SLCO1B1基因多态性对瑞格列奈药动学的影响以及PPAR-γ2和PTPRD基因多态性对吡格列酮疗效的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物基因组学(pharmacogenomics)是研究个体遗传差异与药物效应之间相互关系的学科。主要研究编码整个基因组范围内所有编码与药物代谢、药物转运、效应相关蛋白质的基因,其主要分子基础是基因多态性(single nucleotide polymorphism, SNP)。
     瑞格列奈是一种非磺酰脲类促胰岛素分泌剂,广泛应用于2型糖尿病的治疗。人体试验提示瑞格列奈药动学存在显著的个体差异。我们认为除了人口统计学、个体病理生理不同所致的差异外,其中遗传差异主要源自负责其转运的转运体OATP1B1和MDR1以及负责其代谢的代谢酶CYP3A4, CYP2C8和UGT1A1的基因突变。
     为了综合评价这些影响因素对瑞格列奈药动学的影响,我们拟采用群体药动学(Population pharmacokinetics, PPK)分析方法。PPK是将经典的药代动力学原理与统计学模型结合分析,研究药物在某一特定群体中的动力学特征,最终建立数学模型来定量评价各因素对药物药动学的影响。
     我们整合了4项瑞格列奈的Ⅰ期临床试验数据,采用群体药动学方法综合评价了SLCO1B1c.521T>C和c.388A>G, CYP3A4*1G, MDR1G2677T/A和C3435T, UGT1A1*6和半28对瑞格列奈药动学的影响。获得SLCO1B1多态影响了瑞格列奈药动学的结果后,在稳转OATP1B1的HEK293细胞系上开展瑞格列奈摄取抑制试验,并选出厄贝沙坦和罗红霉素两个OATP1B1的抑制剂,进行与瑞格列奈的药物相互作用研究。
     吡格列酮是一种新型胰岛素增敏药物,属于噻唑烷二酮(TZD)类药物,临床上广泛用于治疗2型糖尿病。有研究报道,吡格列酮治疗2型糖尿病患者的疗效具有显著个体差异。过氧化物酶体增殖物激活受体-y2(PPAR-y2)基因是吡格列酮的靶基因。蛋白酪氨酸磷酸酶受体D (PTPRD) rs17584499是一个由中国汉族人群的GWAS研究筛选出的与2型糖尿病强相关的新基因位点。为此我们研究PPAR-y2rs1801282和PTPRD rs17584499位点与糖尿病的易感性以及对吡格列酮疗效的影响。
     我们的研究的主要结果如下:
     1.建立了瑞格列奈在中国健康人群的PPK模型,模型显示SLCO1B1c.521T>C突变显著影响了CL/F和V2/F.模型引入SLCO1B1c.521T>C突变后,CL/F和V2/F的个体间差异分别下降3.7%和6.5%。
     2.在稳定转染OATP1B1的HEK293细胞系平台上开展的抑制试验显示:厄贝沙坦能显著抑制OATP1B1对[3H]雌酮-3-硫酸盐的转运(IC50=4.65μM)。
     3.合用罗红霉素后,瑞格列奈的AUCo-8下降24.5%,但血糖参数改变无统计学意义;合用厄贝沙坦后,TT型个体瑞格列奈的Cmax和AUCo-8显著升高,相应血糖参数也出现明显改变;但TC型个体药动学参数改变无统计学意义,可见SLCO1B1c.521T>C基因型显著影响了药物相互作用的程度;初步判定罗红霉素是OATP1B1的底物,需扩大样本进一步研究。
     4.证实了PPAR-γ2rs1801282和PTPRD rs17584499多态性与2型糖尿病易感性显著相关;对于PPAR-γ2rs1801282基因位点,携带CG基因型患者服用吡格列酮后降低FPG和TG效应优于CC基因型患者;对于PTPRD rs17584499基因位点,携带CC基因型患者服用吡格列酮后降低PPG的效应优于CT+TT基因型患者。
     本课题从分子、细胞到临床整体水平以及从遗传药理学的角度并借助数学模型探讨了SLCO1B1基因多态对降糖药瑞格列奈药动学的影响和PPAR-y2、PTPRD基因多态对降糖药吡格列酮疗效的影响。本论文旨在为瑞格列奈和吡格列酮在临床上合理使用以及最终实现个体化药物治疗提供科学的理论基础。
Pharmacogenomics is the branch of pharmacology which studies the relationship between individual genetic variation and drug efficacy or toxicity, focusing on all genes coding drug metabolic enzymes, transporters and target proteins within the entire genome. The molecular basis of pharmacogenetics and pharmacogenomics is single nucleotide polymorphism.
     Repaglinide is a non-sulfonylurea insulinotropic agent, which has been widely used in the treatment of type2diabetes. Clinal trials suggested that pharmacokinetics of repaglinide had significant individual differences. We proposed that besides demographic and pathophysiological differences, genetic difference was mainly due to the gene mutation of its transporter OATP1B1and MDR1and its metabolic enzymes CYP3A4, CYP2C8and UGT1A1.
     In order to comprehensively evaluate the impact of these factors on repaglinide pharmacokinetics, population pharmacokinetics (PPK) analysis was applied. PPK combines classic pharmacokinetic principles with statistical models, studies the dynamic characteristics of drugs in a particular group, and eventually establishes a mathematical model to quantitatively evaluate the impact of various factors on drug pharmacokinetics.
     We pooled4separate repaglinide Phase I clinical trial data, and investigated the influence of genetic polymorphisms of SLCO1B1c.521T>C and c.388A>G, CYP3A4*1G, MDR1G2677T/A and C3435T, UGT1A1*6and*28on the pharmacokinetics of repaglinide using population pharmacokinetics quantitative evaluation. It was found that SLCO1B1polymorphism affected the pharmacokinetics of repaglinide. Therefore we performed repaglinide uptake inhibition test in OATP1B1stable transfected HEK293cells, selected irbesartan and roxithromycin as two OATP1B1inhibitors, and furthermore carried out repaglinide drug interaction studies.
     Pioglitazone is a novel thiazolidinedione (TZD) insulin-sensitizing drug, which has been widely used in the treatment of type2diabetes. It was reported that the efficacy of pioglitazone in the treatment of type2diabetic patients had significant individual differences. Peroxisome proliferator-activated receptor-y2(PPAR-y2) gene is a target gene of pioglitazone. A Chinese Han population GWAS study identified that protein tyrosine phosphatase receptor D (PTPRD) rs17584499is strongly correlated with type2diabetes. Therefore, we studied the effects of PPAR-y2rs1801282and PTPRD rs17584499on susceptibility of diabetes and pioglitazone efficacy.
     The main results of our study are as follows:
     1. A repaglinide PPK model of healthy Chinese people was established, showing SLCO1B1c.521T>C mutation significantly affected CL/F and V2/F. When including SLCO1B1c.521T>C mutation in the model, individual difference of CL/F and V2/F decreased by3.7%and6.5%respectively.
     2. Inhibition test was carried out in OATP1B1stable transfected HEK293cells line. It was found that irbesartan significantly inhibited [3H]E3S transporter with IC50=4.65μM.
     3. Coadministration of roxithromycin significantly decreased repaglinide AUC0-8by24.5%. Coadministration of roxithromycin had no significant effects on glycemic parameters. Irbesartan significantly increased Cmax and AUC0-8of repaglinide in TT genotype subjects, corresponding well with glycemic parameters; while pharmacokinetic parameters in TC genotype subjects were not affected, suggesting that SLCO1B1c.521T> C genotype significantly affect the-extent of drug interactions; roxithromycin might be a substrate of OATP1B1, which needs further larger sample study.
     4. PPAR-γ2rs1801282and PTPRD rs17584499polymorphism were associated with susceptibility of type2diabetes. After pioglitazone treatment, type2diabetes patients with PPAR-y2rs1801282CG genotypes showed greater reduction of PPG and TG compared with those with rs1801282CC genotype. The Patients with PTPRD rsl7584499CC genotype had better response to pioglitazone compared to CT+TT genotypes in regards of reducing PPG.
     The study explored the effects of SLCO1B1gene polymorphism on the pharmacokinetics of antidiabetic drug repaglinide, and the effects of PPAR-y and PTPRD gene polymorphism on pioglitazone efficacy from molecular, cellular, clinical levels and from the perspective of genetic pharmacology with mathematical models. The aims of this paper are to provide a scientific theoretical foundation for the clinical rational use and the eventual individualized drug therapy of repaglinide and pioglitazone.
引文
[1]BIDSTRUP T B, BJORNSDOTTIR I, SIDELMANN U G, et al. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide[J]. Br J Clin Pharmacol,2003, 56(3):305-314.
    [2]GAN J, CHEN W, SHEN H, et al. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism[J]. Br J Clin Pharmacol,2010,70(6):870-880.
    [3]CHANG C, BAHADDURI P M, POLLI J E, et al. Rapid identification of P-glycoprotein substrates and inhibitors [J]. Drug Metab Dispos,2006, 34(12):1976-1984.
    [4]Xu L Y, HE Y J, ZHANG W, et al. Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients[J]. Acta Pharmacol Sin,2007, 28(10):1693-1697.
    [5]PASANEN M K, NEUVONEN P J, NIEMI M. Global analysis of genetic variation in SLCO1B1[J]. Pharmacogenomics,2008,9(1):19-33.
    [6]NISHIZATO Y, IETRI I, SUZUKI H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes:consequences for pravastatin pharmacokinetics[J]. Clin Pharmacol Ther,2003,73(6):554-565.
    [7]HE J, QIU Z, Li N, et al. Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers [J]. Eur J Clin Pharmacol,2011,67(7):701-707.
    [8]KALLIOKOSKI A, BACKMAN J T, NEUVONEN P J, et al. Effects of the SLCO1B1*1B haplotype on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide[J]. Pharmacogenet Genomics,2008, 18(11):937-942.
    [9]KALLIOKOSKI A, NEUVONEN M, NEUVONEN P J, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide[J]. J Clin Pharmacol,2008,48(3):311-321.
    [10]KALLIOKSKI A, NEUVONEN M, NEUVONEN P J, et al. The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range[J]. Br J Clin Pharmacol,2008,66(6):818-825.
    [11]NIEMI M, BACKMAN J T, KAJOSAARI L I, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics[J]. Clin Pharmacol Ther,2005,77(6):468-478.
    [12]HSIEH K P, LIN Y Y, CHENG C L, et al. Novel mutations of CYP3A4 in Chinese[J]. Drug Metab Dispos,2001,29(3):268-273.
    [13]FUKUSJIMA-UESAKA H, SAITO Y, WATANABE H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population[J]. Hum Mutat,2004,23(1):100.
    [14]DU J, YU L, WANG L, et al. Differences in CYP3A41G genotype distribution and haplotypes of CYP3A4, CYP3A5 and CYP3A7 in 3 Chinese populations[J]. Clin Chim Acta,2007,383(1-2):172-174.
    [15]GAO Y, ZHANG L R, Fu Q. CYP3A4*1G polymorphism is associated with lipid-lowering efficacy of atorvastatin but not of simvastatin[J]. Eur J Clin Pharmacol,2008,64(9):877-882.
    [16]HU Y F, TU J H, TAN Z R, et al. Association of CYP3 A4* 18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects[J]. Xenobiotica, 2007,37(3):315-327.
    [17]RUZILAWATI A B, GAN S H. CYP3A4 genetic polymorphism influences repaglinide's pharmacokinetics.[J]. Pharmacology,2010,85(6):357-364.
    [18]XIANG Q, Cui Y M, ZHAO X, et al. The Influence of MDR1 G2677T/A Genetic Polymorphisms on the Pharmacokinetics of Repaglinide in Healthy Chinese Volunteers[J]. Pharmacology,2012,89(1-2):105-110.
    [19]WEISE A, GRUNDLER S, ZAUMSEGEL D, et al. Development and evaluation of a rapid and reliable method for cytochrome P450 2C8 genotyping[J]. Clin Lab, 2004,50(3-4):141-148.
    [20]NIEMI M, LEATHART J B, NEUVONEN M, et al. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide [J]. Clin Pharmacol Ther,2003,74(4):380-387.
    [21]TOMALIK-SCHARTE D, FUHR U, HELLMICH M, et al. Effect of the CYP2C8 genotype on the pharmacokinetics and pharmacodynamics of repaglinide[J]. Drug Metab Dispos,2011,39(5):927-932.
    [22]何君,周巍,王练词,等.中国2型糖尿病人中CYP2C8、CYP2C9基因多态性[J].中国临床药理学与治疗学,2009,14(3):300-306.
    [23]YAMAMOTO K, SATO H, FUJIYAMA Y, et al. Contribution of two missense mutations (G71R and Y486D) of the bilirubin UDP glycosyltransferase (UGT1A1) gene to phenotypes of Gilbert's syndrome and Crigler-Najjar syndrome type II[J]. Biochim Biophys Acta,1998,1406(3):267-273.
    [24]Yoo H D, CHO H Y, LEE Y B. Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1[J]. Br J Clin Pharmacol,2010,69(1):27-37.
    [25]宋敏SLCO1B1基因多态性及匹伐他汀对中国健康志愿者瑞格列奈药动学的影响:[硕士学位论文].长沙:中南大学,2010年.
    [26]余敏.KCNJ11、TCF7L2基因多态性与2型糖尿病中瑞格列奈疗效的相关性研究:[硕士学位论文].长沙:中南大学,2009年.
    [27]ROUGUIEG K, PICARD N, SAUVAGE F L, et al. Contribution of the different UDP-glucuronosyltransferase (UGT) isoforms to buprenorphine and norbuprenorphine metabolism and relationship with the main UGT polymorphisms in a bank of human liver microsomes[J]. Drug Metab Dispos, 2010,38(1):40-45.
    [28]郭栋.尿苷二磷酸葡萄糖醛酸基转移酶1A(UGT1A)某些常见突变的临床遗传药理学研究:[博士学位论文].长沙:中南大学,2010年.
    [29]左笑丛.他克莫司与氨氯地平的相互作用及在肾移植患者中的群体药动学研究:[博士学位论文].长沙:中南大学,2010年.
    [30]NIEMI M, KAJOSAARI L I, NEUVONEN M, et al. The CYP2C8 inhibitor trimethoprim increases the plasma concentrations of repaglinide in healthy subjects[J]. Br J Clin Pharmacol,2004,57(4):441-447.
    [31]DENG J W, SONG I S, SHIN H J, et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent:the contribution of transporting activity changes by SLCO1B1*15[J]. Pharmacogenet Genomics,2008,18(5):424-433.
    [32]Ho R H, TIRONA R G, LEAKE B F, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake:function, expression, and pharmacogenetics[J]. Gastroenterology,2006,130(6):1793-1806.
    [33]IWAI M, SUZUKI H, IEIRI I, et al. Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C)[J]. Pharmacogenetics,2004,14(11):749-757.
    [34]KAMEYAMA Y, YAMASHITA K, KOBAYASHI K, et al. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1Bl*15+C1007G, by using transient expression systems of HeLa and HEK293 cells[J]. Pharmacogenet Genomics,2005, 15(7):513-522.
    [35]KATA D A, CARR R, GRIMM D R, et al. Organic anion transporting polypeptide 1B1 activity classified by SLCO1B1 genotype influences atrasentan pharmacokinetics[J]. Clin Pharmacol Ther,2006,79(3):186-196.
    [36]NOZAWA T, MINAMI H, SUGIURA S, et al. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin:in vitro evidence and effect of single nucleotide polymorphisms[J]. Drug Metab Dispos,2005,33(3):434-439.
    [37]OSWALD S, KONGIG J, LUTJOHANN D, et al. Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1[J]. Pharmacogenet Genomics,2008,18(7):559-568.
    [38]TIRONA R G, LEAKE B F, WOLKOFF A W, et al. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation[J], J Pharmacol Exp Ther, 2003,304(1):223-228.
    [39]NOZAWA T, NAKAJIMA M, TAMAI I, et al. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies, in the Japanese population and functional analysis[J]. J Pharmacol Exp Ther,2002,302(2):804-813.
    [40]TIRONA R G, LEAKE B F, MERINO G, et al. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European-and African-Americans[J]. J Biol Chem,2001, 276(38):35669-35675.
    [41]KAJOSAARI L I, NIEMI M, NEUVONEN M, et al. Cyclosporine markedly raises the plasma concentrations of repaglinide [J]. Clin Pharmacol Ther,2005, 78(4):388-399.
    [42]YAMAZAKI M, LI B, LOUIE S W, et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2-and P-glycoprotein-mediated transport[J]. Xenobiotica,2005,35(7):737-753.
    [43]WANG X, WOLKOFF A W, MORRIS M E. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators [J]. Drug Metab Dispos,2005,33(11):1666-1672.
    [44]SEITHEL A, EBERL S, SINGER K, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3[J]. Drug Metab Dispos,2007,35(5):779-786.
    [45]BIDSTRUP T B, DAMKIER P, OLSEN A K, et al. The impact of CYP2C8 polymorphism and grapefruit juice on the pharmacokinetics of repaglinide[J]. Br J Clin Pharmacol,2006,61(1):49-57.
    [46]HONKALAMMI J, NIEMI M, NEUVONEN P J, et al. Dose-dependent interaction between gemfibrozil and repaglinide in humans:strong inhibition of CYP2C8 with subtherapeutic gemfibrozil doses[J]. Drug Metab Dispos,2011, 39(10):1977-1986.
    [47]KAJOSAARI L I, JAAKKOLA T, NEUVONEN P J, et al. Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide [J]. European Journal of Clinical Pharmacology,2006,62(3):217-223.
    [48]KALLIOLOSKI A, BACJMAN J T, KURKINEN K J, et al. Effects of gemfibrozil and atorvastatin on the pharmacokinetics of repaglinide in relation to SLCO1B1 polymorphism[J]. Clin Pharmacol Ther,2008,84(4):488-496.
    [49]中国2型糖尿病防治指南(2010年版).
    [50]Wu L X, Guo C X, CHEN W Q, et al. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin:an in vitro and in vivo assessment[J]. Br J Clin Pharmacol,2012,73(5):750-757.
    [51]Wu L X, Guo C X, Qu Q, et al. Effects of natural products on the function of human organic anion transporting polypeptide 1B1[J]. Xenobiotica,2012, 42(4):339-348.
    [52]黄琼.ADRB3基因新突变的功能及与疾病易感性的关联研究和SLC30A8、IGF2BP2基因多态性对瑞格列奈疗效的影响:[博士学位论文].长沙:中南大学,2010年.
    [53]张象麟.药物临床信息参考.四川:四川科学技术出版社,2007.339-341.
    [54]张象麟.药物临床信息参考.四川:四川科学技术出版社,2007.551.
    [55]张象麟.药物临床信息参考.四川:四川科学技术出版社,2007.182-184.
    [56]张象麟.药物临床信息参考.四川:四川科学技术出版社,2007.180-182.
    [57]张象麟.药物临床信息参考.四川:四川科学技术出版社,2007.465-466.
    [58]张象麟.药物临床信息参考.四川:四川科学技术出版社,2007.471-472.
    [59]ITO K, IWATSUBO T, KANAMITSU S, et al. Prediction of pharmacokinetic alterations caused by drug-drug interactions:metabolic interaction in the liver[J]. Pharmacol Rev,1998,50(3):387-412.
    [60]KARLGREN M, AHLIN G, BERGSTROM C A, et al. In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions [J]. Pharm Res,2012,29(2):411-426.
    [61]HIRANO M, MAEDA K, SHITARA Y, et al. Drug-drug interaction between pitavastatin and various drugs via OATP1B1[J]. Drug Metab Dispos,2006, 34(7):1229-1236.
    [62]NIEMI M, NEUVONEN P J, KIVISTO K T. The cytochrome P4503A4 inhibitor clarithromycin increases the plasma concentrations and effects of repaglinide[J]. Clin Pharmacol Ther,2001,70(1):58-65.
    [63]SCOTT L J. Repaglinide:a review of its use in type 2 diabetes mellitus[J]. Drugs,2012,72(2):249-272.
    [64]2010版中国药典二部附录XIX-B.药物制剂人体生物利用度和生物等效性试验指导原则.
    [65]谭鸿毅,宋敏,阳国平,等.瑞格列奈在健康人体的药代动力学和药效动力学研究[J].中国临床药理学与治疗学,2009(9):979-983.
    [66]梁雁,赵侠,宗利,等.瑞格列奈片在健康人体的生物等效性[J].中国临床药理学杂志,2010(9):650-652.
    [67]CHO S K, YOON J S, LEE M G, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants[J]. Clin Pharmacol Ther,2011,89(3):416-421.
    [68]Yoo H D, PARK S A, CHO H Y, et al. Influence of CYP3A and CYP2C19 genetic polymorphisms on the pharmacokinetics of cilostazol in healthy subjects[J]. Clin Pharmacol Ther,2009,86(3):281-284.
    [69]KAJOSAARI L I, NIEMI M, BACKMAN J T, et al. Telithromycin, but not montelukast, increases the plasma concentrations and effects of the cytochrome P450 3A4 and 2C8 substrate repaglinide [J]. Clinical pharmacology and therapeutics,2006,79(3):231-242.
    [70]YAMAZAKI H, SHIMADA T. Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin[J]. Drug Metab Dispos,1998,26(11):1053-1057.
    [71]尤海生,董亚琳,王茂义,等.罗红霉素胶囊在人体的药代动力学及生物等效性[J].西安交通大学学报:医学版,2007,28(4):392-394.
    [72]谭亲友,张俊,李焕德,等.基于UPLC-MS/MS法测定克拉霉素血药浓度的生物等效性研究[J].药物分析杂志,2010(7):1282-1286.
    [73]FAN L, ZHANG W, Guo D, et al. The effect of herbal medicine baicalin on pharmacokinetics of rosuvastatin, substrate of organic anion-transporting polypeptide 1B1[J]. Clin Pharmacol Ther,2008,83(3):471-476.
    [74]GUO C X, PEI Q, YIN J Y, et al. Effects of Ginkgo biloba extracts on pharmacokinetics and efficacy of atorvastatin based on plasma indices [J]. Xenobiotica,2012,42(8):784-790.
    [75]ENGEL A, OSWALD S, SIEGMUND W, et al. Pharmaceutical excipients influence the function of human uptake transporting proteins[J]. Mol Pharm,2012, 9(9):2577-2581.
    [76]黄雷鸣,赵锦花,王国成,等.聚合物辅料对P-糖蛋白抑制机制的研究进展[J].药学学报,2010(10):1224-1231.
    [77]KONIG J, CUI Y, NIES A T, et al. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane [J]. Am J Physiol Gastrointest Liver Physiol,2000,278(1):G156-G164.
    [78]GLAESER H, BAILEY D G, DRESSER G K, et al. Intestinal drug transporter expression and the impact of grapefruit juice in humans[J]. Clin Pharmacol Ther,2007,81(3):362-370.
    [79]KLAASSEN C D, ALEKSUNES L M. Xenobiotic, bile acid, and cholesterol transporters:function and regulation[J]. Pharmacol Rev,2010,62(1):1-96.
    [80]KITAMURA S, MAEDA K, WANG Y, et al. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin[J]. Drug Metab Dispos,2008, 36(10):2014-2023.
    [81]GRUBE M, KOCK K, OSWALD S, et al. Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart[J]. Clin Pharmacol Ther,2006,80(6):607-620.
    [82]KOBAYASHI D, NOZAWA T, IMAI K, et al. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane [J]. J Pharmacol Exp Ther,2003, 306(2):703-708.
    [83]PETERS J, EGGERS K, OSWALD S, et al. Clarithromycin is absorbed by an intestinal uptake mechanism that is sensitive to major inhibition by rifampicin: results of a short-term drug interaction study in foals[J]. Drug Metab Dispos, 2012,40(3):522-528.
    [84]XU H, RASHKOW A. Clarithromycin-induced digoxin toxicity:a case report and a review of the literature[J]. Conn Med,2001,65(9):527-529.
    [85]SHU Y, SHEARDOWN S A, BROWN C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action[J]. J Clin Invest, 2007,117(5):1422-1431.
    [86]WTRNER D, WERNER U, MEYBAUM A, et al. Determinants of steady-state torasemide pharmacokinetics:impact of pharmacogenetic factors, gender and angiotensin II receptor blockers[J]. Clin Pharmacokinet,2008,47(5):323-332.
    [87]LANCASTER C S, BRUUN G H, PEER C J, et al. OATP1B1 Polymorphism as a Determinant of Erythromycin Disposition[J]. Clin Pharmacol Ther,2012.
    [88]CHOI C I, KIM M J, CHUNG E K, et al. CYP2C93 and 13 alleles significantly affect the pharmacokinetics of irbesartan in healthy Korean subjects[J]. Eur J Clin Pharmacol,2012,68(2):149-154.
    [89]HONG X, ZHANG S, MAO G, et al. CYP2C9*3 allelic variant is associated with metabolism of irbesartan in Chinese population[J]. Eur J Clin Pharmacol,2005, 61(9):627-634.
    [90]CHEN G, JIANG S, MAO G, et al. CYP2C9 Ile359Leu polymorphism, plasma irbesartan concentration and acute blood pressure reductions in response to irbesartan treatment in Chinese hypertensive patients [J]. Methods Find Exp Clin Pharmacol,2006,28(1):19-24.
    [91]MATSUDA A, KUZUYA T. Relationship between obesity and concordance rate for type 2 (non-insulin-dependent) diabetes mellitus among twins [J]. Diabetes Res Clin Pract,1994,26(2):137-143.
    [92]ALTSHULER D, HIRSCHHORN J N, KLANNEMARK M, et al. The common PPARgamma Pro 12Ala polymorphism is associated with decreased risk of type 2 diabetes[J]. Nat Genet,2000,26(1):76-80.
    [93]ISSEMANN I, GREEN S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators[J]. Nature,1990,347(6294):645-650.
    [94]AUWERX J. PPARgamma, the ultimate thrifty gene[J]. Diabetologia,1999, 42(9):1033-1049.
    [95]DEEB S S, FAJAS L, NEMOTO M, et al. A Pro 12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity[J]. Nat Genet,1998,20(3):284-287.
    [96]HAMANN A, MUNZBERG H, BUTTRON P, et al. Missense variants in the human peroxisome proliferator-activated receptor-gamma2 gene in lean and obese subjects[J]. Eur J Endocrinol,1999,141(1):90-92.
    [97]YEN C J, BEAMER B A, NEGRI C, et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians:identification of a Pro12Ala PPAR gamma 2 missense mutation[J]. Biochem Biophys Res Commun,1997,241(2):270-274.
    [98]KANG E S, PARK S Y, KIM H J, et al. Effects of Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma2 gene on rosiglitazone response in type 2 diabetes[J]. Clin Pharmacol Ther,2005,78(2):202-208.
    [99]TSAI F J, YANG C F, CHEN C C, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese[J]. PLoS Genet,2010,6(2):e1000847.
    [100]TONKS N K. Protein tyrosine phosphatases:from genes, to function, to disease[J]. Nat Rev Mol Cell Biol,2006,7(11):833-846.
    [101]CHAGNON M J, UETANI N, TREMBLAY M L. Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases[J]. Biochem Cell Biol,2004,82(6):664-675.
    [102]KAWASE T, AKATSUKA Y, TORIKAI H, et al. Alternative splicing due to an intronic SNP in HMSD generates a novel minor histocompatibility antigen[J]. Blood,2007,110(3):1055-1063.
    [103]TOSCANO C, KLEIN K, BLIEVERNICHT J, et al. Impaired expression of CYP2D6 in intermediate metabolizers carrying the*41 allele caused by the intronic SNP 2988G>A:evidence for modulation of splicing events[J]. Pharmacogenet Genomics,2006,16(10):755-766.
    [104]KANG E S, PARK S Y, Kim H J, et al. The influence of adiponectin gene polymorphism on the rosiglitazone response in patients with type 2 diabetes [J]. Diabetes Care,2005,28(5):1139-1144.
    [105]WILLSON T M, LAMBERT M H, KLIEWER S A. Peroxisome proliferator-activated receptor gamma and metabolic disease [J]. Annu Rev Biochem,2001,70:341-367.
    [106]ZIMMET P. Addressing the insulin resistance syndrome:a role for the thiazolidinediones[J]. Trends Cardiovasc Med,2002,12(8):354-362.
    [107]GILLIES P S, DUNN C J. Pioglitazone[J]. Drugs,2000,60(2):333-343,344-345.
    [108]MIYAZAKI Y, MAHANKALI A, MATSUDA M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients[J]. J Clin Endocrinol Metab,2002,87(6):2784-2791.
    [109]BOYLE P J, KING A B, OLANSKY L, et al. Effects of pioglitazone and rosiglitazone on blood lipid levels and glycemic control in patients with type 2 diabetes mellitus:a retrospective review of randomly selected medical records[J]. Clin Ther,2002,24(3):378-396.
    [110]ARONOFF S, ROSENBLATT S, BRAITHWAITE S, et al. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes:a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group[J]. Diabetes Care,2000,23(11):1605-1611.
    [111]HERZ M, JOHNS D, REVIRIEGO J, et al. A randomized, double-blind, placebo-controlled, clinical trial of the effects of pioglitazone on glycemic control and dyslipidemia in oral antihyperglycemic medication-naive patients with type 2 diabetes mellitus[J]. Clin Ther,2003,25(4):1074-1095.
    [112]LAWRENCE J M, RECKLESS J P. Pioglitazone[J]. Int J Clin Pract,2000, 54(9):614-618.
    [113]SCHERBAUM W A, GOKE B. Metabolic efficacy and safety of once-daily pioglitazone monotherapy in patients with type 2 diabetes:a double-blind, placebo-controlled study[J]. Horm Metab Res,2002,34(10):589-595.
    [114]HUANG Q, YIN J Y, DAI X P, et al. Association analysis of SLC30A8 rs 13266634 and rs 16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients[J]. Eur J Clin Pharmacol,2010, 66(12):1207-1215.
    [115]LEHMANN J M, MOOPE L B, SMITH-OLIVER T A, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)[J]. J Biol Chem,1995,270(22):12953-12956.
    [116]MASUGI J, TAMORI Y, MORI H, et al. Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-gamma 2 on thiazolidinedione-induced adipogenesis[J]. Biochem Biophys Res Commun,2000,268(1):178-182.
    [117]HsIEH M C, LIN K D, TIEN K J, et al. Common polymorphisms of the peroxisome proliferator-activated receptor-gamma (Pro 12Ala) and peroxisome proliferator-activated receptor-gamma coactivator-1 (Gly482Ser) and the response to pioglitazone in Chinese patients with type 2 diabetes mellitus[J]. Metabolism,2010,59(8):1139-1144.
    [118]NAMVARAN F, AZARPIRA N, RAHIMI-MOGHADDAM P, et al. Polymorphism of peroxisome proliferator-activated receptor gamma (PPARgamma) Pro 12Ala in the Iranian population:relation with insulin resistance and response to treatment with pioglitazone in type 2 diabetes[J]. Eur J Pharmacol,2011, 671(1-3):1-6.
    [119]BLUHER M, LUBBEN G, PASCHKE R. Analysis of the relationship between the Prol2Ala variant in the PPAR-gamma2 gene and the response rate to therapy with pioglitazone in patients with type 2 diabetes[J]. Diabetes Care,2003, 26(3):825-831.
    [120]LUDOVICO O, PELLEGRINI F, DI PAOLA R, et al. Heterogeneous effect of peroxisome proliferator-activated receptor gamma2 Ala 12 variant on type 2 diabetes risk[J]. Obesity (Silver Spring),2007,15(5):1076-1081.
    [121]PULIDO R, SERRA-PAGES C, TANG M, et al. The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases:multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1[J]. Proc Natl Acad Sci U S A,1995,92(25):11686-11690.
    [122]BRUNMAIR B, GRAS F, NESCHEN S, et al. Direct thiazolidinedione action on isolated rat skeletal muscle fuel handling is independent of peroxisome proliferator-activated receptor-gamma-mediated changes in gene expression[J]. Diabetes,2001,50(10):2309-2315.
    [123]BHANTTARAI B R, KAFLE B, HWANG J S, et al. Novel thiazolidinedione derivatives with anti-obesity effects:dual action as PTP1B inhibitors and PPAR-gamma activators[J]. Bioorg Med Chem Lett,2010,20(22):6758-6763.
    [124]Wu Y, OUYANG J P, Wu K, et al. Rosiglitazone ameliorates abnormal expression and activity of protein tyrosine phosphatase IB in the skeletal muscle of fat-fed, streptozotocin-treated diabetic rats[J]. Br J Pharmacol,2005, 146(2):234-243.
    [125]DAILY E B, AAUILANTE C L. Cytochrome P450 2C8 pharmacogenetics:a review of clinical studies[J]. Pharmacogenomics,2009,10(9):1489-1510.
    [126]JAAKKOLA T, LAITILA J, NEUVONEN P J, et al. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro:potential for interactions with CYP2C8 inhibitors[J]. Basic Clin Pharmacol Toxicol,2006,99(1):44-51.
    [1]ZAIR Z M, ELORANTA J J, STIEGER B, et al. Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney[J]. Pharmacogenomics,2008,9(5):597-624.
    [2]HSIANG B, ZHU Y, WANG Z, et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters [J]. J Biol Chem, 1999,274(52):37161-37168.
    [3]KONIG J, Cui Y, NIES A T, et al. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane [J]. Am J Physiol Gastrointest Liver Physiol,2000,278(1):G156-G164.
    [4]KOENEN A, KOCK K, KEISER M, et al. Steroid hormones specifically modify the activity of organic anion transporting polypeptides[J]. Eur J Pharm Sci,2012.
    [5]NOZAWA T, NAKAJIMA M, TAMAI I, et al. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis [J]. J Pharmacol Exp Ther,2002,302(2):804-813.
    [6]HU M, TOMLINSON B. Effects of statin treatments and polymorphisms in UGT1A1 and SLCO1B1 on serum bilirubin levels in Chinese patients with hypercholesterolaemia[J]. Atherosclerosis,2012,223(2):427-432.
    [7]CUI Y, KONIG J, LEIER, et al. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6[J]. J Biol Chem,2001, 276(13):9626-9630.
    [8]NAKAI D, NAKAGOMI R, FURUTA Y, et al. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes[J]. J Pharmacol Exp Ther,2001,297(3):861-867.
    [9]LENNERNAS H. Clinical pharmacokinetics of atorvastatin[J]. Clin Pharmacokinet,2003,42(13):1141-1160.
    [10]HO R H, TIRONA R G, LEAKE B F, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake:function, expression, and pharmacogenetics[J]. Gastroenterology,2006,130(6):1793-1806.
    [11]HIRANO M, MAEDA K, SHITARA Y, et al. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans[J]. J Pharmacol Exp Ther,2004,311(1):139-146.
    [12]PASANEN M K, NEUVONEN M, NEUVONEN P J, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid[J]. Pharmacogenet Genomics,2006,16(12):873-879.
    [13]ABE T, UNNo M, ONOGA WA T, et al. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers[J]. Gastroenterology,2001,120(7):1689-1699.
    [14]NOZAWA T, MINAMI H, SUGIURA S, et al. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin:in vitro evidence and effect of single nucleotide polymorphisms [J]. Drug Metab Dispos,2005,33(3):434-439.
    [15]SANDHU P, LEE W, XU X, et al. Hepatic uptake of the novel antifungal agent caspofungin[J]. Drug Metab Dispos,2005,33(5):676-682.
    [16]YAMASHIRO W, MAEDA K, HIROUCHI M, et al. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II ATI-receptor, in humans[J]. Drug Metab Dispos,2006, 34(7):1247-1254.
    [17]NAKAGOMI-HAGIHARA R, NAKAI D, KAWAI K, et al. OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin Ⅱ blocker[J]. Drug Metab Dispos,2006,34(5):862-869.
    [18]KONIG J, Cui Y, NIES A T, et al. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide[J]. J Biol Chem, 2000,275(30):23161-23168.
    [19]KONIG J, CUI Y, NIES A T, et al. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide[J]. J Biol Chem, 2000,275(30):23161-23168.
    [20]TIRONA R G, LEAKE B F, MERINO G, et al. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European-and African-Americans[J]. J Biol Chem,2001, 276(38):35669-35675.
    [21]XU L Y, HE Y J, ZHANG W, et al. Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients[J]. Acta Pharmacol Sin,2007,28(10):1693-1697.
    [22]NISHIZATO Y, IEIRI I, SUZUKI H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes:consequences for pravastatin pharmacokinetics[J]. Clin Pharmacol Ther,2003,73(6):554-565.
    [23]OSWALD S, KONIG J, LUTJOHANN D, et al. Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1[J]. Pharmacogenet Genomics,2008,18(7):559-568.
    [24]KAMEYAMA Y, YAMASHITA K, KOBAYASHI K, et al. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells[J]. Pharmacogenet Genomics,2005,15(7):513-522.
    [25]TIRONA R G, LEAKE B F, WOLKOFF A W, et al. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation [J]. J Pharmacol Exp Ther, 2003,304(1):223-228.
    [26]KATZ D A, CARR R, GRIMM D R, et al. Organic anion transporting polypeptide 1B1 activity classified by SLCO1B1 genotype influences atrasentan pharmacokinetics[J]. Clin Pharmacol Ther,2006,79(3):186-196.
    [27]PASANEN M K, NEUVONEN P J, NIEMI M. Global analysis of genetic variation in SLCO1B1[J]. Pharmacogenomics,2008,9(1):19-33.
    [28]NISHIZATO Y, IEIRI I, SUZUKI H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes:consequences for pravastatin pharmacokinetics[J]. Clin Pharmacol Ther,2003,73(6):554-565.
    [29]MICHALSKI C, Cui Y, NIES A T, et al. A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter[J]. J Biol Chem,2002,277(45):43058-43063.
    [30]IWAI M, SUYZUKI H, IEIRI I, et al. Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C)[J]. Pharmacogenetics,2004,14(11):749-757.
    [31]DENG J W, SONG I S, SHIN H J, et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent:the contribution of transporting activity changes by SLCO1B1*15[J]. Pharmacogenet Genomics,2008,18(5):424-433.
    [32]TSUDA-TSUKIMOTO M, MAEDA T, IWANAGA T, et al. Characterization of hepatobiliary transport systems of a novel alpha4betal/alpha4beta7 dual antagonist, TR-14035[J]. Pharm Res,2006,23(11):2646-2656.
    [33]HO W F, KOO S H, YEE J Y, et al. Genetic variations of the SLCO1B1 gene in the Chinese, Malay and Indian populations of Singapore[J]. Drug Metab Pharmacokinet,2008,23(6):476-482.
    [34]NIEMI M, SCHAEFFELER E, LANG T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1)[J]. Pharmacogenetics,2004,14(7):429-440.
    [35]FURIHATA T, SATOH T, YAMAMOTO N, et al. Hepatocyte nuclear factor 1 alpha is a factor responsible for the interindividual variation of OATP1B1 mRNA levels in adult Japanese livers[J]. Pharm Res,2007,24(12):2327-2332.
    [36]AOKI M, TERADA T, OGASAWARA K, et al. Impact of regulatory polymorphisms in organic anion transporter genes in the human liver [J]. Pharmacogenet Genomics,2009,19(8):647-656.
    [37]MARZOLINI C, TIRONA R G, GERVASINI G, et al. A common polymorphism in the bile acid receptor famesoid X receptor is associated with decreased hepatic target gene expression[J]. Mol Endocrinol,2007,21(8):1769-1780.
    [38]IGEL M, ARNOLD K A, NIEMI M, et al. Impact of the SLCO1B1 polymorphism on the pharmacokinetics and lipid-lowering efficacy of multiple-dose pravastatin[J]. Clin Pharmacol Ther,2006,79(5):419-426.
    [39]NIEMI M, PASANEN M K, NEUVONEN P J. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin[J]. Clin Pharmacol Ther,2006,80(4):356-366.
    [40]PASANEN M K, FREDRIKSON H, NEUVOEN P J, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin[J]. Clin Pharmacol Ther,2007,82(6):726-733.
    [41]PASANEN M K, NEUVONEN M, NEUVONEN P J, et al. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid[J]. Pharmacogenet Genomics,2006,16(12):873-879.
    [42]CHUANG J Y, CHO J Y, Yu K S, et al. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers [J]. Clin Pharmacol Ther,2005,78(4):342-350.
    [43]IEIRI I, SUWANNAKUL S, MAEDA K, et al. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers [J]. Clin Pharmacol Ther, 2007,82(5):541-547.
    [44]LEE E, RYAN S, BIRMINGHAM B, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment[J]. Clin Pharmacol Ther,2005,78(4):330-341.
    [45]MAEDA K, IEIRI I, YASUDA K, et al. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril[J]. Clin Pharmacol Ther,2006,79(5):427-439.
    [46]MWINYI J, JOHNE A, BAUER S, et al. Evidence for inverse effects of OATP-C (SLC21A6) 5 and lb haplotypes on pravastatin kinetics [J]. Clin Pharmacol Ther, 2004,75(5):415-421.
    [47]CHOI J H, LEE M G, CHO J Y, et al. Influence of OATP1B1 genotype on the pharmacokinetics of rosuvastatin in Koreans[J]. Clin Pharmacol Ther,2008, 83(2):251-257.
    [48]HU M, MAK V W, YIN O Q, et al. Effects of grapefruit juice and SLCO1B1 388A>G polymorphism on the pharmacokinetics of pitavastatin[J]. Drug Metab Pharmacokinet,2012.
    [49]SCHIPANI A, EGAN D, DICKINSON L, et al. Estimation of the effect of SLCO1B1 polymorphisms on lopinavir plasma concentration in HIV-infected adults[J]. Antivir Ther,2012,17(5):861-868.
    [50]NIEMI M, BACKMAN J T, KAJOSAARI L I, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics [J]. Clin Pharmacol Ther,2005,77(6):468-478.
    [51]KAJOSAARI L I, NIEMI M, NEUVONEN M, et al. Cyclosporine markedly raises the plasma concentrations of repaglinide [J]. Clin Pharmacol Ther,2005,78(4): 388-399.
    [52]NIEMI M, BACHAN J T, NEUVONEN M, et al. Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide:potentially hazardous interaction between gemfibrozil and repaglinide [J]. Diabetologia,2003,46(3):347-351.
    [53]BACHMAKON I, GLAESER H, FROMM M F, et al. Interaction of oral antidiabetic drugs with hepatic uptake transporters:focus on organic anion transporting polypeptides and organic cation transporter 1[J]. Diabetes,2008, 57(6):1463-1469.
    [54]KALLIOKOSKI A, NEUVONEN M, NEUVONEN P J, et al. Different effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide[J]. J Clin Pharmacol,2008,48(3):311-321.
    [55]KALLIOKSKI A, NEUVONEN M, NEUVONEN P J, et al. The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range[J]. Br J Clin Pharmacol,2008,66(6):818-825.
    [56]KALLIOKOSKI A, BACHMAN J T, NEUVNEN P J, et al. Effects of the SLCO1B1*1B haplotype on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide[J]. Pharmacogenet Genomics,2008,18(11):937-942.
    [57]ZHANGW, HE Y J, HAN C T, et al. Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide[J]. Br J Clin Pharmacol,2006, 62(5):567-572.
    [58]NOZAWA T, SUGIURA S, NAKAJUMA M, et al. Involvement of organic anion transporting polypeptides in the transport of troglitazone sulfate:implications for understanding troglitazone hepatotoxicity[J]. Drug Metab Dispos,2004, 32(3):291-294.
    [59]CHANG C, PANG K S, SWAAN P W, et al. Comparative pharmacophore modeling of organic anion transporting polypeptides:a meta-analysis of rat Oatplal and human OATP1B1[J]. J Pharmacol Exp Ther,2005,314(2):533-541.
    [60]JAAKKOLA T, BACKMAN J T, NEUVONEN M, et al. Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone[J]. Clin Pharmacol Ther,2005,77(5):404-414.
    [61]NIEMI M, BACKMAN J T, GRANFORS M, et al. Gemfibrozil considerably increases the plasma concentrations of rosiglitazone[J]. Diabetologia,2003, 46(10):1319-1323.
    [62]BACKMAN J T, KYRKLUND C, NEUVONEN M, et al. Gemfibrozil greatly increases plasma concentrations of cerivastatin[J]. Clin Pharmacol Ther,2002, 72(6):685-691.
    [63]OGILVIE B W, ZHANG D, LI W, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8:implications for drug drug interactions[J]. Drug Metab Dispos,2006,34(1):191-197.
    [64]SHITARA Y, HIRANO M, SATO H, et al. Gemfibrozil and its glucuronide i nhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SL C21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cer ivastatin:analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil [J]. J Pharmacol Exp Ther, 2004,311(1):228-236.
    [65]AQUILANTE C L, BUSHMAN L R, KNUTSEN S D, et al. Influence of SLCO1B1 and CYP2C8 gene polymorphisms on rosiglitazone pharmacokinetics in healthy volunteers[J]. Hum Genomics,2008,3(1):7-16.
    [66]KALLIOKSKI A, NEUVONEN M, NEUVONEN P J, et al. No significant effect of SLCO1B1 polymorphism on the pharmacokinetics of rosiglitazone and pioglitazone[J]. Br J Clin Pharmacol,2008,65(1):78-86.
    [67]ZHENG H X, HUANG Y, FRASSETTO L A, et al. Elucidating rifampin's inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers:unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite [J]. Clin Pharmacol Ther,2009,85(1):78-85.
    [68]KALLIOKOSKI A, NEUVONEN P J, NIEMI M. SLCO1B1 polymorphism and oral antidiabetic drugs[J]. Basic Clin Pharmacol Toxicol,2010,107(4):775-781.
    [69]TREVINO L R, SHIMASAKI N, YANG W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects[J]. J Clin Oncol,2009,27(35):5972-5978.
    [70]WEINER M, PELOQUIN C, BURMAN W, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations [J]. Antimicrob Agents Chemother,2010,54(10):4192-4200.
    [71]NIEMI M, KIVISTO K T, DICZFALUSY U, et al. Effect of SLCO1B1 polymorphism on induction of CYP3A4 by rifampicin[J]. Pharmacogenet Genomics,2006,16(8):565-568.
    [72]Li L M, CHEN L, DENG G H, et al. SLCO1B1 *15 haplotype is associated with rifampin-induced liver injury[J]. Mol Med Report,2012,6(1):75-82.
    [73]COUVERT P, GIRAL P, DEJAGER S, et al. Association between a frequent allele of the gene encoding OATP1B1 and enhanced LDL-lowering response to fluvastatin therapy[J]. Pharmacogenomics,2008,9(9):1217-1227.
    [74]LANCASTER C S, BRUUN G H, PEER C J, et al. OATP1B1 Polymorphism as a Determinant of Erythromycin Disposition[J]. Clin Pharmacol Ther,2012.
    [75]XIANG X, JADA S R, LI H H, et al. Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients[J]. Pharmacogenet Genomics,2006,16(9):683-691.
    [76]HAN J Y, LIM H S, PARK Y H, et al. Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer[J]. Lung Cancer,2009,63(1):115-120.
    [77]HAN J Y, LIM H S, SHIN E S, et al. Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer[J]. Lung Cancer,2008,59(1):69-75.
    [78]HARTKOORN R C, KWAN W S, SHALLCROSS V, et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms [J]. Pharmacogenet Genomics,2010,20(2):112-120.
    [79]INNOCENTI F, KROETZ D L, SCHUETZ E, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics[J]. J Clin Oncol,2009, 27(16):2604-2614.
    [80]KOHLRAUSCH F B, DE CASSIA E R, BARROSO P F, et al. The impact of SLCO1B1 polymorphisms on the plasma concentration of lopinavir and ritonavir in HIV-infected men[J]. Br J Clin Pharmacol,2010,69(1):95-98.
    [81]LUBOMIROV R, DI IULIO J, FAYET A, et al. ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir [J]. Pharmacogenet Genomics,2010,20(4):217-230.
    [82]NIEMI M, KIVISTO K T, HOFMANN U, et al. Fexofenadine pharmacokinetics are associated with a polymorphism of the SLCO1B1 gene (encoding OATP1B1)[J]. Br J Clin Pharmacol,2005,59(5):602-604.
    [83]SAI K, SAITO Y, MAEKA K, et al. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients[J]. Cancer Chemother Pharmacol,2010,66(1):95-105.
    [84]SUWANNAKUI S, IEIRI I, KIMURA M, et al. Pharmacokinetic interaction between pravastatin and olmesartan in relation to SLCO1B1 polymorphism [J]. J Hum Genet,2008,53(10):899-904.
    [85]VORMFELDE S V, TOLIAT M R, SCHIRMER M, et al. The polymorphisms Asn130Asp and Val174Ala in OATP1B1 and the CYP2C9 allele*3 independently affect torsemide pharmacokinetics and pharmacodynamics[J]. Clin Pharmacol Ther,2008,83(6):815-817.
    [86]WERNER D, WERNER U, MEYBAUM A, et al. Determinants of steady-state torasemide pharmacokinetics:impact of pharmacogenetic factors, gender and angiotensin Ⅱ receptor blockers[J]. Clin Pharmacokinet,2008,47(5):323-332.
    [87]WeRNER U, WERNER D, HEINBUCHNER S, et al. Gender is an important determinant of the disposition of the loop diuretic torasemide [J]. J Clin Pharmacol,2010,50(2):160-168.
    [88]DE GRAAN A J, LANCASTER C S, OBAIDAT A, et al. Influence of Polymorphic OATP IB-Type Carriers on the Disposition of Docetaxel[J]. Clin Cancer Res, 2012,18(16):4433-4440.
    [89]GHATAK A, FAHEEM O, THOMPSON P D. The genetics of statin-induced myopathy[J]. Atherosclerosis,2010,210(2):337-343.
    [90]NEUVONEN P J, NIEMI M, BACKMAN J T. Drug interactions with lipid-lowering drugs:mechanisms and clinical relevance[J]. Clin Pharmacol Ther,2006, 80(6):565-581.
    [91]THOMPSON P D, CLARKSON P, KARAS R H. Statin-associated myopathy[J]. JAMA,2003,289(13):1681-1690.
    [92]GRAHAM D J, STAFFA J A, SHATIN D, et al. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs[J]. JAMA,2004, 292(21):2585-2590.
    [93]STAFFA J A, CHANG J, GREEN L. Cerivastatin and reports of fatal rhabdomyolysis[J], N Engl J Med,2002,346(7):539-540.
    [94]LINK E, PARISH S, ARMITAGE J, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study[J]. N Engl J Med,2008,359(8):789-799.
    [95]VOORA D, SHAH S H, SPASOJEVIC I, et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects [J]. J Am Coll Cardiol,2009,54(17): 1609-1616.
    [96]BACKMAN J T, KYRKLUND C, KIVISTO K T, et al. Plasma concentrations of active simvastatin acid are increased by gemfibrozil[J]. Clin Pharmacol Ther, 2000,68(2):122-129.
    [97]BECQUEMONT L, NEUVONEN M, VERSTUYFT C, et al. Amiodarone interacts with simvastatin but not with pravastatin disposition kinetics [J]. Clin Pharmacol Ther, 2007,81(5):679-684.
    [98]KESKITALO J E, PASANEN M K, NEUVONEN P J, et al. Different effects of the ABCG2 c.421>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin[J]. Pharmacogenomics,2009,10(10):1617-1624.
    [99]KESKITALO J E, ZOLK O, FROMM M F, et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin[J]. Clin Pharmacol Ther,2009,86(2):197-203.
    [100]GERLOFF T, SCHAEFER M, MWINYI J, et al. Influence of the SLC01B1*1b and *5 haplotypes on pravastatin's cholesterol lowering capabilities and basal sterol serum levels[J]. Naunyn Schmiedebergs Arch Pharmacol,2006,373(1):45-50.
    [101]NIEMI M, NEUVONEN P J, HOFMANN U, et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype*17[J]. Pharmacogenet Genomics,2005,15(5):303-309.
    [102]WATANABE T, KUSUHARA H, MAEEDA K, et al. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans[J]. J Pharmacol Exp Ther,2009,328(2): 652-662.
    [103]WATANABE T, KuSUHARA H, SUGIYAMA Y. Application of physiologically based pharmacokinetic modeling and clearance concept to drugs showing transporter-mediated distribution and clearance in humans [J]. J Pharmacokinet Pharmacodyn,2010,37(6):575-590.
    [104]CAMPBELL S D, DE MORAIS S M, XU J J. Inhibition of human organic anion transporting polypeptide OATP 1B1 as a mechanism of drug-induced hyperbilirubinemia[J]. Chem Biol Interact,2004,150(2):179-187.
    [105]GIACOMINI K M, HUANG S M, TWEEDIE D J, et al. Membrane transporters in drug development[J]. Nat Rev Drug Discov,2010,9(3):215-236.
    [106]NIEMI M. Transporter pharmacogenetics and statin toxicity[J]. Clin Pharmacol Ther,2010,87(1):130-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700