功能性巯基化聚合物胶束口服药物传递系统的构建与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,肿瘤的主要治疗手段为化学疗法。化疗药物由于溶解度低、膜透性差、体内分布选择性不好,易降解等问题,使得临床使用的大部分化疗制剂为注射剂型。但是注射给药刺激性大,患者顺应性差,因此开发口服化疗药物传递系统对肿瘤的治疗具有重要意义。
     本文设计并构建了功能性巯基化聚合物胶束,其具有增溶化疗药物、抑制P-gp、生物粘附及促进渗透等多功能性,能显著提高化疗药物的口服吸收。本文以紫杉醇(PTX)为模型药物,以自合成的功能性两亲性共聚物为载体材料,制备紫杉醇纳米胶束。在对功能性聚合物进行合成、结构确证及性质研究的基础上,对紫杉醇纳米胶束及相应制剂学性质、生物粘附性质、小肠吸收情况、吸收机制及体内药动学进行了考察,同时对紫杉醇纳米胶束的细胞水平转运机制进行了研究。
     以维生素E琥珀酸酯(VES)为疏水内核,以壳聚糖(CS)为亲水主链,以N-乙酰半胱氨酸(NAC)为表面修饰基团,合成了不同巯基取代度的两亲性巯基化共聚物CS-VES-NAC-1,-2,-3和未巯基化两亲性共聚物CS-VES。采用IR、1H-NMR、TGA、EDS等手段对共聚物进行了结构确证。使用Ellman's试剂法测定了CS-VES-NAC系列共聚物的游离巯基含量分别为182.6、275.5、451.5μmol/g,溶胀性性良好。稳定性试验结果表明CS-VES-NAC共聚物中游离巯基在不同温度(4℃、室温及37℃)和不同pH环境中(pH1.2HCl溶液、pH5.4PBS溶液及pH6.8PBS溶液)均具有较好的稳定性,可用于载药胶束的制备。
     以巯基聚合物CS-VES-NAC为载体,采用探头超声法制备纳米胶束。随着巯基取代度的增加,CS-VES-NAC-1,-2,-3空白纳米胶束粒径逐渐降低,分别为240.0、228.2、192.2nm, Zeta电位也逐渐降低,分别为+59.4、+58.4、+51.9mv。以紫杉醇为模型药物制备载药胶束,考察不同载药量对粒径、Zeta电位的影响。载药胶束粒径范围为180nm~250nm,包封率约为60%-80%,zeta电位均在+40mv以上。同时,巯基取代度对胶束的粒径及zeta电位也有影响,随着巯基取代度的增加,粒径及zeta电位均有下降趋势。透射电镜图显示载药胶束呈球形,外观圆整,粒径分布均匀,有清晰的核-壳结构,平均粒径约为200nm,与动态光散射的测定结果基本一致。DSC、X-射线结果表明紫杉醇以无定型状态存在于胶束内核中。体外释放研究表明载药胶束缓释作用明显,可保证在生理状态下紫杉醇在胶束内核中稳定存在,避免药物提前泄漏。
     以Ⅲ型粘蛋白为肠黏膜的体外模型,对纳米胶束的生物粘附能力进行考察。结果表明,CS-VES-NAC聚合物胶束能以二硫键共价结合的方式与粘蛋白进行相互作用,明显提高粘附性。采用原位单向在体肠灌流试验考察了胶束制剂的在体肠吸收情况。结果表明,胶束制剂的吸收速率常数Ka要高于紫杉醇溶液剂,其中吸收最好的是CS-VES-NAC-1胶束,在十二指肠段的吸收速率(Ka)是溶液剂的4.51倍。同时,在十二指肠、空肠、回肠段,CS-VES-NAC系列胶束组的表观渗透系数(Papp)也均高于溶液剂(p<0.05)。CS-VES-NAC-1胶束在十二指肠段的Papp值是溶液剂的4.64倍。肠段摄取机制结果表明,网格蛋白途径、小窝蛋白途径、巨胞饮及非网格蛋白非小窝蛋白途径均参与对纳米粒的摄取。激光共聚焦显微镜结果表明,巯基化胶束经口服给药后,小肠膜渗透性比游离药物组、CS-VES组均有提高,小肠中吸收最好部位是十二指肠段。
     采用UPLC-MS/MS方法研究了PTX溶液剂及各胶束制剂的体内药动学。各组制剂以十二指肠给药的方式进行,同时以PTX溶液剂静脉注射为对照计算绝对生物利用度。结果表明,PTX溶液剂,CS-VES胶束及CS-VES-NAC-1,-2,-3胶束的绝对生物利用度分别为3.21%、3.39%、13.65%、13.33%、7.68%;CS-VES胶束及CS-VES-NAC-1,-2,-3胶束组的AUC0-24h分别是PTX-Sol对照组(十二指肠给药)的1.06、4.25、4.15和2.39倍,t1/2分别是PTX-Sol对照组(十二指肠给药)的1.33、4.31、1.78和1.25倍。药动学结果表明紫杉醇巯基化聚合物胶束能够提高紫杉醇的血药浓度,增加生物利用度,同时延长其在血液中的循环时间。
     以人结肠癌细胞Caco-2为肠吸收细胞模型,对纳米胶束的细胞水平生物学机制进行了研究。结果表明,空白胶束的细胞毒性较低,载体材料安全性良好。CS-VES-NAC胶束通过生物粘附作用和促进内吞的方式增加PTX的细胞摄取。另外,CS-VES-NAC-1胶束能显著增加PTX肠腔侧到基底侧的渗透性,并降低反方向的外排,将PTX的外排比率降低10倍(外排率为2.13)。聚合物胶束以能量依赖性的方式进行跨细胞转运,其中网格蛋白途和小窝蛋白途径均有参与。细胞摄取试验表明CS-VES和CS-VES-NAC-1载体材料具有P-gp的抑制作用,可以显著降低细胞对PTX的外排。此外,CS-VES-NAC-1载体材料还可打开细胞间紧密连接,增加细胞旁路转运,使PTX溶液剂的膜渗透性提高了19.46倍,外排比率降低为0.75。表明CS-VES-NAC聚合物纳米胶束可作为化疗药物的有效传递系统。
To date, chemotherapy is the major treatment for cancer therapy. Injection is the most widely used dosage form in clinical application, due to the inappropriate characteristics of anticancer drugs, including low solubility, poor membrane permeability, lack of selectivity in distribution, and easy degradation. However, severe side effects limit their application. Therefore, the development of the oral chemotherapy delivery system has important implications for tumor treatment.
     This research designed and established the functional thiolated polymeric micelle system, which can increase the solubility of chemotherapeutic drugs, inhibit P-gp protein, bioadhere, promote penetration and improve the oral absorption of hydrophobic chemotherapeutic drugs. Drug-loaded micelles were prepared, using paclitaxel (PTX) as model drug, synthetic functional amphiphilic copolymer as carrier material. The main contents of this study include synthesis, characterization and property study of the polymer, preparation drug-loaded micelles, and evaluation of bioadhesion, intestinal absorption, endocytosis mechanisms, in vivo pharmacokinetics. Moreover, mechanisms at celluar level of PTX-loaded micelles were also investigated.
     Three kinds of thiolated amphiphilic copolymer of chitosan-vitamin E succinate-N-acetylcysteine (CS-VES-NAC) was synthesized by using chitosan as hydrophilic backbone, vitamin E succinate as hydrophobic core, N-acetylcysteine as functional groups. The chemical structure of the copolymer was identified by IR,1H-NMR, TGA and EDS. Free thiol groups of CS-VES-NAC-1,-2,-3copolymers examined by Ellman's method were182.6,275.5and451.5μmol/g, respectively, which render the copolymer has good swellaing behavior. Stability test results indicate that free sulfhydryl groups have good stability at the conditions of4℃, room temperature,37℃, and in pH1.2,5.4,6.8buffer solutions, which can meet the preparation requirements.
     The micelles were prepared by probe ultrasonication method. With the increase of sulfhydrylation substitution, mean diameters of blank CS-VES-NAC-1,-2,-3micelles were240.0,228.2and192.2nm, respectively. Zeta potential was+59.4,+58.4and+51.9mv, respectively. PTX was used as model drug to prepare the drug-loaded micelles. The effects of drug loading ratio on particle size and zeta potential were investigated. The particle size of drug-loaded micelles ranged from180nm to250nm, the encapsulation efficiency was about60%-80%, and the zeta potentials were all above+40mv. Moreover, sulfhydrylation substitution degree also has an effect on particle size and zeta potential. The images of drug-loaded micelles were spherical and round, with a narrow size distribution and a clear core-shell structure. Average particle size was about200nm, which was consistent with the measurement results of dynamic light scattering. DSC, X-ray results showed that PTX was in an amorphous form in the micellar core. Drug-loaded micelles showed a sustained release profile, which can maintain the stability of PTX and avoid drug leakage in physiological state.
     Mucin (type Ⅲ) was used as experimental model to study the biological adhesion. The results showed that CS-VES-NAC copolymer micelles could interact with mucin by covalent disulfide bonds, which can improve the adhesion significantly. Intestinal absorption of nanomicelles was investigated by in situ intestinal perfusion method. The results indicated that the absorption rate (Ka) of nanomicelles was higher than that of PTX solution, wherein CS-VES-NAC-1nanomicelles showed the most preferable absorption. The absorption rate was4.51times of PTX solution in duodenum segment. Besides, the apparent permeability (Papp) of CS-VES-NAC nanomicelles was also higher than that of PTX solution in duodenum, jejunum and ileum segments. The value of CS-VES-NAC-1nanomicelles was4.64times of pacllitaxel solution in duodenum segment. Intestinal absorption mechanisms showed that clathrin-dependent pathway, caveolin-dependent pathway, macropinocytosis, non-clathrin, non-caveolin-dependent pathway were all involved in the endocytosis process of CS-VES-NAC nanomicelles. Confocal laser scanning microscopy showed that after oral administration, thiolated micelles showed better permeability than that of free drug and CS-VES micelles.
     UPLC-MS/MS method was used to study the pharmacokinetics of PTX solution and PTX-loaded micelles. The experiment was conducted by duodenum administration, while PTX solution was intravenously administrated as control to obtain absolute bioavailability. The results showed that the relative bioavailability of PTX solution, CS-VES micelles, and CS-VES-NAC-1,-2,-3micelles was3.21%,3.39%,13.65%,13.33%and7.68%, respectively. AUC0-24h of CS-VES and CS-VES-NAC-1,-2,-3micelles was1.06,4.25,5.15and2.39fold higher than that of PTX solution, and the values of t1/2were1.33,4.31,1.78and1.25times higher than PTX solution. These indicated that thiolated polymeric micelles could increase the blood concentration of paclitaxel, increase bioavailability and prolong the systemic circulation.
     Human colon cancer cells (Caco-2) was applied to investigate the cellular biological mechanism of nanomicelles. Blank nanomicelles showed low cytotoxicity, suggesting good safety of the copolymer. Paclitaxel-loaded CS-VES-NAC nanomicelles could increase the cellular uptake due to bioadhesive interaction. Further, CS-VES-NAC-1nanomicelles could increase the permeation of PTX from apical side to basolateral side and decrease the efflux ratio of PTX by10-fold from the opposite direction (efflux ratio=2.13). The transcellular transport of micelles was energy-dependent, in which clathrin-dependent and caveolin-dependent pathway was both involved. Cellular uptake experiment also indicated that the P-gp inhibition effect of CS-VES and CS-VES-NAC-1copolymer could increase PTX cellular content. In addition, CS-VES-NAC-1copolymer could open the tight junctions between cells, increase paracellular transport, enhance the permeability of PTX solution by19.46-fold, and decrease the efflux ratio to0.75.
引文
[1]Hanahan, D.& Weinberg, R. A. (2011). Hallmarks of cancer:the next generation. Cell 144, 646-74.
    [2]Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E.& Forman, D. (2011). Global cancer statistics. CA:A Cancer Journal for Clinicians 61,69-90.
    [3]Lee, H., Lee, K.& Park, T. G. (2008). Hyaluronic acid-paclitaxel conjugate micelles:synthesis, characterization, and antitumor activity. Bioconjug Chem 19,1319-25.
    [4]Feng, S. S., Zhao, L.& Tang, J. (2011). Nanomedicine for oral chemotherapy. Nanomedicine (Lond) 6,407-10.
    [5]Ensign, L. M., Cone, R.& Hanes, J. (2012). Oral drug delivery with polymeric nanoparticles:The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews 64,557-570.
    [6]Liu, Y., Sun, J., Lian, H., Cao, W., Wang, Y.& He, Z. (2014). Folate and CD44 Receptors Dual-Targeting Hydrophobized Hyaluronic Acid Paclitaxel-Loaded Polymeric Micelles for Overcoming Multidrug Resistance and Improving Tumor Distribution. JPharm Sci.
    [7]Smejkalova, D., Nesporova, K., Hermannova, M., Huerta-Angeles, G., Cozikova, D., Vistejnova, L., Safrankova, B., Novotny, J., Kucerik, J.& Velebny, V. (2014). Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Int JPharm.
    [8]Abouzeid, A. H., Patel, N. R., Sarisozen, C.& Torchilin, V. P. (2014). Transferrin-Targeted Polymeric Micelles Co-loaded with Curcumin and Paclitaxel:Efficient Killing of Paclitaxel-Resistant Cancer Cells. Pharm Res.
    [9]Hantel, C., Jung, S., Mussack, T., Reincke, M.& Beuschlein, F. (2014). Liposomal polychemotherapy improves adrenocortical carcinoma treatment in a preclinical rodent model. Endocr Relat Cancer.
    [10]Chen, L., Chen, Q., Zhuang, Z., Zhang, Y., Tao, J., Shen, L., Shen, X., Chen, Z., Wang, J., Zhu, M. & Wang, H. (2014). Effect of the weekly administration of liposome-Paclitaxel combined with s-1 on advanced gastric cancer. Jpn J Clin Oncol 44,208-13.
    [11]Yin, Y., Wu, X., Yang, Z., Zhao, J., Wang, X., Zhang, Q., Yuan, M., Xie, L., Liu, H.& He, Q. (2013). The potential efficacy of R8-modified paclitaxel-loaded liposomes on pulmonary arterial hypertension. Pharm Res 30,2050-62.
    [12]Hu, C. M.& Zhang, L. (2012). Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83,1104-11.
    [13]Prasad, P., Cheng, J., Shuhendler, A., Rauth, A.& Wu, X. (2012). A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells. Drug Delivery and Translational Research 2,95-105.
    [14]Sun, Y, Chen, X.-Y., Zhu, Y.-J., Liu, P.-F., Zhu, M.-J.& Duan, Y.-R. (2012). Synthesis of calcium phosphate/GPC-mPEG hybrid porous nanospheres for drug delivery to overcome multidrug resistance in human breast cancer. Journal of Materials Chemistry 22,5128-5136.
    [15]Yoo, H. S.& Park, T. G. (2001). Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release 70,63-70.
    [16]李红霞,吴莉莉,宋佳 & 张业旺.(2013).聚合物胶束在药物传输系统中的应用.材料导报,127-129.
    [17]王香梅,张晓丽 & 陈韩根.(2013).两亲聚合物胶束自组装包药研究进展.高分子通报,27-32.
    [18]Hu, F. Q., Ren, G. F., Yuan, H., Du, Y. Z.& Zeng, S. (2006). Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids SurfB Biointerfaces 50,97-103.
    [19]Son, Y. J., Jang, J. S., Cho, Y. W., Chung, H., Park, R. W., Kwon, I. C., Kim, I. S., Park, J. Y, Seo, S. B., Park, C. R.& Jeong, S. Y. (2003). Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release 91,135-45.
    [20]Wang, X., Li, J., Wang, Y., Cho, K. J., Kim, G., Gjyrezi, A., Koenig, L., Giannakakou, P., Shin, H. J., Tighiouart, M., Nie, S., Chen, Z. G.& Shin, D. M. (2009). HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano 3,3165-74.
    [21]Yu, M. K., Lee, D. Y., Kim, Y. S., Park, K., Park, S. A., Son, D. H., Lee, G. Y., Nam, J. H., Kim, S. Y., Kim, I. S., Park, R. W.& Byun, Y. (2007). Antiangiogenic and apoptotic properties of a novel amphiphilic folate-heparin-lithocholate derivative having cellular internality for cancer therapy. Pharm Res 24,705-14.
    [22]Sawant, R. R.& Torchilin, V. P. (2010). Polymeric micelles:polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example. Methods Mol Biol 624, 131-49.
    [23]Kwon, G. S.& Okano, T. (1996). Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews 21,107-116.
    [24]Nishiyama, N.& Kataoka, K. (2006). Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112,630-48.
    [25]Mathot, F., des Rieux, A., Arien, A., Schneider, Y. J., Brewster, M.& Preat, V. (2007). Transport mechanisms of mmePEG750P(CL-co-TMC) polymeric micelles across the intestinal barrier. J Control Release 124,134-43.
    [26]Demina, T., Grozdova, I., Krylova, O., Zhirnov, A., Istratov, V., Frey, H., Kautz, H.& Melik-Nubarov, N. (2005). Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. Biochemistry 44,4042-54.
    [27]Zastre, J., Jackson, J. K., Wong, W.& Burt, H. M. (2007). Methoxypolyethylene glycol-block-polycaprolactone diblock copolymers reduce P-glycoprotein efflux in the absence of a membrane fluidization effect while stimulating P-glycoprotein ATPase activity. J Pharm Sci 96, 864-75.
    [28]Shaik, N., Pan, G.& Elmquist, W. F. (2008). Interactions of pluronic block copolymers on P-gp efflux activity:experience with HIV-1 protease inhibitors. J Pharm Sci 97,5421-33.
    [29]Batrakova, E. V., Li, S., Li, Y, Alakhov, V. Y.& Kabanov, A. V. (2004). Effect of pluronic P85 on ATPase activity of drug efflux transporters. Pharm Res 21,2226-33.
    [30]Bromberg, L. (2008). Polymeric micelles in oral chemotherapy. J Control Release 128,99-112.
    [31]Regev, R., Assaraf, Y. G.& Eytan, G. D. (1999). Membrane fluidization by ether, other anesthetics, and certain agents abolishes P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells. EurJBiochem 259,18-24.
    [32]Batrakova, E. V., Kelly, D. L., Li, S., Li, Y., Yang, Z., Xiao, L., Alakhova, D. Y., Sherman, S., Alakhov, V. Y.& Kabanov, A. V. (2006). Alteration of genomic responses to doxorubicin and prevention of MDR in breast cancer cells by a polymer excipient:pluronic P85. Mol Pharm 3, 113-23.
    [33]Liu, Y., Sun, J., Cao, W., Yang, J., Lian, H., Li, X., Sun, Y., Wang, Y., Wang, S.& He, Z. (2011). Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm 421,160-9.
    [34]Yu, L., Wu, W. K., Li, Z. J., Liu, Q. C., Li, H. T., Wu, Y. C.& Cho, C. H. (2009). Enhancement of doxorubicin cytotoxicity on human esophageal squamous cell carcinoma cells by indomethacin and 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC236) via inhibiting P-glycoprotein activity. Mol Pharmacol 75,1364-73.
    [35]Omelyanenko, V., Kopeckova, P., Gentry, C.& Kopecek, J. (1998). Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate. J Control Release 53,25-37.
    [36]Kabanov, A. V., Batrakova, E. V.& Alakhov, V. Y. (2002). Pluronic(?) block copolymers for overcoming drug resistance in cancer. Advanced Drug Delivery Reviews 54,759-779.
    [37]Batrakova, E. V., Li, S., Vinogradov, S. V., Alakhov, V. Y., Miller, D. W.& Kabanov, A. V. (2001). Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. J Pharmacol Exp Ther 299,483-93.
    [38]Yu, S. H., Tang, D. W., Hsieh, H. Y., Wu, W. S., Lin, B. X., Chuang, E. Y., Sung, H. W.& Mi, F. L. (2013). Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers. Acta Biomater 9,7449-59.
    [39]Benediktsdottir, B. E., Gudjonsson, T., Baldursson, O.& Masson, M. (2014). N-alkylation of highly quaternized chitosan derivatives affects the paracellular permeation enhancement in bronchial epithelia in vitro. Eur J Pharm Biopharm 86,55-63.
    [40]Hejazi, R.& Amiji, M. (2003). Chitosan-based gastrointestinal delivery systems. J Control Release 89,151-65.
    [41]Mourya, V. K.& Inamdar, N. N. (2008). Chitosan-modifications and applications:Opportunities galore. Reactive and Functional Polymers 68,1013-1051.
    [42]Kast, C. E.& Bernkop-Schnurch, A. (2001). Thiolated polymers--thiomers:development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 22,2345-52.
    [43]Kafedjiiski, K., Krauland, A. H., Hoffer, M. H.& Bernkop-Schnurch, A. (2005). Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials 26,819-26.
    [44]Bernkop-Schnurch, A., Hornof, M.& Zoidl, T. (2003). Thiolated polymers--thiomers:synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int J Pharm 260,229-37.
    [45]Bernkop-Schnurch, A., Kast, C. E.& Guggi, D. (2003). Permeation enhancing polymers in oral delivery of hydrophilic macromolecules:thiomer/GSH systems. J Control Release 93,95-103.
    [46]Foger, F., Schmitz, T.& Bernkop-Schnurch, A. (2006). In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials 27,4250-5.
    [47]Werle, M.& Hoffer, M. (2006). Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J Control Release 111,41-6.
    [48]李毅敏 & 赵树仪.(2003).N-乙酰半胱氨酸的研究进展.天津药学,50-53.
    [49]王竟军,郭晓洁,张震,戎雪冰,孙鲁华 & 苏文颖.(2009).N-乙酰半胱氨酸的研究及临床应用新进展.中国实和内科杂志,162-165.
    [50]Kelly, G. S. (1998). Clinical applications of N-acetylcysteine. Altern Med Rev 3,114-27.
    [51]Inserte, J., Taimor, G., Hofstaetter, B., Garcia-Dorado, D.& Piper, H. M. (2000). Influence of simulated ischemia on apoptosis induction by oxidative stress in adult cardiomyocytes of rats. Am J Physiol Heart Circ Physiol 278, H94-9.
    [52]Harrison, P., Wendon, J.& Williams, R. (1996). Evidence of increased guanylate cyclase activation by acetylcysteine in fulminant hepatic failure. Hepatology 23,1067-72.
    [53]乔玲,李亚明 & 段钟平.(2007).N-乙酰半胱氨酸的作用机制及在肝病中的应用.医学综述,39-41.
    [54]Dorr, R. T.& Lagel, K. (1994). Effect of sulfhydryl compounds and glutathione depletion on rat heart myocyte toxicity induced by 4-hydroperoxycyclophosphamide and acrolein in vitro. Chem Biol Interact 92,117-28.
    [55]Bachelet, M., Pinot, F., Polla, R. I., Francois, D., Richard, M. J., Vayssier-Taussat, M.& Polla, B. S. (2002). Toxicity of cadmium in tobacco smoke:protection by antioxidants and chelating resins. Free Radic Res 36,99-106.
    [56]Yu, W., Sanders, B. G.& Kline, K. (2002). RRR-alpha-tocopheryl succinate induction of DNA synthesis arrest of human MDA-MB-435 cells involves TGF-beta-independent activation of p21Waf1/Cipl. Nutr Cancer 43,227-36.
    [57]Gu, X., Song, X., Dong, Y., Cai, H., Walters, E., Zhang, R., Pang, X., Xie, T., Guo, Y., Sridhar, R. & Califano, J. A. (2008). Vitamin E succinate induces ceramide-mediated apoptosis in head and neck squamous cell carcinoma in vitro and in vivo. Clin Cancer Res 14,1840-8.
    [58]You, H., Yu, W., Munoz-Medellin, D., Brown, P. H., Sanders, B. G.& Kline, K. (2002). Role of extracellular signal-regulated kinase pathway in RRR-alpha-tocopheryl succinate-induced differentiation of human MDA-MB-435 breast cancer cells. Mol Carcinog 33,228-36.
    [59]Ni, J., Chen, M., Zhang, Y., Li, R., Huang, J.& Yeh, S. (2003). Vitamin E succinate inhibits human prostate cancer cell growth via modulating cell cycle regulatory machinery. Biochem Biophys Res Commun 300,357-63.
    [60]Donapaty, S., Louis, S., Horvath, E, Kun, J., Sebti, S. M.& Malafa, M. P. (2006). RRR-alpha-tocopherol succinate down-regulates oncogenic Ras signaling. Mol Cancer Ther 5, 309-16.
    [61]Crispen, P. L., Uzzo, R. G., Golovine, K., Makhov, P., Pollack, A., Horwitz, E. M., Greenberg, R. E.& Kolenko, V. M. (2007). Vitamin E succinate inhibits NF-kappaB and prevents the development of a metastatic phenotype in prostate cancer cells:implications for chemoprevention. Prostate 67,582-90.
    [62]Zu, K., Hawthorn, L.& Ip, C. (2005). Up-regulation of c-Jun-NH2-kinase pathway contributes to the induction of mitochondria-mediated apoptosis by alpha-tocopheryl succinate in human prostate cancer cells. Mol Cancer Ther 4,43-50.
    [63]Bang, O. S., Park, J. H.& Kang, S. S. (2001). Activation of PKC but not of ERK is required for vitamin E-succinate-induced apoptosis of HL-60 cells. Biochem Biophys Res Commun 288, 789-97.
    [64]Wang, X. F., Witting, P. K., Salvatore, B. A.& Neuzil, J. (2005). Vitamin E analogs trigger apoptosis in HER2/erbB2-overexpressing breast cancer cells by signaling via the mitochondrial pathway. Biochem Biophys Res Commun 326,282-9.
    [65]Wu, K., Li, Y., Zhao, Y., Shan, Y. J., Xia, W., Yu, W. P.& Zhao, L. (2002). Roles of Fas signaling pathway in vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells. World J Gastroenterol 8,982-6.
    [66]Turley, J. M., Fu, T., Ruscetti, F. W., Mikovits, J. A., Bertolette, D. C.,3rd & Birchenall-Roberts, M. C. (1997). Vitamin E succinate induces Fas-mediated apoptosis in estrogen receptor-negative human breast cancer cells. Cancer Res 57,881-90.
    [67]Yu, W., Israel, K., Liao, Q. Y., Aldaz, C. M., Sanders, B. G.& Kline, K. (1999). Vitamin E succinate (VES) induces Fas sensitivity in human breast cancer cells:role for Mr 43,000 Fas in VES-triggered apoptosis. Cancer Res 59,953-61.
    [68]Zhang, M., Altuwaijri, S.& Yeh, S. (2004). RRR-alpha-tocopheryl succinate inhibits human prostate cancer cell invasiveness. Oncogene 23,3080-8.
    [69]Malafa, M. P.& Neitzel, L. T. (2000). Vitamin E succinate promotes breast cancer tumor dormancy. JSurg Res 93,163-70.
    [70]Malafa, M. P., Fokum, F. D., Smith, L.& Louis, A. (2002). Inhibition of angiogenesis and promotion of melanoma dormancy by vitamin E succinate. Ann Surg Oncol 9,1023-32.
    [71]Stapelberg, M., Tomasetti, M., Alleva, R., Gellert, N., Procopio, A.& Neuzil, J. (2004). alpha-Tocopheryl succinate inhibits proliferation of mesothelioma cells by selective down-regulation of fibroblast growth factor receptors. Biochem Biophys Res Commun 318, 636-41.
    [72]Arbuck, S. G., Christian, M. C., Fisherman, J. S., Cazenave, L. A., Sarosy, G., Suffness, M., Adams, J., Canetta, R., Cole, K. E.& Friedman, M. A. (1993). Clinical development of Taxol. J Natl Cancer Inst Monogr,11-24.
    [73]Rowinsky, E. K., Onetto, N., Canetta, R. M.& Arbuck, S. G. (1992). Taxol:the first of the taxanes, an important new class of antitumor agents. Semin Oncol 19,646-62.
    [74]Kingston, D. G. I., Samranayake, G.& Ivey, C. A. (1990). The Chemistry of Taxol, a Clinically Useful Anticancer Agent. Journal of Natural Products 53,1-12.
    [75]代博娜,彭敏 & 陈群.(2008).壳聚糖和N-羟基苯并三氮唑相互作用的NMR研究.波谱学杂志 25,453-460.
    [76]Dobaria, N.& Mashru, R. (2010). Design and in vitro evaluation of a novel bioadhesive vaginal drug delivery system for clindamycin phosphate. Pharm Dev Technol 15,405-14.
    [77]Illum, L., Farraj, N. F.& Davis, S. S. (1994). Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res 11,1186-9.
    [78]Shu, X. Z., Liu, Y., Luo, Y., Roberts, M. C.& Prestwich, G. D. (2002). Disulfide Cross-Linked Hyaluronan Hydrogels. Biomacromolecules 3,1304-1311.
    [79]Hornof, M. D., Kast, C. E.& Bernkop-Schnurch, A. (2003). In vitro evaluation of the viscoelastic properties of chitosan-thioglycolic acid conjugates. EurJPharm Biopharm 55,185-90.
    [80]Marschiitz, M. K.& Bernkop-Schnurch, A. (2002). Thiolated polymers:self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion. European Journal of Pharmaceutical Sciences 15,387-394.
    [81]Lee, S. J., Koo, H., Lee, D.-E., Min, S., Lee, S., Chen, X., Choi, Y., Leary, J. F., Park, K., Jeong, S. Y, Kwon, I. C., Kim, K.& Choi, K. (2011). Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials 32,4021-4029.
    [82]Du, Y.-Z., Wang, L., Yuan, H., Wei, X.-H.& Hu, F.-Q. (2009). Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids and Surfaces B:Biointerfaces 69,257-263.
    [83]Blanco, E., Bey, E. A., Dong, Y., Weinberg, B. D., Sutton, D. M., Boothman, D. A.& Gao, J. (2007). β-Lapachone-containing PEG-PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. Journal of Controlled Release 122,365-374.
    [84]Opanasopit, P., Ngawhirunpat, T., Chaidedgumjorn, A., Rojanarata, T., Apirakaramwong, A., Phongying, S., Choochottiros, C.& Chirachanchai, S. (2006). Incorporation of camptothecin into N-phthaloyl chitosan-g-mPEG self-assembly micellar system. European Journal of Pharmaceutics and Biopharmaceutics 64,269-276.
    [85]Zhang, Z., Huang, Y., Gao, F., Gao, Z., Bu, H., Gu, W.& Li, Y. (2011). A self-assembled nanodelivery system enhances the oral bioavailability of daidzein:in vitro characteristics and in vivo performance. Nanomedicine (Lond) 6,1365-79.
    [86]Wang, J., Sun, J., Chen, Q., Gao, Y., Li, L., Li, H., Leng, D., Wang, Y., Sun, Y., Jing, Y., Wang, S. & He, Z. (2012). Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials 33, 6877-88.
    [87]Levine, M. J., Reddy, M. S., Tabak, L. A., Loomis, R. E., Bergey, E. J., Jones, P. C., Cohen, R. E., Stinson, M. W.& Al-Hashimi, I. (1987). Structural aspects of salivary glycoproteins. J Dent Res 66,436-41.
    [88]Tabak, L. A. (1990). Structure and function of human salivary mucins. Crit Rev Oral Biol Med 1, 229-34.
    [89]Offner, G. D.& Troxler, R. F. (2000). Heterogeneity of high-molecular-weight human salivary mucins. Adv Dent Res 14,69-75.
    [90]Bansil, R.& Turner, B. S. (2006). Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid & Interface Science 11,164-170.
    [91]Dekker, J., Rossen, J. W., Buller, H. A.& Einerhand, A. W. (2002). The MUC family:an obituary. Trends Biochem Sci 27,126-31.
    [92]Bafna, S., Kaur, S.& Batra, S. K. (2010). Membrane-bound mucins:the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene 29,2893-904.
    [93]Carraway, K. L.,3rd, Funes, M., Workman, H. C.& Sweeney, C. (2007). Contribution of membrane mucins to tumor progression through modulation of cellular growth signaling pathways. Curr Top Dev Biol 78,1-22.
    [94]Lehr, C.-M., Poelma, F. G. J., Junginger, H. E.& Tukker, J. J. (1991). An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. International journal of pharmaceutics 70, 235-240.
    [95]Lai, S. K., Wang, Y. Y.& Hanes, J. (2009). Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61,158-71.
    [96]Henke, M. O.& Ratjen, F. (2007). Mucolytics in cystic fibrosis. Paediatr Respir Rev 8,24-9.
    [97]Sheffner, A. L., Medler, E. M., Jacobs, L. W.& Sarett, H. P. (1964). THE IN VITRO REDUCTION IN VISCOSITY OF HUMAN TRACHEOBRONCHIAL SECRETIONS BY ACETYLCYSTEINE. Am Rev Respir Dis 90,721-9.
    [98]Ferrari, S., Kitson, C., Farley, R., Steel, R., Marriott, C., Parkins, D. A., Scarpa, M., Wainwright, B., Evans, M. J., Colledge, W. H., Geddes, D. M.& Alton, E. W. (2001). Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Ther 8,1380-6.
    [99]Schipper, N. G., Olsson, S., Hoogstraate, J. A., deBoer, A. G., Varum, K. M.& Artursson, P. (1997). Chitosans as absorption enhancers for poorly absorbable drugs 2:mechanism of absorption enhancement. Pharm Res 14,923-9.
    [100]Schipper, N. G. M., Varum, K. M., Stenberg, P., Ocklind, G., Lennernas, H.& Artursson, P. (1999). Chitosans as absorption enhancers of poorly absorbable drugs:3:Influence of mucus on absorption enhancement. European Journal of Pharmaceutical Sciences 8,335-343.
    [101]Soler, A. P., Miller, R. D., Laughlin, K. V., Carp, N. Z., Klurfeld, D. M.& Mullin, J. M. (1999). Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20,1425-31.
    [102]Barrett, W. C., DeGnore, J. P., Konig, S., Fales, H. M., Keng, Y. F., Zhang, Z. Y., Yim, M. B.& Chock, P. B. (1999). Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38,6699-705.
    [103]Mo, R., Jin, X., Li, N., Ju, C., Sun, M., Zhang, C.& Ping, Q. (2011). The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials 32,4609-20.
    [104]Mo, R., Xiao, Y, Sun, M., Zhang, C.& Ping, Q. (2011). Enhancing effect of N-octyl-O-sulfate chitosan on etoposide absorption. Int J Pharm 409,38-45.
    [105]Borowski, E., Bontemps-Gracz, M. M.& Piwkowska, A. (2005). Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Acta Biochim Pol 52, 609-27.
    [106]Wu, J., Lu, Y., Lee, A., Pan, X., Yang, X., Zhao, X.& Lee, R. J. (2007). Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci 10,350-7.
    [107]Ranaldi, G., Marigliano, I., Vespignani, I., Perozzi, G.& Sambuy, Y. (2002). The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line(1). The Journal of nutritional biochemistry 13,157-167.
    [108]Dorkoosh, F. A., Setyaningsih, D., Borchard, G., Rafiee-Tehrani, M., Verhoef, J. C.& Junginger, H. E. (2002). Effects of superporous hydrogels on paracellular drug permeability and cytotoxicity studies in Caco-2 cell monolayers. International journal of pharmaceutics 241,35-45.
    [109]Gan, L.-S. L.& Thakker, D. R. (1997). Applications of the Caco-2 model in the design and development of orally active drugs:elucidation of biochemical and physical barriers posed by the intestinal epithelium. Advanced Drug Delivery Reviews 23,77-98.
    [110]Dimitrijevic, D., Shaw, A. J.& Florence, A. T. (2000). Effects of some non-ionic surfactants on transepithelial permeability in Caco-2 cells. J Pharm Pharmacol 52,157-62.
    [111]陈斌.(2009).巯基化壳聚糖-pDNA纳米粒的构建及其对HeLa细胞体外转染活性的研究.硕士,天津医科大学.
    [112]Constantinides, P. P.& Wasan, K. M. (2007). Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs:in vitro/in vivo case studies. J Pharm Sci 96,235-48.
    [113]Katneni, K., Charman, S. A.& Porter, C. J. (2007). Impact of cremophor-EL and polysorbate-80 on digoxin permeability across rat jejunum:delineation of thermodynamic and transporter related events using the reciprocal permeability approach. J Pharm Sci 96,280-93.
    [114]Hugger, E. D., Audus, K. L.& Borchardt, R. T. (2002). Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. J Pharm Sci 91,1980-90.
    [115]Arima, H., Yunomae, K., Hirayama, F.& Uekama, K. (2001). Contribution of P-glycoprotein to the enhancing effects of dimethyl-beta-cyclodextrin on oral bioavailability of tacrolimus. J Pharmacol Exp Ther 297,547-55.
    [116]康安,梁艳,郝海平,谢林 & 王广基.(2007).新型促吸收剂研究进展——以细胞间紧密连接为靶点.药学学报,1122-1128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700