‘金冠’苹果miRNA克隆分析及Md-miRLn11靶向调控Md-NBS基因表达影响斑点落叶病抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNA (miRNA)作为非编码小RNA在植物生长发育各个阶段都起到重要作用。RNA前体(primary RNA)经核醣核酸聚合酶Ⅱ(RNA polym erase Ⅱ)转录后依靠自身的序列特点折叠形成颈环二级结构,再由DCL1酶切割形成21-24nt长度的成熟miRNA。目前在权威的miRBase数据库中已经有52个物种的4053条:miRNA序列注册(miRBaese Release18),它们分别属于不同的miRNA家族,在植物的生长发育、植物抗逆等方面起到重要作用。miRNA的功能多样性以及可以在砧木和接穗之间传递的特点使得人们猜测它在以嫁接为主要繁殖方式的果树中起到重要的调节作用。然而目前有“世界第一水果”之称的苹果有关miRNA的报道极少,特别是苹果miRNA与抗病之间的研究仍是空白。在当前真菌病害严重威胁苹果产业发展的情况下,研究苹果miRNA与抗病性的关系具有非常重要的理论与应用价值。本研究以‘金冠’苹果为试材,利用各种技术手段,克隆了miRNA及其前体,分析了miRNA作用,明确了Md-miRLn11靶向NBS类蛋白基因调控真菌病害-斑点落叶病,主要研究结果如下:
     1.利用目前常用的高通量测序技术和生物信息学预测技术,结合‘金冠’苹果基因组信息、miRBase和PMRB (plant miRNA database)数据库中的已知miRNA信息全面分析预测苹果miRNA。通过以上两种方法并根据序列的二级结构特点、自由能大小等,最终共筛选得到146条可能的苹果miRNA前体序列,将这些miRNA前体序列定位在‘金冠’苹果基因组中,发现苹果基因组中miRNA呈现一种集中成束出现的规律,同一家族的miRNA经常在基因组中2-3M的区域内出现。
     2.根据苹果基因组信息设计特异性引物克隆这146个miRNA前体,结果显示克隆结果与预测序列基本相符(个别碱基与基因组中序列不同,现已经多次测序确定)。同时利用茎环引物反转录的方法在‘金冠’苹果中克隆这146条miRNA前体产生的成熟miRNA,共获得11个新miRNA,22个保守miRNA,非保守miRNA8个。推测未克隆到的miRNA可能在苹果生长发育的其他时期表达,或者在逆境条件下表达。
     3.提取‘金冠’苹果叶片、韧皮部、花、果肉、果皮小分子RNA,利用real-timePCR的方法分析这41个成熟miRNA在这些组织中的表达量。结果显示这些miRNA在各组织中的表达量大不相同,各个组织中miRNA的整体表达水平也不相同。总体分析,在叶片和花中miRNA总体表达量较小,而在果实中总体表达量较高。由此推测在苹果果实的发育过程中参与各种代谢的miRNA种类更多,苹果果实发育过程相对于叶片和花发育过程可能更复杂。
     4.根据苹果基因组信息,运用SOPE软件将146个‘金冠’苹果pri-miRNA可形成的成熟miRNA在基因组的靶位点做出预测。发现几乎所有miRNA都对应多个对应的靶位点,个别miRNA未找到基因组中的靶位点。并根据http://sma-tools.cmp.uea.ac.uk/软件预测已知miRNA的功能,根据http://linux1.softberry.com/berry.phtml软件预测新miRNA的功能。针对能够预测到功能的新miRNA,利用miRNA靶基因5'RACE的方法鉴定miRNA与靶基因之间的切割关系,最终证明Md-miRLn3、Md-miRLn4、Md-miRLn11可以分别切割其对应的靶基因,对苹果各个miRNA功能的预测可以应用在今后的实验中。在预测中发现Md-miRLn11靶向一个NBS类抗病蛋白基因,可能与植物抗真菌病相关。
     5.根据Md-miRLn11可靶向切割Md-NBS基因的实验基础,对40个抗感苹果斑点落叶病品种的Md-miRLn11与Md-NBS基因表达进行分析。Real-time PCR的结果显示在感病品种中Md-miRLn11的表达量显著高于抗病品种,而抗病品种中Md-NBS基因的表达量明显高于感病品种,二者之间存在一定的对应关系。由以上两实验初步证明Md-miRLn11可靶向控制Md-NBS基因的表达。
     6.进一步分析Md-miRLn11与抗病基因Md-NBS之间的关系发现,抗性苹果品种‘鸡冠’叶片注射Md-miRLn11超表达载体后接种斑点落叶病菌,96.5%的株系都表现出不同程度的斑点落叶病表型;在感病品种‘富士’中注射Md-NBS基因超表达载体,53.9%的株系表现出斑点落叶病抗性,仍有29.5%的植株表现出较严重的感病表型。实验结果表明在苹果中Md-miRLn11可以通过调控Md-NBS基因的表达改变植株对斑点落叶病的抗性,即超表达Md-miRLn11降低Md-NBS基因表达量导致斑点落叶病抗性降低;超表达Md-NBS基因可在一定程度上增强斑点落叶病抗性。
     综上所述,本研究在‘金冠’苹果中克隆获得了146个miRNA,11个为其他物种中未见报到的新microRNA,其中,Md-miRLn11靶向一个NBS-LRR类蛋白基因,Md-miRLn11通过调控Md-NBS基因表达影响真菌病害-苹果斑点落叶病抗性。
As an important plant non-coding small RNA, microRNA plays an important role in various stages of plant growth process. In plants, the precursors (primary RNA) transcription by RNA polymerase Ⅱ (RNA polymerase Ⅱ), and rely on their own sequence features and the secondary structure of the stem-loop to produce mature microRNA. Then cut by the DCL1enzyme to form the21-24nt length of small RNA, which regulates a variety of plant physiological metabolism, resistance and grow of plant (Chen,2004, Zhu et al2008). The miRBase database showed4053miRNA sequences which from52species registered (miRBaese Release18), they belong to different microRNA family, play an important role in plant growth and development or stresses. MiRNA functional diversity and can be passed between the rootstock and scion features make it save the species reproduction quality in grafted fruit trees obviously. However, at present the apple miRNA rarely reported, especially in the apple between miRNA and disease research is still blank. The research of relationship between miRNA and disease resistance has a very important value of theory and application in fruit. In this study, Apple'Golden Delicious'as test material, the miRNA and their precursors were cloned by various techniques. The function analyze showed that Md-miRLn11targeted an NBS class protein gene and regulated leaf spot disease. The mainly results are as follows:
     1. The high-throughput sequencing and bioinformatics technology was combined and used to prediction miRNAs in apple'Golden Delicious'. And than compared with the apples genomic and the miRBase and PMRB (plant miRNA database) database. Through the above two methods and in accordance to the RNA secondary structural characteristics, size, free energy and so on,146possible miRNA precursors were found. These pre-miRNA sequences were located on apple genome and it shows a focused bundle phenomenon, the same family miRNA often apperes at a2-3M position in the genome.
     2. According to the apple genomic information specific primers designed and than146miRNA precursors the cloned. The results showed that clone basically consistent with the predicted sequence (individual nucleotide sequences were different with the genome sequence, we revised them according to the several sequencing results). Than the Stem-loop primer method was used to clone mature miRNA of the146miRNA precursors. The resuled showed a total of11new miRNA,22conserved miRNA, and8non-conserved miRNA. Speculated that miRNA which can not be cloned may express in other periods of growth and development of apple or under stress conditions.
     3. Small RNA was extracted from apple'Golden Delicious' leaf, phloem, flower, fruit pulp, peel for the real-time PCR assay to analyze those41mature miRNA expression in those tissues. The results showed that these miRNA expression in those tissues very differently. Comprehensive analysis, there is smaller amount of miRNA expression in the leaves and flowers, and larger amount of miRNA expression in the fruit. This result indicated that more miRNA involved in the process of apple fruit development and little miRNA related to the process of leaf and flower development.
     4. According to the apple genomic information, the SOPE Software was used to compare146mature miRNA formed from pri-miRNA to the apple genom, than their target sites were predicted at located in the genome. We found that almost all miRNA target not noly one target sites, individual is not found miRNA target site in the genome. And according to the miRNA prediction software of http://srna-tools.cmp.uea.ac.uk/to pridict the known conserved miRNA function, according to the miRNA prediction software of http://linux1.softberry.com/berry.phtml to pridict the new miRNA function. In able to predict functions for new miRNA, the method of5'RACE was used to identified the miRNAcutting position in the target gene. Ultimately proved Md-miRLn3, Md-miRLn4, Md-miRLn11can cut their respectively corresponding target genes, this indicat that each predicted miRNA function can be applied in future experiments. In one of them, Md-miRLn11, targeted a NBS class resistance gene, may be associated with plant disease related.
     5. According to the result of Md-miRLn11can cut Md-NBS gene, the Md-miRLn11and Md-NBS gene expression were analysised in40anti-susceptible apple varieties. Real-time PCR results showed that the Md-miRLn11expression was significantly higher in susceptible varieties than that in resistant varieties, and Md-NBS gene expression was significantly higher in resistant varieties than in the susceptible varieties. Thus these two preliminary experiments prove Md-miRLn11can control Md-NBS target gene expression.
     6. Further analysis of the Md-miRLn11and its target gene Md-NBS found that, when infiltrated Md-miRLn11in resistant varieties apple'JiGuan'then inoculated leaf spot pathogen,96.5%of the plants showed different degrees of leaf spot disease phenotype. When infiltrated Md-NBS in susceptible apple 'Fuji' then inoculated leaf spot pathogen,53.9%of the plants showed resistance to leaf spot disease. There is29.5%of the plants still showed disease phenotype. Experimental results show that the apple Md-miRLn11can regulate Md-NBS gene expression and changes plant resistance against leaf spot disease, overexpression Md-miRLn11reduce Md-NBS gene expression causes leaf spot resistance reduced; Overexpressing Md-NBS gene expression can enhance rsistance to leaf spot resistance in a certain extent.
     In summary,146microRNA precursors were cloned from apple (Golden Delicious) by RNA sequencing and computational analysis, and found11to be novel.. Among them, Md-miRLnll targeted the Md-NBS gene (an NBS-LRR protein), and decreases resistance to Alternaria leaf spot.
引文
Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. RNA.2003,9 (3):277-279.
    Baker CC, Sieber P, Wellmer F, Meyerowitz EM. The early extra petals 1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol.2005,15 (4):303-315.
    Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell.2004,7 (5):653-662.
    Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell.2004,116 (2):281-297.
    Baskerville, S, Bartel, DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA.2005,11 (3):241-247.
    Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA discovery. Nat Genet.2006 Suppl:S2-7.
    Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, Okamura K, Dai Q, Bortolamiol-Becet D, Martin R, Zhao Y, Zamore PD, Hannon GJ, Marra MA, Weng Z, Perrimon N, Lai EC. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res.2011,21 (2):203-215.
    Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J.2008,53 (5):739-749.
    Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA.2006,12 (5):913-920.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res.2005,33 (20):e179.
    Chen XM. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science.2004,303 (5666):2022-2025.
    Chen XM. MicroRNA biogenesis and function in plants. FEBS Lett.2005,579 (26):5923-5931.
    Chen.XM. MicroRNA Metabolism in Plants. Curr Top Microbiol Immunol.2008,320:117-136.
    Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrassl results from overexpression of a tandem microRNA. Nat Genet.2007,39 (4):544-549.
    Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet.2012,8 (1): e1002419.
    Diederichs S, Haber DA. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell.2007,131:1097-1108.
    Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot.2009,103 (1):29-38.
    Doyle JJ and Doyle JL. Isolation of plant DNA from fresh tissue. Focus.1990,12:13-15.
    Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol.2003,5(1):R1.
    Fattash I, Voss B, Reski R, Hess WR, Frank W. Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol.2007,7:13.
    Feng JL, Wang K, Liu X, Chen SN, Chen JS. The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene.2009,437 (1-2):14-21.
    Feng XM, Qiao Y, Mao K, Hao YJ. Ectopic overexpression of AtmiR398b gene in tobacco influences seed germination and seedling growth. Plant Cell Tiss Organ Cult.2010,102:53-59.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998,391:806-811.
    Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol.2005,15 (22):2038-2043.
    Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase:microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.2006,34:D140-144.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase:tools for microRNA genomics. Nucleic Acids Res.2008,36:D154-158.
    Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell.2005,17 (5): 1376-1386.
    Guo N, Ye WW, Wu XL, Shen DY, Wang YC, Xing H, Dou DL. Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome.2011,54 (11):954-958.
    Gutermuth A, Gyorgy Z, Hegedus A, Pedryc A. Non-TIR-NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Acta Biol Hung.2011,62 (2):171-181.
    He XF, Fang YY, Feng L, Guo HS. Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett.2008,582 (16):2445-2452.
    Huang NC, Yu TS. The sequences of Arabidopsis GA-IN SENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. Plant J.2009,59 (6):921-929.
    Hutvagner G, Simard MJ. Argonaute proteins:key players in RNA silencing. Nat Rev Mol Cell Biol. 2008,9:22-32.
    Jagadeeswaran G, Zheng Y, Li YF, Shukla LI, Matts J, Hoyt P, Macmil SL, Wiley GB, Roe BA, Zhang W, Sunkar R. Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol.2009,184 (1):85-98.
    Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P; French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature.2007,449 (7161): 463-467.
    Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell.2004,14 (6):787-799.
    Kasai A, Kanehira A, Harada T. miR172 Can Move Long Distances in Nicotiana benthamiana. The Open Plant Science Journal.2010,4:1-6.
    Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell.2003,4 (2):205-217.
    Kidner CA, Martienssen RA. The developmental role of microRNA in plants. Curr Opin Plant Biol. 2005,8 (1):38-44.
    Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J.2005,42 (1):84-94.
    Kim KH, Lee CU. Resistance of Alternaria mali Roberts to iprodione. Korean Journal of Plant Pathology,1987,3 (4):270-276.
    Klevebring D, Street NR, Fahlgren N, Kasschau KD, Carrington JC, Lundeberg J, Jansson S. Genome-wide profiling of populus small RNAs. BMC Genomics.2009,10:620-638.
    Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res.2004,32 (21):6284-6291.
    Krek A, Griin D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet.2005,37 (5): 495-500.
    Kalantidis K, Schumacher HT, Alexiadis T, Helm JM. RNA silencing movement in plants. Biol Cell,. 2008,100:13-26.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science.2001,294 (5543):853-858.
    Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, Dolja VV, Calvino LF, Lopez-Moya JJ, Burgyan J. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J.2006,25 (12):2768-2780.
    Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science.2001,294 (5543):858-862.
    Lee CU, Kim KH. Cross-tolerance of Alternaria mali to various fungicides. Korean Journal of Mycology.1986,14 (1):71-78.
    Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993,75 (5):843-844.
    Lee SY, Choi YJ, Ha YM, Lee DH. Ectopic expression of apple MbR7 gene induced enhanced resistance to transgenic Arabidopsis plant against a virulent pathogen. J Microbiol Biotechnol. 2007,17 (1):130-137.
    Lee Y, Kim M, Han J, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J.2004,23:4051-4060.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRN A targets. Cell.2005,120 (1):15-20.
    Li F and Ding SW. Virus Counterdefense:Diverse Strategies for Evading the RNASilencing Immunity. Annu Rev Microbiol.2006,60:503-531.
    Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B. MicroRNA regulation of plant innate immune receptors. PNAS.2012,109(5):1790-1795.
    Li R, Li Y, Kristiansen K, Wang J. SOAP:short oligonucleotide alignment program. BIOINFORMATICS.2008,24 (5):713-714.
    Liang FS, Kong FN, Zhou CJ, Cao PX, Ye CJ, Wang B. Cloning and characterization of a non-TIR-NBS-LRR type disease resistance gene analogue from peach. DNA Seq.2005,16 (2): 103-110.
    Liang G, Yang F, Yu D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J.2010,62 (6):1046-1057.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature.2005,433 (7027):769-773.
    Lindow M, Jacobsen A, Nygaard S, Mang Y, Krogh A. Intragenomic matching reveals a huge potential for miRNA-mediated regulation in plants. PLoS Comput Biol.2007,3(11):e238.
    Liu C, Zhang L, Sun J, Luo YZ, Wang MB, Fan YL, Wang L. A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Molecular biology reports.2010,37 (2): 903-909.
    Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA.2008,14 (5):836-843.
    Liu JJ, Ekramoddoullah AK. The CC-NBS-LRR Subfamily in Pinus monticola:Targeted Identification, Gene Expression, and Genetic Linkage with Resistance to Cronartium ribicola. Phytopathology, 2007,97 (6):728-736.
    Liu JJ and Ekramoddoullah AK. Genomic organization, induced expression and promoter activity of a resistance gene analog (PmTNL1) in western white pine (Pinus monticola). Planta.2011,233: 1041-1053.
    Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell.2002,14 (7):1605-1619.
    Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science.2002,297 (5589):2053-2056.
    Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J.2008,55 (1):131-151.
    Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell.2005,17 (8):2186-2203.
    Ma C, Lu Y, Bai S, Zhang W, Duan X, Meng D, Wang Z, Wang A, Zhou Z, Li T. Cloning and Characterization of miRNAs and Their Targets, Including a Novel miRNA-Targeted NBS-LRR Protein Class Gene in Apple (Golden Delicious). Mol Plant.2013, (July online).
    Martin A, Adam H, Diaz-Mendoza M, Zurczak M, Gonzalez-Schain ND, Suarez-Lopez P. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development.2009, 136 (17):2873-2881.
    Martinez G, Forment J, Llave C, Pallas V, Gomez G. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PLoS One.2011,6 (5):e19523.
    Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F, Vandesompele J. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res.2008,36 (21):e143.
    Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK. Criteria for annotation of plant MicroRNAs. Plant Cell.2008,20 (12):3186-3190.
    Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T.Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res.2008,18 (10):1602-1609.
    Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J.2008,53 (4):674-690.
    Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature.2003,425 (6955):257-263.
    Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol.2002,12 (17): 1484-1495.
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Mailer B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature.2000,408:86-89.
    Raherison S, Clerc M, Trombert S, Cado S, Normandin F, Bebear C, de Barbeyrac B. Real-time high resolution melting PCR for identification of the Swedish variant of Chlamydia trachomatis. J Microbiol Methods.2009,78 (1):101-103.
    Ramkissoon SH, Mainwaring LA, Sloand EM, Young NS, Kajigaya S. Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Mol Cell Probes.2006,20 (1):1-4.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in Plants. Genes Dev.2002, 16(13):1616-1626.
    Ribas AF, Cenci A, Combes MC, Etienne H, Lashermes P. Organization and molecular evolution of a disease-resistance gene cluster in coffee trees. BMC Genomics.2011,12:240-251.
    Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development.2010,137 (1):103-112.
    Sato K, Yoshikawa N, Takahashi T. Complete nucleotide sequence of the genome of an apple isolate of apple chlorotic leaf spot virus. Gen Virol.1993,74:1927-1931.
    Schmittgen TD, Lee EJ, Jiang J. High-throughput real-time PCR. Methods Mol Biol.2008,429:89-98.
    Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Bipl.2008,6 (9):e230.
    Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell.2006,18 (5):1121-1133.
    Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques.2005,39 (4):519-525.
    Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot.2007,58 (2):221-227.
    Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell.2012, 24(3):859-874.
    Song C, Jia Q, Fang J, Li F, Wang C, Zhang Z. Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biol(Stuttg).2010,12 (6):927-934.
    Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila MicroRNA targets. PLoS Biol.2003,1 (3):E60.
    Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O. Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics.2008,9:160.
    Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell.2006,18 (8):2051-2065.
    Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell.2004,16 (8):2001-2019.
    Talmor-Neiman M, Stav R, Frank W, Voss B, Arazi T. Novel micro-RN As and intermediates of micro-RNA biogenesis from moss. Plant J.2006,47 (1):25-37.
    Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ.2005,29 (3):151-159.
    Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM. Characterisation of microRNAs from apple(Malus domestica'Royal Gala') vascular tissue and phloem sap. BMC Plant Biol.2010,10:159-174.
    Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, GleaveAP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R. The genome of the domesticated apple (Malus×domestica Borkh.). Nat Genet.2010,42 (10): 833-839.
    Vella MC, Reinert K, Slack FJ. Architecture of a validated microRNA:target interaction. Chem Biol. 2004,11 (12):1619-1623.
    Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell.2009,136 (4):669-687.
    Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs:synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta.2010,1803 (11):1231-1243.
    Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res.2004,32 (5):1688-1695.
    Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell.2005,17 (8):2204-2216.
    Wang L, Liu H, Li D, Chen H. Identification and characterization of maize microRNAs involved in the very early stage of seed germination. BMC Genomics.2011,12:154.
    Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ. MicroRNA 171 c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant.2010,3 (5):794-806.
    Wang L, Wang MB, Tu JX, Helliwell CA, Waterhouse PM, Dennis ES, Fu TD, Fan YL. Cloning and characterization of microRNAs from Brassica napus. FEBS Lett.2007,581 (20):3848-3856.
    Warthmann N, Chen H, Ossowski S, Weigel D, Herve P. Highly specific gene silencing by artificial miRNAs in rice. PLoS One.2008,3 (3):e1829.
    Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development.2006,133 (18):3539-3547.
    Xie F, Zhang B. Target-align:a tool for plant microRNA target identification. Bioinformatics.2010,26 (23):3002-3003.
    Xie FL, Frazier TP and Zhang BH. Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass(Panicum virgatum). PLANTA.2010,232 (2):417-434.
    Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol.2006,42 (1): 280-293.
    Xie Zr Khanna K, Ruan S. Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol. 2010,21 (8):790-797.
    Yan N, Lu Y, Sun H, Tao D, Zhang S, Liu W, Ma Y. A microarray for microRNA profiling in mouse testis tissues. Reproduction.2007,134 (1):73-79.
    Yang L, Wu G, Poethig RS. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc Natl Acad Sci USA.2012, 109(1):315-320.
    Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat(Triticum aestivum L.). Genome Biol.2007,8 (6):R96.
    Yew CW, Kumar SV. Isolation and cloning of microRNAs from recalcitrant plant tissues with small amounts of total RNA:a step-by step approach. Mol Biol Rep.2012,39 (2):1783-1790.
    Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ. A systemic small RNA signaling system in plants. Plant cell.2004,16:1979-2000.
    Yu H, Song C, Jia Q, Wang C, Li F, Nicholas KK, Zhang X, Fang J. Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiologia Plantarum.2011,141 (1):56-70.
    Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y. Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot.2012,63 (2): 1025-1038.
    Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol. 2007,210(2):279-289.
    Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci.2006,63 (2):246-254.
    Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA. Identification and characterization of new plant microRNAs using EST analysis. Cell Res.2005,15 (5):336-660.
    Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute 1 cleavage activity to counter plant defense. Genes Dev. 2006,20 (23):3255-3268.
    Zhang Y. miRU:an automated plant miRNA target prediction server. Nucleic Acids Res.2005,33(Web Server issue):W701-704.
    Zhu JK. Reconstituting plant miRNA biogenesis. PNAS.2008,105:9851-9852.
    陈功友,袁红霞,李秀生,史淑华.苹果斑点病发病因子观察及药剂防治试验[J].河南农业大学学报.1990,2:205-211.
    胡同乐,曹克强,王树桐,甄文超.生长季苹果斑点落叶病流行主导因素的确定[J].植物病理学报.2005,35(4):374-377.
    金龙国,王川,刘进元.植物MicroRNA[J].中国生物化学与分子生物学报.2006,22(8):609-614.
    李东鸿,赵政阳,赵惠燕,李鑫,梁俊,胡想顺.苹果病虫害综合防治技术规程(草案)[J].西北林学院学报.2004,4:113-115.
    时春喜,成卫宁,李恩才,袁军儒,王湘芹.陕西省苹果斑点落叶病发生规律及化学防治试验[J].西北农业学报.2003,12(4):43-45.
    苏静,马青.苹果内生细菌的分离及其对苹果斑点落叶病的生物防治研究[D].西北农林科技大学2007.
    土屋七郎.富士苹果60年[M].1988.日本博光山版有限会社.
    王金友,朱虹,李美娜,方永玮,吴明勤,林晃,张互助,陆敏.苹果斑点落叶病侵染及发生规律研究[J].中国果树.1992,2:11-14.
    王金政,薛晓敏,路超.我国苹果生产现状与发展对策[J].山东农业科学.2010,6:117-119.
    徐秉良,郁继华,魏志贞.苹果黑点病菌寄主范围与生物学特性植物[J].保护学报.2002,9(2):129-132.
    严志农,傅学池,贺敦强,梅汝鸿.苹果斑点落叶病的生物防治研究[J].中国果树.1995,4:28-29.
    张坤,党志国,赵磊,赵政阳.富士、秦冠苹果对早期落叶病抗性的遗传分析[J].西北林学院学报.2007,22(4):128-130.
    赵磊,赵政阳,党志国,张坤,张小猜.秦冠、富士苹果杂交后代抗早期落叶病的遗传分析[J].西北农业学报.2008,17(2):197-201.
    中国国家统计局.中国统计年鉴[M].2006-2009.北京:中国统计出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700