determination of anions and cations in capillary electrophoresis. J. Chromatogr., A.2003,1017(1-2):215-224.
    [58]. Zhang, T., Q. Fang, S.-L. Wang, L.-F. Qin, P. Wang, Z.-Y. Wu, Z.-L. Fang. Enhancement of signal-to-noise level by synchronized dual wavelength modulation for light emitting diode fluorimetry in a liquid-core-waveguide microfluidic capillary electrophoresis system. Talanta. 2005,68(1):19-24.
    [59]. Wang, S.-L., X.-F. Fan, Z.-R. Xu, Z.-L. Fang. A simple microfluidic system for efficient capillary electrophoretic separation and sensitive fluorimetric detection of DNA fragments using light-emitting diode and liquid-core waveguide techniques. Electrophoresis.2005, 26(19):3602-3608.
    [60]. Wang, S.-L., X.-J. Huang, Z.-L. Fang, P.K. Dasgupta. A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. Anal. Chem.2001,73(18):4545-4549.
    [61]. Yang, B., F. Tan, Y. Guan. A collinear light-emitting diode-induced fluorescence detector for capillary electrophoresis. Talanta.2005,65(5):1303-1306.
    [62]. Yang, B.C., H.Z. Tian, J. Xu, Y.F. Guan. An integrated light emitting diode-induced fluorescence detector for capillary electrophoresis. Talanta.2006,69(4):996-1000.
    [63]. Yang, B.C., F. Tan, Y.F. Guan. A collinear light-emitting diode-induced fluorescence detector for capillary electrophoresis. Talanta.2005,65(5):1303-1306.
    [64]. de, J.E.P., C.A. Lucy. Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence. Analyst (Cambridge, U. K.).2006,131(5):664-669.
    [65]. Dang, F., L. Zhang, H. Hagiwara, Y. Mishina, Y. Baba. Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection. Electrophoresis.2003,24(4):714-721.
    [66]. Zhao, S., H. Yuan, D. Xiao. Optical fiber light-emitting diode-induced fluorescence detection for capillary electrophoresis. Electrophoresis.2006,27(2):461-467.
    [67]. Arraez-Roman, D., J.F. Fernandez-Sanchez, S. Cortacero-Ramirez, A. Segura-Carretero, A. Fernandez-Gutierrez. A simple light-emitted diode-induced fluorescence detector using optical fibers and a charged coupled device for direct and indirect capillary electrophoresis methods. Electrophoresis.2006,27(9):1776-1783.
    [68]. Krull, I.S., Z. Deyl, H. Lingeman. General strategies and selection of derivatization reactions for liquid chromatography and capillary electrophoresis. J. Chromatogr., B Biomed. Appl.1994,659(1+2):1-17.
    [69]. Gump, E.L., C.A. Monnig. Pre-column derivatization of proteins to enhance detection sensitivity for sodium dodecyl sulfate non-gel sieving capillary electrophoresis. J. Chromatogr., A.1995,715(1):167-77.
    [70]. Boulat, O., D.G. McLaren, E.A. Arriaga, D.D.Y. Chen. Separation of free amino acids in human plasma by capillary electrophoresis with laser induced fluorescence:potential for emergency diagnosis of inborn errors of metabolism. J. Chromatogr., B:Biomed. Sci. Appl. 2001,754(1):217-228.
    [71]. Horka, M., T. Willimann, M. Blum, P. Nording, Z. Friedl, K. Slais. Capillary isoelectric focusing with UV-induced fluorescence detection. J. Chromatogr., A.2001,916(1-2):65-71.
    [72]. Liu, B.F., L. Zhang, Y.T. Lu. Characterization of phosphorylation of a novel protein kinase in rice cells by capillary electrophoresis. J. Chromatogr., A.2001,918(2):401-409.
    [73]. Arlt, K., S. Brandt, J. Kehr. Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J. Chromatogr., A.2001,926(2):319-325.
    [74]. Verzola, B., C. Gelfi, P.G. Righetti. Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis. Ⅱ. Effects of adsorbed, neutral polymers on quenching the interaction. J. Chromatogr., A.2000,874(2):293-303.
    [75]. Zhan, W., T. Wang, S.F.Y. Li. Derivatization, extraction and concentration of amino acids and peptides by using organic/aqueous phases in capillary electrophoresis with fluorescence detection. Electrophoresis.2000,21(17):3593-3599.
    [76]. Wall, W., K. Chan, R.Z. El. Electrically driven microseparation methods for pesticides and metabolites:Ⅵ. Surfactant-mediated electrokinetic capillary chromatography of aniline pesticidal metabolites derivatized with 9-fluoroenylmethyl chloroformate and their detection by laser-induced fluorescence. Electrophoresis.2001,22(11):2320-2326.
    [77]. Chen, Z., J. Wu, G.B. Baker, M. Parent, N.J. Dovichi. Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples. J. Chromatogr., A. 2001,914(1-2):293-298.
    [78]. Adam, O., M. Moreau. Improved methods for the quantification of free and linked spacer in conjugate vaccine process. Dev. Biol. (Basel., Switz.).2000,103(Physico-Chemical Procedures for the Characterization of Vaccines):105-111.
    [79]. Zhao, S., Y.-M. Liu. Electrophoretic separation of tryptophan enantiomers in biological samples. Electrophoresis.2001,22(13):2769-2774.
    [80]. Martin, R.S., A.J. Gawron, B.A. Fogarty, F.B. Regan, E. Dempsey, S.M. Lunte. Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry. Analyst (Cambridge, U. K.).2001,126(3):277-280.
    [81]. Freed, A.L., J.D. Cooper, M.I. Davies, S.M. Lunte. Investigation of the metabolism of substance P in rat striatum by microdialysis sampling and capillary electrophoresis with laser-induced fluorescence detection. J. Ncurosci. Methods.2001,109(1):23-29.
    [82]. Male, K.B., J.H.T. Luong. Derivatization, stabilization and detection of biogenic amines by cyclodextrin-modified capillary electrophoresis-laser-induced fluorescence detection. J. Chromatogr., A.2001,926(2):309-317.
    [83]. Dugan, M.E.R., R.D. Thacker, J.L. Aalhus, L.E. Jeremiah, K.A. Lien. Analysis of 4-hydroxyproline using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazol derivatization and micellar electrokinetic chromatography combined with laser-induced fluorescence detection. J. Chromatogr., B:Biomed. Sci. Appl.2000,744(1):195-199.
    [84]. Charlwood, J., H. Birrell, A. Organ, P. Camilleri. A chromatographic and mass spectrometric strategy for the analysis of oligosaccharides:determination of the glycan structures in porcine thyroglobulin. Rapid Commun. Mass Spectrom.1999,13(8):716-723.
    [85]. Huang, Y., Y. Mechref, M.V. Novotny. Microscale Non-Reductive Release of O-Linked Glycans for Subsequent Analysis through MALDI Mass Spectrometry and Capillary Electrophoresis. Anal. Chem.2001,73(24):6063-6069.
    [86]. Mangin, C.M., D.M. Goodall. M.A. Roberts. Separation of ι-. κ-and λ-carrageenans by capillary electrophoresis. Electrophoresis.2001,22(8):1460-1467.
    [87]. Wiedmer, S.K., A. Cassely, M. Hong, M.V. Novotny, M.-L. Riekkola. Electrophoretic studies of polygalacturonate oligomers and their interactions with metal ions. Electrophoresis. 2000,21(15):3212-3219.
    [88]. Honda. S., J. Okeda. H. Iwanaga. S. Kawakami, A. Taga, S. Suzuki, K.. Imai. Ultramicroanalysis of Reducing Carbohydrates by Capillary Electrophoresis with Laser-Induced Fluorescence Detection as 7-Nitro-2,1.3-benzoxadiazole-Tagged N-Methylglycamine Derivatives. Anal. Biochem.2000.286(1):99-111.
    [89]. Chassaing, C., J. Gonin, C.S. Wilcox, I.W. Wainer. Determination of reduced and oxidized homocysteine and related thiols in plasma by thiol-specific pre-column derivatization and capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr., B:Biomed. Sci. Appl.1999,735(2):219-227.
    [90]. Causse, E., N. Siri, J.F. Arnal, C. Bayle, P. Malatray, P. Valdiguie, R. Salvayre, F. Couderc. Determination of asymmetrical dimethylarginine by capillary electrophoresis-laser-induced fluorescence. J. Chromatogr., B:Biomed. Sci. Appl.2000, 741(1):77-83.
    [91]. Causse, E., P. Malatray, R. Calaf, P. Charpiot, M. Candito, C. Bayle, P. Valdiguie, R. Salvayre, F. Couderc. Plasma total homocysteine and other thiols analyzed by capillary electrophoresis/laser-induced fluorescence detection:comparison with two other methods. Electrophoresis.2000,21(10):2074-2079.
    [92]. Takadate, A., T. Masuda, C. Murata, A. Isobe, T. Shinohara, M. Irikura, S. Goya. A derivatizing reagent kit using a single coumarin fluorophore. Anal. Sci.1997,13(5):753-756.
    [93]. Takadate, A., T. Masuda, C. Murata, M. Shibuya, A. Isobe. Structural features for fluorescing present in methoxycoumarin derivatives. Chem. Pharm. Bull.2000,48(2): 256-260.
    [94]. Takadate, A., T. Masuda, C. Murata, T. Tanaka, S. Goya. Synthesis and evaluation of novel crowned coumarins as self-catalytic fluorescence reagents. Bull. Chem. Soc. Jpn.1995, 68(11):3105-10.
    [95]. Yamaguchi, M., T. Iwata, K. Inoue, S. Hara, M. Nakamura. 6,7-Dimethoxy-1-methyl-2(1H)-quinoxalinone-3-propionylcarboxylic acid hydrazide:a highly sensitive fluorescence derivatization reagent for carboxylic acids in high-performance liquid chromatography. Analyst (London).1990,115(10):1363-6.
    [96]. Iwata, T., T. Ishimaru, M. Nakamura, M. Yamaguchi. Direct determination of free phenylacetic acid in human plasma and urine by column-switching high performance liquid chromatography with fluorescence detection. Biomed. Chromatogr.1994,8(6):283-7.
    [97]. Kilkenny, M.L., M. Slavik, C.M. Riley, J.F. Stobaugh. Plasma analysis of α-difluoromethylornithine using pre-column derivatization with naphthalene-2,3-dicarboxaldehyde/CN and multidimensional chromatography. J. Pharm. Biomed. Anal.1998,17(6-7):1205-1213.
    [98]. Zhang, L.-Y., M.-X. Sun. Determination of histamine and histidine by capillary zone electrophoresis with pre-column naphthalene-2,3-dicarboxaldehyde derivatization and fluorescence detection. Journal of Chromatography A.2004,1040(1):133-140.
    [99]. Li, X.-Y., J.-M. You, Z.-W. Sun, Y.-Y. Fu, X.-Q. Qin, M.-Z. Ding, Y.-L. Li. Application of 2-[2-(7H-dibenzo[a,g]-carbazol-7-yl)-ethoxyl] ethyl chloroformate as a pre-column derivatization reagent for determination of amino acids from hydrolyzed cicada by high performance liquid chromatography with fluorescence detection and mass spectrometric identification. Fenxi Huaxue.2010,38(7):917-923.
    [100]. Liu, H., M.C. Sanuda-Pena, J.D. Harvey-White. S. Kalra. S.A. Cohen. Determination of submicromolar concentrations of neurotransmitter amino acids by fluorescence detection using a modification of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate method for amino acid analysis. J. Chromatogr., A.1998,828(1+2):383-395.
    [101]. Huang, Y., M. Shi, S. Zhao, H. Liang. Trace analysis of D-tyrosine in biological samples by microchip electrophoresis with laser induced fluorescence detection. J. Chromatogr., B Anal. Technol. Biomed. Life Sci.2011,879(29):3203-3207.
    [102]. Hashimoto, A., S. Kumashiro, T. Nishikawa, T. Oka, K. Takahashi, T. Mito, S. Takashima, N. Doi, Y. Mizutani, a. et. Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex. J. Neurochem.1993,61(1):348-51.
    [103]. Okuma, E., E. Fujita, H. Amano, H. Noda, H. Abe. Distribution of free D-amino acids in the tissues of crustaceans. Fish. Sci.1995,61(1):157-60.
    [104]. Okuma, E., H. Abe. Simultaneous determination of D-and L-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr., B:Biomed. Appl.1994,660(2):243-50.
    [105]. Liu, H., B.-Y. Cho, R. Strong, I.S. Krull, S. Cohen, K.C. Chan, H.J. Issaq. Derivatization of peptides and small proteins for improved identification and detection in capillary zone electrophoresis (CZE). Anal. Chim. Acta.1999,400(1-3):181-209.
    [106]. Jin, D., K. Nagakura, S. Murofushi, T. Miyahara, T. Toyo'oka. Total resolution of 17 DL-amino acids labeled with a fluorescent chiral reagent, R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazol e, by high-performance liquid chromatography. J. Chromatogr., A.1998,822(2):215-224.
    [107]. Long, Z., N. Nimura, M. Adachi, M. Sekine, T. Hanai, H. Kubo, H. Homma. Determination of D-and L-aspartate in cell culturing medium, within cells of MPT 1 cell line and in rat blood by a column-switching high-performance liquid chromatographic method. J. Chromatogr., B:Biomed. Sci. Appl.2001,761(1):99-106.
    [108]. Huang, Y, T. Nishikawa, K. Satoh, T. Iwata, T. Fukushima, T. Santa, H. Homma, K. Imai. Urinary excretion of D-serine in human:comparison of different ages and species. Biol. Pharm. Bull.1998,21(2):156-162.
    [109]. Kato, M., T. Fukushima, N. Shimba, I. Shimada, Y. Kawakami, K. Imai. A study of chiral recognition for NBD-derivatives on a Pirkle-type chiral stationary phase. Biomed. Chromatogr.2001,15(4):227-234.
    [110]. Kaddoumi, A., M.N. Nakashima, K. Nakashima. Fluorometric determination of dl-fenfluramine, dl-norfenfluramine and phentermine in plasma by achiral and chiral high-performance liquid chromatography. J. Chromatogr., B:Biomed. Sci. Appl.2001, 763(1-2):79-90.
    [111]. Zotou, A., C. Vasiliadou. LC of sulfonamide residues in poultry muscle and eggs extracts using fluorescence pre-column derivatization and monolithic silica column. J. Sep. Sci.2010,33(1):11-22.
    [112]. Guo, X., T. Fukushima, F. Li, K. Imai. Determination of fluoxetine enantiomers in rat plasma by pre-column fluorescence derivatization and column-switching high-performance liquid chromatography. Analyst (Cambridge, U. K.).2002,127(4):480-484.
    [113]. Al-Dirbashi, O., N. Kuroda, K. Nakashima, F. Menichini, S. Noda, M. Minemoto. Enantioselective high-performance liquid chromatography with fluorescence detection of methamphetamine and its metabolites in human urine. Analyst (Cambridge, U. K.).1998, 123(11):2333-2337.
    [114]. Underberg, W.J.M., J.C.M. Waterval. Derivatization trends in capillary electrophoresis: an update. Electrophoresis.2002,23(22-23):3922-3933.
    [115]. Giordano, B.C., L.J. Jin, A.J. Couch, J.P. Ferrance, J.P. Landers. Microchip laser-induced fluorescence detection of proteins at submicrogram per milliliter levels mediated by dynamic Labeling under pseudonative conditions. Analytical Chemistry.2004, 76(16):4705-4714.
    [116]. Glowacki, R., E. Bald, H. Jakubowski. An on-column derivatization method for the determination of homocysteine-thiolactone and protein N-linked homocysteine. Amino Acids. 2011,41(1):187-194.
    [117]. Garrido-Medina, R., J.C. Diez-Masa, M. de Frutos. CE methods for analysis of isoforms of prostate-specific antigen compatible with online derivatization for LIF detection. Electrophoresis.2011,32(15):2036-2043.
    [118]. Bowser, M.T., R.T. Kennedy. In vivo monitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis. Electrophoresis.2001,22(17): 3668-3676.
    [119]. Huynh, B.H., B.A. Fogarty, P. Nandi, S.M. Lunte. A microchip electrophoresis device with on-line microdialysis sampling and on-chip sample derivatization by naphthalene 2,3-dicarboxaldehyde/2-mercaptoethanol for amino acid and peptide analysis. J. Pharm. Biomed. Anal.2006,42(5):529-534.
    [120]. Ahmadzadeh, H., S. Krylov. On-column labeling reaction for analysis of protein contents of a single cell using capillary electrophoresis with laser-induced fluorescence detection. Methods Mol. Biol. (Totowa, NJ, U. S.).2004,276(Capillary Electrophoresis of Proteins and Peptides):29-38.
    [121]. Mazouchi, A., B.J. Dodgson, D.W. Wegman, S.N. Krylov, C.C. Gradinaru. Ultrasensitive on-column laser-induced fluorescence in capillary electrophoresis using multiparameter confocal detection. Analyst.2012,137(23):5538-5545.
    [122]. Saito, S., T.L. Massie, T. Maeda, H. Nakazumi, C.L. Colyer. On-Column Labeling of Gram-Positive Bacteria with a Boronic Acid Functionalized Squarylium Cyanine Dye for Analysis by Polymer-Enhanced Capillary Transient Isotachophoresis. Anal. Chem. (Washington, DC, U. S.).2012,84(5):2452-2458.
    [123]. Ahmadzadeh, H., L.V. Thompson, E.A. Arriaga. On-column labeling for capillary electrophoretic analysis of individual mitochondria directly sampled from tissue cross sections. Anal. Bioanal. Chem.2006,384(1):169-174.
    [124]. Fukushima, T., N. Usui, T. Santa, K. Imai. Recent progress in derivatization methods for LC and CE analysis. Journal of Pharmaceutical and Biomedical Analysis.2003,30(6): 1655-1687.
    [125]. Zhu. R., W.T. Kok. Post-column derivatization for fluorescence and chemiluminescence detection in capillary electrophoresis. J. Pharm. Biomed. Anal.1998, 17(6,7):985-999.
    [126]. Hamamoto, K., R. Koike, A. Shirakura, N. Sasaki, Y. Machida. Rapid and sensitive determination of amprolium in chicken plasma by high-performance liquid chromatography with post-column reaction. J. Chromatogr., B Biomed. Sci. Appl.1997,693(2):489-492.
    [127]. Freney, M., H. Irth, H. Lindberg, U. Alkner, L. Greiff, C.G.A. Persson, M. Andersson, G. Marko-Varga. Rapid screening of airway secretions for fucose by parallel ligand-exchange chromatography with post-column derivatization and fluorescence detection. Chromatographia.2001,54(7/8):439-445.
    [128]. Matthews, C.Z., E.J. Woolf, L. Lin, W. Fang, J. Hsieh, S. Ha, R. Simpson, B.K. Matuszewski. High-throughput, semi-automated determination of a cyclooxygenase II inhibitor in human plasma and urine using solid-phase extraction in the 96-well format and high-performance liquid chromatography with post-column photochemical derivatization-fluorescence detection. J Chromatogr B Biomed Sci Appl.2001,751(2): 237-46.
    [129]. Jiao, Z., Y. Zhong, J. Shen, Y.-q. Yu. Simple high-performance liquid chromatographic assay, with post-column derivatization, for simultaneous determination of mycophenolic acid and its glucuronide metabolite in human plasma and urine. Chromatographia.2005,62(7/8): 363-371.
    [130]. Vinas, P., N. Balsalobre, M. Hernandez-Cordoba. Liquid chromatography on an amide stationary phase with post-column derivatization and fluorimetric detection for the determination of streptomycin and dihydrostreptomycin in foods. Talanta.2007,72(2): 808-812.
    [131]. Surowiec, I., W. Nowik, M. Trojanowicz. Post-column deprotonation and complexation with HPLC as a tool for identification and structure elucidation of compounds from natural dyes of historical importance. Microchim. Acta.2008,162(3-4):393-404.
    [132]. Perez-Ruiz, T., C. Martinez-Lozano, M.D. Garcia-Martinez. A sensitive post-column photochemical derivatization/fluorimetric detection system for HPLC determination of bisphosphonates. J. Chromatogr., A.2009,1216(9):1312-1318.
    [133]. Tsuda, T., Y. Kobayashi, A. Hori, T. Matsumoto, O. Suzuki. Post-column detection for capillary zone electrophoresis. J. Chromatogr.1988,456(2):375-81.
    [134]. Rose, D.J., Jr., J.W. Jorgenson. Post-capillary fluorescence detection in capillary zone electrophoresis using o-phthaldialdehyde. J. Chromatogr.1988,447(1):117-31.
    [135]. Nickerson, B., J.W. Jorgenson. Characterization of a post-column reaction-laser-induced fluorescence detector for capillary zone electrophoresis. J. Chromatogr. 1989,480:157-68.
    [136]. Zhang, L., E.S. Yeung. Postcolumn reactor in capillary electrophoresis for laser-induced fluorescence detection. J. Chromatogr., A.1996,734(2):331-337.
    [137]. Kostel, K.L., S.M. Lunte. Evaluation of capillary electrophoresis with post-column derivatization and laser-induced fluorescence detection for the determination of substance P and its metabolites. Journal of Chromatography B:Biomedical Sciences and Applications. 1997,695(1):27-38.
    [138]. Albin, M., R. Weinberger, E. Sapp, S. Moring. Fluorescence detection in capillary electrophoresis:evaluation of derivatizing reagents and techniques. Anal. Chem.1991,63(5): 417-22.
    [139]. Gilman, S.D., J.J. Pietron, A.G. Ewing. Post-column derivatization in narrow-bore capillaries for the analysis of amino acids and proteins by capillary electrophoresis with fluorescence detection. J. Microcolumn Sep.1994,6(4):373-84.
    [140]. Abler, J.K., K.R. Reddy, C.S. Lee. Post-capillary affinity detection of protein microheterogeneity in capillary zone electrophoresis. J. Chromatogr., A.1997,759(1+2): 139-147.
    [141]. Zhu, R., W.T. Kok. Post-column reaction system for fluorescence detection in capillary electrophoresis. J. Chromatogr., A.1995,716(1+2):123-33.
    [142]. Zhu, R., W.T. Kok. Determination of Catecholamines and Related Compounds by Capillary Electrophoresis with Postcolumn Terbium Complexation and Sensitized Luminescence Detection. Anal. Chem.1997,69(19):4010-4016.
    [143]. Yu, C.Z., Y.Z. He, F. Han, G.N. Fu. Post-column reactor of coaxial-gap mode for laser-induced fluorescence detection in capillary electrophoresis. Journal of Chromatography A.2007,1171(1-2):133-139.
    [144]. Oldenburg, K.E., J.V. Sweedler. Simple Sheath Flow Reactor for Post-column Fluorescence Derivatization in Capillary Electrophoresis. Analyst (Cambridge, U. K.).1997, 122(12):1581-1585.
    [145]. Coble, P.G., A.T. Timperman. Fluorescence detection of proteins and amino acids in capillary electrophoresis using a post-column sheath flow reactor. J. Chromatogr., A.1998, 829(1+2):309-315.
    [146]. Nirode, W.F., T.D. Staller, R.O. Cole, M.J. Sepaniak. Evaluation of a Sheath Flow Cuvette for Postcolumn Fluorescence Derivatization of DNA Fragments Separated by Capillary Electrophoresis. Anal. Chem.1998,70(1):182-186.
    [147]. Cheng, Y.F., S. Wu, D.Y. Chen, N.J. Dovichi. Interaction of capillary zone electrophoresis with a sheath flow cuvette detector. Anal. Chem.1990,62(5):496-503.
    [148]. Ye, M., S. Hu, W.W.C. Quigley, N.J. Dovichi. Post-column fluorescence derivatization of proteins and peptides in capillary electrophoresis with a sheath flow reactor and 488 nm argon ion laser excitation. J. Chromatogr., A.2004,1022(1-2):201-206.
    [149]. Rose, D.J., Jr. Free-solution reactor for post-column fluorescence detection in capillary zone electrophoresis. J. Chromatogr.1991,540(1-2):343-53.
    [150]. Pentoney, S.L., Jr., X. Huang, D.S. Burgi, R.N. Zare. On-line connector for microcolumns:application to the on-column o-phthaldialdehyde derivatization of amino acids separated by capillary zone electrophoresis. Anal. Chem.1988,60(23):2625-9.
    [151]. Jacobson. S.C., L.B. Koutny, R. Hergenroeder, A.W. Moore, Jr., J.M. Ramsey. Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor. Anal. Chem. 1994,66(20):3472-6.
    [152]. Gottschlich. N., C.T. Culbertson. T.E. McKnight, S.C. Jacobson. J.M. Ramsey. Integrated microchip-device for the digestion, separation and postcolumn labeling of proteins and peptides. J. Chromatogr., B:Biomed. Sci. Appl.2000,745(1):243-249.
    [153]. Sieben, V.J., C.J. Backhouse. Rapid on-chip postcolumn labeling and high-resolution separations of DNA. Electrophoresis.2005,26(24):4729-4742.
    [154]. Nojiri, S., K. Kamata, M. Nishijima. Fluorescence detection of biotin using post-column derivatization with OPA in high performance liquid chromatography. J. Pharm. Biomed. Anal.1998,16(8):1357-1362.
    [155]. Tseng, S.-H., P.-C. Chang, S.-S. Chou. Determination of butocarboxim residue in agricultural products by HPLC with post-column derivatization system. Yaowu Shipin Fenxi. 1999,7(4):269-277.
    [156]. Dobashi, Y., T. Santa, K. Nakagomi, K. Imai. An automated analyzer for methylated arginines in rat plasma by high-performance liquid chromatography with post-column fluorescence reaction. Analyst (Cambridge, U. K.).2002,127(1):54-59.
    [157]. Gilman, S.D., C.E. Silverman, A.G. Ewing. Electrogenerated chemiluminescence detection for capillary electrophoresis. J. Microcolumn Sep.1994,6(2):97-106.
    [158]. Kostel, K.L., S.M. Lunte. Evaluation of capillary electrophoresis with post-column derivatization and laser-induced fluorescence detection for the determination of substance P and its metabolites. J. Chromatogr., B:Biomed. Sci. Appl.1997,695(1):27-38.
    [159]. Koshiishi, I., Y. Mamura, T. Imanari. Simultaneous determination of vitamin C and its carbamylated derivatives by high-performance liquid chromatography with post-column derivatization. J. Chromatogr., A.1998,806(2):340-344.
    [160]. Zhang, W., J.-x. Qian, Y.-g. Xiao, Z.-g. Chen. Recent progress of fluorescence detection systems of microfluidic chip. Lihua Jianyan, Huaxue Fence.2011,47(12): 1495-1500.
    [161]. van, d.N.R.J., N.H. Velthorst, U.A.T. Brinkman, C. Gooijer. Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation. J. Chromatogr., A.1995,704(1):1-25.
    [162]. Jaimez, J., C.A. Fente, B.I. Vazquez, C.M. Franco, A. Cepeda, G. Mahuzier, P. Prognon. Application of the assay of aflatoxins by liquid chromatography with fluorescence detection in food analysis. Journal of Chromatography A.2000,882(1-2):1-10.
    [163]. Takahashi, D.M. Reversed-phase high-performance liquid chromatographic analytical system for aflatoxins in wines with fluorescence detection. J. Chromatogr.1977,131:147-56.
    [164]. Pons, W.A., Jr., A.O. Franz, Jr. High pressure liquid chromatographic determination of aflatoxins in peanut products. J. Assoc. Off. Anal. Chem.1978,61(4):793-800.
    [165]. Manabe, M., T. Goto, S. Matsuura. High-performance liquid chromatography of aflatoxins with fluorescence detection. Agric. Biol. Chem.1978,42(11):2003-7.
    [166]. Howell, M.V., P.W. Taylor. Determination of aflatoxins, ochratoxin A, and zearalenone in mixed feeds, with detection by thin layer chromatography or high-performance liquid chromatography. J. Assoc. Off. Anal. Chem.1981,64(6):1356-63.
    [167]. Goto, T., M. Manabe, S. Matsuura. Application of high-performance liquid chromatography to the analysis of aflatoxins in foods and feeds. Preparation of sample and column. Agric. Biol. Chem.1979,43(12):2591-2.
    [168]. Takeda, N. Determination of aflatoxin M1 in milk by reversed-phase high-performance liquid chromatography. J. Chromatogr.1984,288(2):484-8.
    [169]. Zimmerli, B. Improvements of the detection limits of aflatoxins in high-pressure liquid chromatography by application of silica gel fluorescence detectors. J. Chromatogr.1977,131: 458-63.
    [170]. Tutelyan, V.A., K.I. Eller, V.S. Sobolev. A survey using normal-phase high-performance liquid chromatography of aflatoxins in domestic and imported foods in the USSR. Food Addit. Contam.1989,6(4):459-65.
    [171]. Francis, O.J., Jr., L.J. Lipinski, J.A. Gaul, A.D. Campbell. High-pressure liquid chromatographic determination of aflatoxins in peanut butter using a silica gel-packed flowcell for fluorescence detection. J. Assoc. Off. Anal. Chem.1982,65(3):672-6.
    [172].焦艳娜,丁利,朱绍华,傅善良,龚强,李晖,王利兵.高效液相色谱-荧光检测法测定食品接触材料塑料制品中荧光增白剂.色谱.2013,31(1):5.
    [173].刘素娟,尤进茂.新型荧光衍生试剂用于脂肪胺的反相高效液相色谱-荧光检测分析.分析试验室.2010,29(11).
    [174].潘莹宇,许茜,康学军,张建新.高效液相色谱-荧光检测法测定牛奶中氯霉素的残留量.色谱.2005,23(6):4.
    [175].钱薇,倪进治,骆永明,李秀华,邹德勋.高效液相色谱-荧光检测法测定土壤中的多环芳烃.色谱.2007,25(2):5.
    [176]. Knutti, R., C. Balsiger, K. Sutter. Routine application of HPLC for quantification of aflatoxins in whole peanut kernels. Chromatographia.1979,12(6):349-53.
    [177]. Lazaro, F., d.C.M.D. Luque, M. Valcarcel. Fluorimetric determination of aflatoxins in foodstuffs by high-performance liquid chromatography with flow injection analysis. J. Chromatogr.1988,448(1):173-81.
    [178]. Kussak, A., B. Andersson, K. Andersson. Determination of aflatoxins in airborne dust from feed factories by automated immunoaffinity column clean-up and liquid chromatography. J. Chromatogr., A.1995,708(1):55-60.
    [179]. Scholten, J.M., M.C. Spanjer. Determination of aflatoxin B1 in pistachio kernels and shells. J. AOAC Int.1996,79(6):1360-1364.
    [180]. Simeon, N., R. Myers, C. Bayle, M. Nertz, J.K. Stewart, F. Couderc. Some applications of near-ultraviolet laser-induced fluorescence detection in nanomolar-and subnanomolar-range high-performance liquid chromatography or micro-high-performance liquid chromatography. J. Chromatogr., A.2001,913(1-2):253-259.
    [181]. Jin, D., T. Miyahara, T. Oe, T. Toyo'oka. Determination of D-Amino Acids Labeled with Fluorescent Chiral Reagents, R(-)-and S(+)-4-(3-Isothiocyanatopyrrolidin-l-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazoles, in Biological and Food Samples by Liquid Chromatography. Anal. Biochem.1999,269(1):124-132.
    [182]. D'Aniello, A., F.M.M. Di. G.H. Fisher, A. Milone. A. Seleni. S. D'Aniello. A.F. Perna. D. Ingrosso. Occurrence of D-aspartic acid and N-methyl-D-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB J.2000,14(5):699-714.
    [183]. Snyder, S.H., P.M. Kim. D-amino acids as putative neurotransmitters:focus on D-serine. Neurochem. Res.2000,25(5):553.
    [184].郭帅,邵丽华,荣琳,王希峰,郗德凤.固相萃取-高效液相色谱荧光检测法测定人血浆3-硝基酪氨酸含量.分析化学.2009,37(2):5.
    [185].唐秀芳,甄乾娜,樊子勉,冯成亚,丁敏.柱前衍生高效液相色谱-荧光检测法测定血浆中同型半胱氨酸.色谱.2012,30(6).
    [186]. Iida, T., T. Santa, A. Toriba, K. Imai. Amino acid sequence and D/L-configuration determination methods for D-amino acid-containing peptides in living organisms. Biomed. Chromatogr.2001,15(5):319-327.
    [187]. Toriumi, C., K. Imai. Determination of Insulin in a Single Islet of Langerhans by High-Performance Liquid Chromatography with Fluorescence Detection. Anal. Chem.2002, 74(10):2321-2327.
    [188].赵燕燕,刘丽艳,韩嫒媛,白洁,杜光玲,高茜.高效液相色谱-荧光检测法同时测定大鼠不同脑区中的8种单胺类神经递质.色谱.2011,29(2).
    [189].倪进治,王军,李小燕,郭涓,杨红玉,魏然.超高效液相色谱荧光检测器测定土壤中多环芳烃.分析试验室.2010,29(5).
    [190].樊祥,褚庆华,谌鸿超,阮寅,高峰.高效液相色谱-荧光检测法分析麦类中麦角克列斯汀碱.分析试验室.2010,29(1):4.
    [191].欧阳臻,李永辉,徐卫东,陈钧.高效液相色谱-荧光检测法测定桑叶中1-脱氧野尻霉素(DNJ)含量.中国中药杂志.2005,30(9):4.
    [192].邰义萍,莫测辉,李彦文,包艳萍,张艳,姚圆,罗晓栋.固相萃取-高效液相色谱-荧光检测土壤中喹诺酮类抗生素.分析化学.2009,37(12):5.
    [193].符继红,褚金芳,王吉德,闫存玉.固相萃取反相高效液相色谱荧光检测法测定拟南芥中的生长素.分析化学.2009,37(9):4.
    [194].马明,肖玲艳,盛亚红,黄姣,俞雄飞.柱后衍生-高效液相色谱-荧光检测法测定面粉中的过氧化苯甲酰.分析化学.2012,40(3).
    [195].刘珺,弓振斌.高效液相色谱-柱后在线光化学衍生荧光检测法测定辣椒油中4种苏丹红染料.色谱.2012,30(6).
    [196].刘晓伟,梁婧,温裕云,张金城,弓振斌.柱后光化学衍生荧光检测高效液相色谱法测定2种新型肟醚类农药.分析化学.2007,35(6):4.
    [197].胡彦学,杨秀敏,王志,王春,赵锦.固相微萃取-高效液相色谱-荧光检测法测定番茄中的多菌灵和噻菌灵.色谱.2005,23(6):4.
    [198]. Hattori, A., T. Fukushima, H. Yoshimura, K. Abe, K. Imai. Production of LLU-α following an oral administration of γ-tocotrienol or γ-tocopherol to rats. Biol. Pharm. Bull. 2000,23(11):1395-1397.
    [199]. Hattori, A., T. Fukushima, K. Hamamura, M. Kato, K. Imai. A fluorimetric, column-switching HPLC and its application to an elimination study of LLU-a enantiomers in rat plasma. Biomed. Chromatogr.2001,15(2):95-99.
    [200]. Sun, Y., M.N. Nakashima, M. Takahashi, N. Kuroda, K. Nakashima. Determination of bisphenol A in rat brain by microdialysis and column switching high-performance liquid chromatography with fluorescence detection. Biomed. Chromatogr.2002,16(5):319-326.
    [201]. Hochleitner, E.O., P. Sondermann, F. Lottspeich. Determination of the stoichiometry of protein complexes using liquid chromatography with fluorescence and mass spectrometric detection of fluorescently labeled proteolytic peptides. Proteomics.2004,4(3):669-676.
    [202]. Horstkotter, C., D. Schepmann, G. Blaschke. Separation and identification of zaleplon metabolites in human urine using capillary electrophoresis with laser-induced fluorescence detection and liquid chromatography-mass spectrometry. Journal of Chromatography A.2003, 1014(1-2):71-81.
    [203].赵怀鑫,孙志伟,夏莲,孙学军,索有瑞,李玉林,尤进茂.新型荧光衍生试剂用于尿样中痕量游离雌二醇和雌三醇的反相高效液相色谱-荧光检测和质谱定性.色谱.2009,27(2):5.
    [204].王小芳,曾文芳,王菁,任韧.高效液相色谱-二极管阵列/荧光检测器串联法同时测定精油中的七种性激素.色谱.2009,27(3):5.
    [205]. Cruces-Blanco, C., A.M. Garcia-Campana. Capillary electrophoresis for the analysis of drugs of abuse in biological specimens of forensic interest. TrAC Trends in Analytical Chemistry.2012,31:85-95.
    [206]. Gooijer, C., S.J. Kok, F. Ariese. Capillary electrophoresis with laser-induced fluorescence detection for natively fluorescent analytes. Analusis.2000,28(8):679-685.
    [207]. Paez, X., L. Hernandez. Biomedical applications of capillary electrophoresis with laser-induced fluorescence detection. Biopharm. Drug Dispos.2001,22(7-8):273-289.
    [208]. Radenovic, D.C., K.B.J. de, G.W. Somsen. Lamp-based native fluorescence detection of proteins in capillary electrophoresis. J. Chromatogr., A.2009,1216(21):4629-4632.
    [209]. Tseng, H.-M., Y. Li, D.A. Barrett. Bioanalytical applications of capillary electrophoresis with laser-induced native fluorescence detection. Bioanalysis.2010,2(9): 1641-1653.
    [210]. Li, M.-D., W.-L. Tseng, T.-L. Cheng. Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with capillary electrophoresis/laser-induced native fluorescence. J. Chromatogr., A.2009,1216(36):6451-6458.
    [211]. Hsieh, M.-M., C.-E. Hsu, W.-L. Tseng, H.-T. Chang. Amplification of small analytes in polymer solution by capillary electrophoresis. Electrophoresis.2002,23(11):1633-1641.
    [212]. Chang, H.-T., E.S. Yeung. Determination of catecholamines in single adrenal medullary cells by capillary electrophoresis and laser-induced native fluorescence. Anal. Chem.1995, 67(6):1079-83.
    [213]. Schappler, J., A. Staub. J.-L. Veuthey, S. Rudaz. Highly sensitive detection of pharmaceutical compounds in biological fluids using capillary electrophoresis coupled with laser-induced native fluorescence. J. Chromatogr., A.2008.1204(2):183-190.
    [214]. Caslavska, J., W. Thormann. Monitoring of drugs and metabolites in body fluids by capillary electrophoresis with XeHg lamp-based and laser-induced fluorescence detection. Electrophoresis.2004,25(10-11):1623-1631.
    [215]. Cheng, C.-L., C.-H. Fu, C.-H. Chou. Determination of norfloxacin in rat liver perfusate using capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci.2007,856(1-2):381-385.
    [216]. Chankvetadze, B., N. Burjanadze, G. Blaschke. Enantioseparation of the anticoagulant drug phenprocoumon in capillary electrophoresis with UV and laser-induced fluorescence detection and application of the method to urine samples. Electrophoresis.2001,22(15): 3281-3285.
    [217]. Horstkotter, C., S. Kober, H. Spahn-Langguth, E. Mutschler, G. Blaschke. Determination of triamterene and its main metabolite hydroxytriamterene sulfate in human urine by capillary electrophoresis using ultraviolet absorbance and laser-induced fluorescence detection. J. Chromatogr., B:Anal. Technol. Biomed. Life Sci.2002,769(1):107-117.
    [218]. Horstkotter, C., D. Schepmann, G. Blaschke. Separation and identification of zaleplon metabolites in human urine using capillary electrophoresis with laser-induced fluorescence detection and liquid chromatography-mass spectrometry. J. Chromatogr., A.2003,1014(1-2): 71-81.
    [219]. Zaugg, S., X. Zhang, J. Sweedler, W. Thormann. Determination of salicylate, gentisic acid and salicyluric acid in human urine by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr., B:Biomed. Sci. Appl.2001,752(1):17-31.
    [220]. Behn, F., S. Michels, S. Laer, G. Blaschke. Separation of carvedilol enantiomers in very small volumes of human plasma by capillary electrophoresis with laser-induced fluorescence. J. Chromatogr., B:Biomed. Sci. Appl.2001,755(1-2):111-117.
    [221]. Gibbons, S.E., I. Stayton, Y. Ma. Optimization of urinary pteridine analysis conditions by CE-LIF for clinical use in early cancer detection. Electrophoresis.2009,30(20): 3591-3597.
    [222]. Britz-McKibbin, P., K. Otsuka, S. Terabe. On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem.2002,74(15):3736-3743.
    [223]. Du, W., S. Chen, Y. Xu, Z. Chen, Q. Luo, B.-F. Liu. Multiphoton excitation fluorescence:a versatile detection method for capillary electrophoresis. J. Sep. Sci.2007, 30(6):906-915.
    [224]. Shear, J.B. Multiphoton-excited fluorescence in bioanalytical chemistry. Anal. Chem. 1999,71(17):598A-605A.
    [225]. Gostkowski, M.L., J.B. McDoniel, J. Wei, T.E. Curey, J.B. Shear. Characterizing Spectrally Diverse Biological Chromophores Using Capillary Electrophoresis with Multiphoton-Excited Fluorescence. J. Am. Chem. Soc.1998,120(1):18-22.
    [226]. Musenga, A., E. Kenndler, E. Morganti, F. Rasi, M.A. Raggi. Analysis of the anti-Parkinson drug pramipexole in human urine by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chim. Acta.2008,626(1):89-96.
    [227]. Musenga, A., E. Kenndler, L. Mercolini, M. Amore, S. Fanali, M.A. Raggi. Determination of sertraline and N-desmethylsertraline in human plasma by CE with LIF detection. Electrophoresis.2007,28(11):1823-1831.
    [228]. Li, H., H. Wang, J.-h. Chen, L.-h. Wang, H.-s. Zhang, Y. Fan. Determination of amino acid neurotransmitters in cerebral cortex of rats administered with baicalin prior to cerebral ischemia by capillary electrophoresis-laser-induced fluorescence detection. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci.2003,788(1):93-101.
    [229]. Li, Y.M., Y. Qu, E. Vandenbussche, L. Arckens, F. Vandesande. Analysis of extracellular y-aminobutyric acid, glutamate and aspartate in cat visual cortex by in vivo microdialysis and capillary electrophoresis-laser induced fluorescence detection. J. Neurosci. Methods.2001,105(2):211-215.
    [230]. Chen, Y., L. Xu, L. Zhang, G. Chen. Separation and determination of peptide hormones by capillary electrophoresis with laser-induced fluorescence coupled with transient pseudo-isotachophoresis preconcentration. Anal. Biochem.2008,380(2):297-302.
    [231]. Chen, Y, L. Xu, J. Lin, G. Chen. Assay of bradykinin-related peptides in human body fluids using capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis.2008,29(6):1302-1307.
    [232]. Kei, L.S., F. Zaccardo, M. Little, P. Banks. Nanomolar derivatizations with 5-carboxyfluorescein succinimidyl ester for fluorescence detection in capillary electrophoresis. J. Chromatogr., A.1998,809(1+2):203-210.
    [233]. Lin, Y.-F., Y.-C. Wang, S.Y. Chang. Capillary electrophoresis of aminoglycosides with argon-ion laser-induced fluorescence detection. J. Chromatogr., A.2008,1188(2):331-333.
    [234]. Musenga, A., R. Mandrioli, I. Comin, E. Kenndler, M.A. Raggi. Determination of vigabatrin in human plasma by means of CE with LIF detection. Electrophoresis.2007, 28(19):3535-3541.
    [235]. Cao, L., H. Wang, M. Ma, H. Zhang. Determination of biogenic amines in HeLa cell lysate by 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl)fluorescein and micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. Electrophoresis.2006,27(4):827-836.
    [236]. Bergquist, J., S.D. Gilman, A.G. Ewing, R. Ekman. Analysis of Human Cerebrospinal Fluid by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Anal. Chem. 1994,66(20):3512-18.
    [237]. De, M.P., J.F. Stobaugh, R.S. Givens, R.G. Carlson, K. Srinivasachar, L.A. Sternson, T. Higuchi. Naphthalene-2,3-dicarboxyaldehyde/cyanide ion:a rationally designed fluorogenic reagent for primary amines. Anal. Chem.1987,59(8):1096-101.
    [238]. Sauvinet, V., S. Parrot, N. Benturquia, E. Bravo-Moraton, B. Renaud, L. Denoroy. In vivo simultaneous monitoring of y-aminobutyric acid, glutamate, and L-aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments and in vitro/in vivo validations. Electrophoresis.2003,24(18): 3187-3196.
    [239]. Bert, L., F. Robert. L. Denoroy. L. Stoppini. B. Renaud. Enhanced temporal resolution for the microdialysis monitoring of catecholamines and excitatory amino acids using capillary electrophoresis with laser-induced fluorescence detection. Analytical developments and in vitro validations. J. Chromatogr., A.1996,755(1):99-111.
    [240]. Serrano, J.M., M. Silva. Trace analysis of aminoglycoside antibiotics in bovine milk by MEKC with LIF detection. Electrophoresis.2006,27(23):4703-4710.
    [241]. Orejuela, E., M. Silva. Rapid and sensitive determination of phosphorus-containing amino acid herbicides in soil samples by capillary zone electrophoresis with diode laser-induced fluorescence detection. Electrophoresis.2005,26(23):4478-4485.
    [242]. Tao, L., R.T. Kennedy. Online Competitive Immunoassay for Insulin Based on Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Anal. Chem.1996, 68(22):3899-3906.
    [243]. Schultz, N.M., L. Huang, R.T. Kennedy. Capillary electrophoresis-based immunoassay to determine insulin content and insulin secretion from single islets of Langerhans. Anal. Chem.1995,67(5):924-9.
    [244]. Chen, H.-X., T. Huang, X.-X. Zhang. Immunoaffinity extraction of testosterone by antibody immobilized monolithic capillary with on-line laser-induced fluorescence detection. Talanta.2009,78(1):259-264.
    [245]. Zhou, J., X. Xu, Y. Wang. Competitive immunoassay for clenbuterol using capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr., B:Anal. Technol. Biomed. Life Sci.2007,848(2):226-231.
    [246]. Wey, A.B., J. Caslavska, W. Thormann. Analysis of codeine, dihydrocodeine and their glucuronides in human urine by electrokinetic capillary immunoassays and capillary electrophoresis-ion trap mass spectrometry. J. Chromatogr., A.2000,895(1+2):133-146.
    [247]. Xiao, D., L. Yan, H. Yuan, S. Zhao, X. Yang, M.M.F. Choi. CE with LED-based detection:an update. Electrophoresis.2009,30(1):189-202.
    [248]. Schulze, P., D. Belder. Label-free fluorescence detection in capillary and microchip electrophoresis. Anal. Bioanal. Chem.2009,393(2):515-525.
    [249]. de, J.E.P., C.A. Lucy. Spectral filtering of light-emitting diodes for fluorescence detection. Anal. Chim. Acta.2005,546(1):37-45.
    [250]. Chang, P.-L., T.-C. Chiu, H.-T. Chang. Stacking, derivatization, and separation by capillary electrophoresis of amino acids from cerebrospinal fluids. Electrophoresis.2006, 27(10):1922-1931.
    [251]. Chiu, T.-C., H.-T. Chang. Stacking and separation of fluorescent derivatives of amino acids by micellar electrokinetic chromatography in the presence of poly(ethylene oxide). J. Chromatogr., A.2007,1146(1):118-124.
    [252]. Momenbeik, F., C. Johns, M.C. Breadmore, E.F. Hilder, M. Macka, P.R. Haddad. Sensitive determination of carbohydrates labelled with p-nitroaniline by capillary electrophoresis with photometric detection using a 406 nm light-emitting diode. Electrophoresis.2006,27(20):4039-4046.
    [253]. Timerbaev, A.R. Recent trends in CE of inorganic ions:from individual to multiple elemental species analysis. Electrophoresis.2007,28(19):3420-3435.
    [254]. Hutchinson, J.P., C.J. Evenhuis, C. Johns, A.A. Kazarian, M.C. Breadmore, M. Macka, E.F. Hilder, R.M. Guijt, G.W. Dicinoski, P.R. Haddad. Identification of Inorganic Improvised Explosive Devices by Analysis of Postblast Residues Using Portable Capillary Electrophoresis Instrumentation and Indirect Photometric Detection with a Light-Emitting Diode. Anal. Chem. (Washington, DC, U. S.).2007,79(18):7005-7013.
    [255]. Deng, G., G.E. Collins. Nonaqueous based microchip separation of toxic metal ions using 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol. J. Chromatogr., A. 2003,989(2):311-316.
    [256]. Tsai, C.-C., J.-T. Liu, Y.-R. Shu, P.-H. Chan, C.-H. Lin. Optimization of the separation and on-line sample concentration of phenethylamine designer drugs with capillary electrophoresis-fluorescence detection. J. Chromatogr., A.2006,1101(1-2):319-323.
    [257]. Yang, X., H. Yuan, C. Wang, X. Su, L. Hu, D. Xiao. Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection. J. Pharm. Biomed. Anal.2007,45(2): 362-366.
    [258]. Su, A.-K., Y.-S. Chang, C.-H. Lin. Analysis of riboflavin in beer by capillary electrophoresis/blue light emitting diode (LED)-induced fluorescence detection combined with a dynamic pH junction technique. Talanta.2004,64(4):970-974.
    [259]. Tsai, C.-H., H.-M. Huang, C.-H. Lin. Violet light emitting diode-induced fluorescence detection combined with on-line sample concentration techniques for use in capillary electrophoresis. Electrophoresis.2003,24(17):3083-3088.
    [260]. Yu, L., L. Yuan, H. Feng, S.F.Y. Li. Determination of the bacterial pathogen Edwardsiella tarda in fish species by capillary electrophoresis with blue light-emitting diode-induced fluorescence. Electrophoresis.2004,25(18-19):3139-3144.
    [261]. Godoy-Caballero, M.P., M.I. Acedo-Valenzuela, I. Duran-Meras, T. Galeano-Diaz. Development of a non-aqueous capillary electrophoresis method with UV-visible and fluorescence detection for phenolics compounds in olive oil. Anal. Bioanal. Chem.2012, 403(1):279-290.
    [262]. Reyes, D.R., D. Iossifidis, P.-A. Auroux, A. Manz. Micro Total Analysis Systems.1. Introduction, Theory, and Technology. Anal. Chem.2002,74(12):2623-2636.
    [263]. Ekstrom, S., P. Onnerfjord, J. Nilsson, M. Bengtsson, T. Laurell, G. Marko-Varga. Integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem.2000,72(2):286-93.
    [264]. Uchiyama, K., H. Nakajima, T. Hobo. Detection method for microchip separations. Anal Bioanal Chem.2004,379(3):375-82.
    [265]. Goetz, S., U. Karst. Recent developments in optical detection methods for microchip separations. Anal. Bioanal. Chem.2007,387(1):183-192.
    [266]. Mourzina, Y. A. Steffen, D. Kalyagin, R. Carius, A. Offenhaeusser. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip. Electrophoresis. 2005,26(9):1849-1860.
    [267]. Wicks. D.A.. P.C.H. Li. Separation of fluorescent derivatives of hydroxyl-containing small molecules on a microfluidic chip. Anal. Chim. Acta.2004,507(1):107-114.
    [268]. Piehl, N., M. Ludwig, D. Belder. Subsecond chiral separations on a microchip. Electrophoresis.2004,25(21-22):3848-3852.
    [269]. Kato, M, Y. Gyoten, K. Sakai-Kato, T. Toyo'oka. Rapid analysis of amino acids in Japanese green tea by microchip electrophoresis using plastic microchip and fluorescence detection. J. Chromatogr., A.2003,1013(1-2):183-189.
    [270]. Gong, M., K.R. Wehmeyer, P.A. Limbach, F. Arias, W.R. Heineman. On-Line Sample Preconcentration Using Field-amplified Stacking Injection in Microchip Capillary Electrophoresis. Anal. Chem.2006,78(11):3730-3737.
    [271]. Lin, C.-C., C.-C. Chen, C.-E. Lin, S.-H. Chen. Microchip electrophoresis with hydrodynamic injection and waste-removing function for quantitative analysis. J. Chromatogr., A.2004,1051(1-2):69-74.
    [272]. Yan, Q., R.S. Chen, J.-K. Cheng. Highly sensitive fluorescence detection with Hg-lamp and photon counter in microchip capillary electrophoresis. Anal. Chim. Acta.2006,555(2): 246-249.
    [273]. Han, J., A.K. Singh. Rapid protein separations in ultra-short microchannels:microchip sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing. J. Chromatogr., A.2004,1049(1-2):205-209.
    [274]. Zhang, C.-X., A. Manz. High-speed free-flow electrophoresis on chip. Anal. Chem. 2003,75(21):5759-5766.
    [275]. Goetz, S., U. Karst. Wavelength-resolved fluorescence detector for microchip capillary electrophoresis separations. Sens. Actuators, B.2007, B 123(1):622-627.
    [276]. Goetz, S., T. Revermann, U. Karst. Quantitative on-chip determination of taurine in energy and sports drinks. Lab Chip.2007,7(1):93-97.
    [277]. Revermann, T., S. Goetz, U. Karst. Quantitative analysis of thiols in consumer products on a microfluidic CE chip with fluorescence detection. Electrophoresis.2007,28(7): 1154-1160.
    [278]. Johnson, M.E., J.P. Landers. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis.2004,25(21-22):3513-27.
    [279]. Cheng, S., Z. Wang, S. Ge, H. Wang, P. He, Y. Fang, Q. Wang. Rapid separation of four probiotic bacteria in mixed samples using microchip electrophoresis with laser-induced fluorescence detection. Microchim. Acta.2012,176(3-4):295-301.
    [280]. Roddy, E.S., M. Price, A.G. Ewing. Continuous monitoring of a restriction enzyme digest of DNA on a microchip with automated capillary sample introduction. Anal. Chem. 2003,75(15):3704-3711.
    [281]. Lapos, J.A., D.P. Manica, A.G. Ewing. Dual fluorescence and electrochemical detection on an electrophoresis microchip. Anal. Chem.2002,74(14):3348-3353.
    [282]. Hellmich, W., D. Greif, C. Pelargus, D. Anselmetti, A. Ros. Improved native UV laser induced fluorescence detection for single cell analysis in poly(dimethylsiloxane) microfluidic devices. J. Chromatogr., A.2006,1130(2):195-200.
    [283]. Linz Thomas, H., M. Snyder Christa, M. Lunte Susan. Optimization of the Separation of NDA-Derivatized Methylarginines by Capillary and Microchip Electrophoresis. J Lab Autom.2012,17(1):24-31.
    [284]. Huang, B., C. Huang, P. Liu, F. Wang, N. Na, J. Ouyang. Fast haptoglobin phenotyping based on microchip electrophoresis. Talanta.2011,85(1):333-338.
    [285]. Kotani, A., M.A. Witek, J.K. Osiri, H. Wang, R. Sinville, H. Pincas, F. Barany, S.A. Soper. EndoV/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection. Anal. Methods.2012,4(1):58-64.
    [286]. Fernandez, C., A. Alonso. Microchip capillary electrophoresis protocol to evaluate quality and quantity of mtDNA amplified fragments for DNA sequencing in forensic genetics. Methods Mol Biol.2012,830:367-79.
    [287]. Shi, M., S. Zhao, Y. Huang, Y.-M. Liu, F. Ye. Microchip fluorescence-enhanced immunoaasay (sic) for simultaneous quantification of multiple tumor markers. J. Chromatogr., B Anal. Technol. Biomed. Life Sci.2011,879(26):2840-2844.
    [288]. Huang, Y, S. Zhao, M. Shi, J. Liu, H. Liang. Competitive immunoassay of phenobarbital by microchip electrophoresis with laser induced fluorescence detection. Analytica Chimica Acta.2011,694(1-2):162-166.
    [289]. Mainz, E.R., D.B. Gunasekara, G. Caruso, D.T. Jensen, M.K. Hulvey, J.A. Fracassi da Silva, E.C. Metto, A.H. Culbertson, C.T. Culbertson, S.M. Lunte. Monitoring intracellular nitric oxide production using microchip electrophoresis and laser-induced fluorescence detection. Anal. Methods.2012,4(2):414-420.
    [290]. Chen, Z., Q. Li, Q. Sun, H. Chen, X. Wang, N. Li, M. Yin, Y. Xie, H. Li, B. Tang. Simultaneous Determination of Reactive Oxygen and Nitrogen Species in Mitochondrial Compartments of Apoptotic HepG2 Cells and PC 12 Cells Based On Microchip Electrophoresis-Laser-Induced Fluorescence. Analytical Chemistry.2012,84(11):4687-4694.
    [291]. Schulze, P., M. Ludwig, F. Kohler, D. Belder. Deep UV Laser-Induced Fluorescence Detection of Unlabeled Drugs and Proteins in Microchip Electrophoresis. Anal. Chem.2005, 77(5):1325-1329.
    [292]. Qin, J., Y. Fung, D. Zhu, B. Lin. Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection. J. Chromatogr., A.2004,1027(1-2):223-229.
    [293]. Wang, S.-C., M.D. Morris. Plastic Microchip Electrophoresis with Analyte Velocity Modulation. Application to Fluorescence Background Rejection. Anal. Chem.2000,72(7): 1448-1452.
    [294]. Webster, J.R., M.A. Burns, D.T. Burke, C.H. Mastrangelo. Monolithic capillary electrophoresis device with integrated fluorescence detector. Anal. Chem.2001,73(7): 1622-1626.
    [295]. Chabinyc. M.L., D.T. Chiu, J.C. McDonald, A.D. Stroock, J.F. Christian, A.M. Karger, G.M. Whitesides. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem.2001,73(18):4491-4498.
    [296]. Liu. C.C., D.F. Cui, X. Chen. Development of an integrated direct-contacting optical-fiber microchip with light-emitting diode-induced fluorescence detection. Journal of Chromatography A.2007,1170(1-2):101-106.
    [297]. Li, H.F., Z.F. Chen, J.M. Lin. Optical Fiber Coupling of Light-Emitting Diode Induced Fluorescence Detection for Microchip Electrophoresis. Chinese Journal of Analytical Chemistry.2008,36(11):1587-1591.
    [298].陈兴,崔大付,张璐璐.集成一次性微流控芯片的便携式荧光检测系统.纳米技术与精密工程.2009,7(2):5.
    [299]. Edel, J.B., N.P. Beard, O. Hofmann, J.C. DeMello, D.D.C. Bradley, A.J. DeMello. Thin-film polymer light emitting diodes as integrated excitation sources for microscale capillary electrophoresis. Lab Chip.2004,4(2):136-140.
    [300]. Guo, Y., K. Uchiyama, T. Nakagama, T. Shimosaka, T. Hobo. An integrated microfluidic device in polyester for electrophoretic analysis of amino acids. Electrophoresis. 2005,26(9):1843-1848.
    [301]. Chang, P.L., T.C. Chiu, H.T. Chang. Stacking, derivatization, and separation by capillary electrophoresis of amino acids from cerebrospinal fluids. Electrophoresis.2006, 27(10):1922-1931.
    [302]. Ping, G., B. Zhu, M. Jabasini, F. Xu, H. Oka, H. Sugihara, Y. Baba. Analysis of Lipoproteins by Microchip Electrophoresis with High Speed and High Reproducibility. Anal. Chem.2005,77(22):7282-7287.
    [303]. Matsuno, Y.-k., M. Kinoshita, K. Kakehi. Fast analysis of glycosaminoglycans by microchip electrophoresis with in situ fluorescent detection using ethidium bromide. J. Pharm. Biomed. Anal.2005,37(3):429-436.
    [304]. Dang, F., K. Kakehi, K. Nakajima, Y. Shinohara, M. Ishikawa, N. Kaji, M. Tokeshi, Y. Baba. Rapid analysis of oligosaccharides derived from glycoproteins by microchip electrophoresis. J. Chromatogr., A.2006,1109(2):138-143.
    [305]. Ramsay, L.M., J.A. Dickerson, N.J. Dovichi. Attomole protein analysis by CIEF with LIF detection. Electrophoresis.2009,30(2):297-302.
    [306]. Ramsay, L.M., J.A. Dickerson, O. Dada, N.J. Dovichi. Femtomolar Concentration Detection Limit and Zeptomole Mass Detection Limit for Protein Separation by Capillary Isoelectric Focusing and Laser-Induced Fluorescence Detection. Analytical Chemistry.2009, 81(5):1741-1746.
    [307].卢巧梅,张兰,程锦添,陈国南.毛细管电色谱-激光诱导荧光联用技术进展.化学通报.2010,73(7).
    [308]. Chang, H.-T., T.-C. Chiu, C.-C. Huang. Laser-induced fluorescence detection in CE. 2010. CRC Press.
    [309].刘翻,于淑新,唐涛,孙元社,张维冰,李彤.新型三维可调共聚焦激光诱导荧光检测器的研制与评价.色谱.2011,29(9).
    [310]. Cover Picture:Electrophoresis 24'2011. Electrophoresis.2011,32(24).
    [311]. Geng, X., D. Wu, Y. Guan. A compact and highly sensitive light-emitting diode-induced fluorescence detector for capillary flow systems. Talanta.2012,88(0): 463-467.
    [312]. Xu, J., Y. Xiong, S.H. Chen, Y.F. Guan. Light Emitting Diode Induced Fluorescence Detector. Progress in Chemistry.2009,21(6):1325-1334.
    [313]. Yang, B.C., Y.F. Guan. Light-emitting-diode-induced fluorescence detector for capillary electrophoresis using optical fiber with spherical end. Talanta.2003,59(3):509-514.
    [314]. Yuan, J.L., G.L. Wang. Lanthanide-based luminescence probes and time-resolved luminescence bioassays. Trac-Trends in Analytical Chemistry.2006,25(5):490-500.
    [315]. Yuan, J.L., G.L. Wang. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. Journal of Fluorescence.2005,15(4):559-568.
    [316]. Yuan, J.L., M.Q. Tan, G.L. Wang. Synthesis and luminescence properties of lanthanide(Ⅲ) chelates with polyacid derivatives of thienyl-substituted terpyridine analogues. Journal of Luminescence.2004,106(2):91-101.
    [317]. Wang, Y., B. Li, L. Zhang, Q. Zuo, L. Liu, P. Li. Improved photoluminescence properties of a novel europium(Ⅲ) complex covalently grafted to organically modified silicates. Journal of Colloid and Interface Science.2010, In Press, Corrected Proof.
    [318]. Wang, D., B. Li, L. Zhang, J. Ying, X. Wu. Preparation, characterization, and luminescence properties of novel hybrid material containing europium(III) complex covalently bonded to MCM-41. Journal of Luminescence.2010,130(4):598-602.
    [319]. Tan, M.Q., G.L. Wang, Z.Q. Ye, J.L. Yuan. Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling. Journal of Luminescence.2006,117(1):20-28.
    [320]. Nishioka, T., J.L. Yuan, Y. Yamamoto, K. Sumitomo, Z. Wang, K. Hashino, C. Hosoya, K. Ikawa, G.L. Wang, K. Matsumoto. New luminescent europium(III) chelates for DNA labeling. Inorganic Chemistry.2006,45(10):4088-4096.
    [321]. Ye, Z.Q., M.Q. Tan, G.L. Wang, J.L. Yuan. Preparation, characterization and application of fluorescent terbium complex-doped zirconia nanoparticles. Journal of Fluorescence.2005,15(4):499-505.
    [322]. Le, B.A., S. Shen, K. Lew, M. Weinfeld, X.C. Le. Detection of benzo(a)pyrene diol epoxide-DNA adducts in mononuclear white blood cells by CE immunoassay and its application to studying the effect of glutathione depletion. Electrophoresis.2009,30(9): 1558-1563.
    [323].刘玉兰.液相色谱-串联质谱法检测食用油脂中苯并芘.农业机械.2012(20).
    [324].弓玉红.萃取-紫外分光光度法测定土壤中3,4-苯并芘含量.山西农业科学.2012,40(4).
    [325].GB/T 22509-2008.动植物油脂中苯并(a)芘的测定-反相高效液相色谱法.
    [326]. Leipertz, A., A. Braeuer, J. Kiefer, A. Dreizler, C. Heeger. Laser-induced fluorescence. 2010. Wiley-VCH Verlag GmbH & Co. KGaA.
    [327]. Oguri, S. Electromigration methods for amino acids, biogenic amines and aromatic amines. J. Chromatogr., B:Biomed. Sci. Appl.2000.747(1+2):1-19.
    [328]. Rodriguez, I., H.K. Lee, S.F.Y. Li. Ion-pair solid-phase extraction of biogenic amines before micellar electrokinetic chromatography with laser-induced fluorescence detection of their fluorescein thiocarbamyl derivatives. Electrophoresis.1999,20(9):1862-1868.
    [329]. Kao, Y.Y., K.T. Liu, M.F. Huang, T.C. Chiu, H.T. Chang. Analysis of amino acids and biogenic amines in breast cancer cells by capillary electrophoresis using polymer solutions containing sodium dodecyl sulfate. Journal of Chromatography A.2010,1217(4):582-587.
    [330].GB.T21970-2008水质组胺等五种生物胺的测定_高效液相色谱法.
    [331]. Molina, M., M. Silva. In-capillary derivatization and analysis of amino acids, amino phosphonic acid-herbicides and biogenic amines by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis.2002,23(14):2333-2340.
    [332]. Du, M., V. Flanigan, Y. Ma. Simultaneous determination of polyamines and catecholamines in PC-12 tumor cell extracts by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis.2004,25(10-11):1496-502.
    [333].张振中,吴逸明,程维明,吴如金.毛细管电泳-激光诱导荧光分析血清多胺的研究.生物化学与生物物理进展.2001,28(3):3.
    [334].曹丽伟,孟建新,刘咏娟.毛细管电泳分离-激光诱导荧光检测生物胺.分析化学.2008,36(1):5.
    [335].李智.茶叶HPLC指纹图谱研究进展.福建茶叶.2010(12).
    [336]. Wang, Y, X. Yang, K. Li, C. Li, L. Li, J. Li, H. Huang, Y. He, C. Ye, X. Song. Simultaneous determination of theanine, gallic acid, purine alkaloids, catechins, and theaflavins in black tea using HPLC. Int. J. Food Sci. Technol.2010,45(6):1263-1269.
    [337]. Yoshikawa, M., T. Wang, S. Sugimoto, S. Nakamura, A. Nagatomo, H. Matsuda, S. Harima. Functional saponins in tea flower (flower buds of Camellia sinensis): gastroprotective and hypoglycemic effects of floratheasaponins and qualitative and quantitative analysis using HPLC. Yakugaku Zasshi.2008,128(1):141-151.
    [338]. Sun, L.-c. Determination of caffeine concentration of tea by HPLC. Zhongguo Weisheng Jianyan Zazhi.2008,18(10):2136-2137.
    [339]. Saito, S.T., P.E. Froehlich, G. Gosmann, A.M. Bergold. Full validation of a simple method for determination of catechins and caffeine in Brazilian green tea (Camellia sinensis var. assamica) using HPLC. Chromatographia.2007,65(9/10):607-610.
    [340]. Luo, S., J. Xue. Determination of polyphenols in tea extract by high performance liquid chromatography. Fujian Fenxi Ceshi.2005,14(4):2302-2303.
    [341]. Huang, X., Y. Huang, J. Wang, Q. Wang, B. Huang. Detection of three purines in tea using amide-type stationary phase for high performance liquid chromatography. Fenxi Huaxue.2005,33(5):627-630.
    [342]. Hemmila, I., V.-M. Mukkala. Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays. Crit. Rev. Clin. Lab. Sci.2001,38(6):441-519.
    [343]. Yuan, J., S. Sueda, R. Somazawa, K. Matsumoto, K. Matsumoto. Structure and luminescence properties of the tetradentate β-diketonate-europium(III) complexes. Chem. Lett. 2003,32(6):492-493.
    [344]. Tsaryuk, V.I., K.P. Zhuravlev, A.V. Vologzhanina, V.A. Kudryashova, V.F. Zolin. Structural regularities and luminescence properties of dimeric europium and terbium carboxylates with 1,10-phenanthroline (C.N.=9). Journal of Photochemistry and Photobiology A:Chemistry.2010,211(1):7-19.
    [345]. Song, B., G.L. Wang, M.Q. Tan, J.L. Yuan. A europium(Ⅲ) complex as an efficient singlet oxygen luminescence probe. Journal of the American Chemical Society.2006,128(41): 13442-13450.
    [346]. Yuan, J., K. Matsumoto, H. Kimura. A New Tetradentate (3-Diketonate-Europium Chelate That Can Be Covalently Bound to Proteins for Time-Resolved Fluoroimmunoassay. Analytical Chemistry.1998,70(3):596-601.
    [347]. Matsumoto, K., Y. Tsukahara, T. Uemura, K. Tsunoda, H. Kume, S. Kawasaki, J. Tadano, T. Matsuya. Highly sensitive time-resolved fluorometric determination of estrogens by high-performance liquid chromatography using a β-diketonate europium chelate. Journal of Chromatography B.2002,773(2):135-142.
    [348]. Yamaguchi, Y, K. Hashino, M. Ito, K. Ikawa, T. Nishioka, K. Matsumoto. Sodium dodecyl sulfate polyacrylamide slab gel electrophoresis and hydroxyethyl cellulose gel capillary electrophoresis of luminescent lanthanide chelate-labeled proteins with time-resolved detection. Analytical Sciences.2009,25(3):327-332.
    [349]. Righetti, P.G., R. Sebastiano, A. Citterio. Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics.2013,13(2):325-340.
    [350]. Dolnik, V. Capillary electrophoresis of proteins 2003-2005. Electrophoresis.2006, 27(1):126-141.
    [351]. Dolnik, V. Recent developments in capillary zone electrophoresis of proteins. Electrophoresis.1999,20(15-16):3106-3115.
    [352]. Ye, M., S. Hu, W.W.C. Quigley, N.J. Dovichi. Post-column fluorescence derivatization of proteins and peptides in capillary electrophoresis with a sheath flow reactor and 488 nm argon ion laser excitation. J. Chromatogr., A.2004,1022(1-2):201-206.
    [353]. Jin, L.J., B.C. Giordano, J.P. Landers. Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without pre-or postcolumn labeling. Analytical Chemistry.2001,73(20):4994-4999.
    [354]. Chen, D.Y., K. Adelhelm, X.L. Cheng, N.J. Dovichi. A simple laser-induced fluorescence detector for sulforhodamine 101 in a capillary electrophoresis system:Detection limits of 10 yoctomoles or six molecules. Analyst (Cambridge, U. K.).1994,119(2):349-52.
    [355]. Pentoney, S.L., Jr., X. Huang, D.S. Burgi, R.N. Zare. On-line connector for microcolumns:application to the on-column o-phthaldialdehyde derivatization of amino acids separated by capillary zone electrophoresis. Anal. Chem.1988,60(23):2625-9.
    [356]. Yamamoto, D., T. Kaneta, T. Imasaka. Postcolumn reactor using a laser-drilled capillary for light-emitting diode-induced fluorescence detection in CE. Electrophoresis.2007, 28(22):4143-4149.
    [357]. Rezenom, Y.H., J.M. Lancaster, III, J.L. Pittman, S.D. Gilman. Laser ablation construction of on-column reagent addition devices for capillary electrophoresis. Anal. Chem. 2002,74(7):1572-1577.
    [358]. Fluri. K... G. Fitzpatrick. N. Chiem. D.J. Harrison. Integrated Capillary Electrophoresis Devices with an Efficient Postcolumn Reactor in Planar Quartz and Glass Chips. Anal. Chem. 1996,68(23):4285-4290.
    [359]. Albin, M., R. Weinberger, E. Sapp, S. Moring. Fluorescence detection in capillary electrophoresis:evaluation of derivatizing reagents and techniques. Anal. Chem.1991,63(5): 417-22.
    [360]. Zhu, R., W.T. Kok. Post-column reaction system for fluorescence detection in capillary electrophoresis. J. Chromatogr., A.1995,716(1+2):123-33.
    [361]. Kelly, J.A., K.R. Reddy, C.S. Lee. Mechanistic Studies of Postcapillary Affinity Detection for Capillary Zone Electrophoresis Based on the Biotin-Streptavidin System. Anal. Chem.1997,69(24):5152-5158.
    [362]. Oldenburg, K.E., J.V. Sweedler. Simple Sheath Flow Reactor for Post-column Fluorescence Derivatization in Capillary Electrophoresis. Analyst (Cambridge, U. K.).1997, 122(12):1581-1585.
    [363]. Sun, L., J. Duan, D. Tao, Z. Liang, W. Zhang, L. Zhang, Y. Zhang. A facile microdialysis interface for on-line desalting and identification of proteins by nano-electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry.2008,22(15):2391-2397.
    [364]. Zhang, R., S. Hjerten. A Micromethod for Concentration and Desalting Utilizing a Hollow Fiber, with Special Reference to Capillary Electrophoresis. Analytical Chemistry. 1997,69(8):1585-1592.
    [365]. Qiao, X.Q., L.L. Sun, L. Wang, Y. Liang, L.H. Zhang, Y.C. Shan, X.J. Peng, Z. Liang, YK. Zhang. High sensitive protein detection by hollow fiber membrane interface based protein enrichment and in situ fluorescence derivatization. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences.2011,879(17-18): 1439-1443.
    [366]. Yang, C., H. Liu, Q. Yang, L. Zhang, W. Zhang, Y. Zhang. On-Line Hyphenation of Capillary Isoelectric Focusing and Capillary Gel Electrophoresis by a Dialysis Interface. Analytical Chemistry.2002,75(2):215-218.
    [367]. Sun, L., J. Ma, X. Qiao, Y. Liang, G. Zhu, Y. Shan, Z. Liang, L. Zhang, Y. Zhang. Integrated Device for Online Sample Buffer Exchange, Protein Enrichment, and Digestion. Analytical Chemistry.2010,82(6):2574-2579.
    [368]. Luo, X.Y., Y. Wang, L.Y. Zhang, G.G. He, W.B. Zhang, Y.P. Du. A chemical potential driven micro-membrane sampler and its application for the determination of trace carbonyl compounds in air. Talanta.2010,82(5):1802-1808.
    [369]. Cordero, B.M., J.L. Perez Pavon, C. Garcia Pinto, M.E. Fernandez Laespada, R. Carabias Marti nez, E. Rodriguez Gonzalo. Analytical applications of membrane extraction in chromatography and electrophoresis. Journal of Chromatography A.2000,902(1):195-204.
    [370]. Yu, C.-Z., Y.-Z. He, G.-N. Fu, H.-Y. Xie, W.-E. Gan. Determination of kanamycin A, amikacin and tobramycin residues in milk by capillary zone electrophoresis with post-column derivatization and laser-induced fluorescence detection. J. Chromatogr., B Anal. Technol. Biomed. Life Sci.2009,877(3):333-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700