化学计量学辅助GC-MS用于辛夷挥发油化学成分和抗炎作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对中药复杂体系定性定量分析与药效机制研究方面面临的瓶颈问题,本课题以辛夷挥发油为研究对象,应用气相色谱-质谱联用分析手段,结合化学计量学方法及代谢组学研究技术,对辛夷挥发油的组成、药代动力学、药效学、作用机制等进行了全面、系统的研究,为揭示辛夷挥发油药效物质基础提供了依据,对于含有辛夷的中药复方的药效学研究亦具有一定的借鉴意义。
     具体研究内容如下:
     1.气相色谱中目标色谱峰保留时间的预测
     先是基于恒温及一阶程序升温条件下目标色谱峰的保留时间,对一阶程序升温条件下另一升温速率的该目标色谱峰保留时间进行预测。结果表明,预测值和测量值的相对偏差较大;然后,在一阶程序升温条件下,用两个不同升温速率下目标色谱峰的保留时间来预测另一速率下的保留时间,预测值与实测值较为接近,只有个别组分相对偏差大于1%,其它相对偏差较小。比之在恒温下对目标色谱峰保留时间的预测值来说,相对偏差明显减小。
     基于实际需要,建立了可用于二阶及多阶程序升温的目标色谱峰保留时间预测的方法。先以标准对照品为研究对象,预测正十六酸和二十九烷在二阶程序升温条件下的保留时间。结果显示,预测值与实测值的相对偏差小于0.2%。然后以辛夷挥发油成分为考察目标,相对偏差小于0.15%,预测结果满意。并对一阶和二阶程序升温条件下保留时间预测相对偏差进行了比较。结果显示,二阶条件下的预测值和真实值更为接近。该预测方法可用来优化气相色谱条件,节省分析时间,提高分析效率,在实际工作中具有较好的应用价值。
     2.化学计量学分辨技术和联用色谱技术用于辛夷挥发油的复杂成分分析
     通过GC-MS联用,结合直观推导式演进特征投影法(HELP)对辛夷挥发油的成分进行了定性和定量分析。以重叠色谱峰簇A和B为例,在解析过程中,先后使用FSMWEFA,ELPG和HELP方法,对重叠色谱峰进行了解析。解析结果显示:峰簇A是含有三组分的峰簇,峰簇A中的三个化合物分别为o-Cymene,D-Limonene和Eucalyptol,相对含量分别为2.27%,4.52%,14.20%;峰簇B经FSMWEFA法解析是4组分体系,但2D-ELPG显示为3组分体系,为进一步确定体系组分数,采用3D-ELPG方法进行确认后,峰簇B包括四个化合物,解析结果和NIST数据库比对后,确认分别是Carotol,τ-Cadinol,τ-Muurolol和1á-Cadin-4-en-10-ol,相对含量分别是0.13%,1.41%,1.01%,0.41%。采用此策略对辛夷挥发油进行解析后,化合物由原来直接由NIST检索的65个增加至80个。
     在本研究中,我们充分利用了3D-ELPG的信息,解析结果更为准确可靠。可以看出,GC-MS联用结合HELP方法可成功的用于分析辛夷挥发油成分,也充分说明化学计量学在分析复杂体系中具有潜在的优势,可提高组分定性和定量的准确性。
     3.辛夷挥发油成分GC-MS指纹图谱的建立
     通过多元曲线分辨-偏最小二乘法(MCR-ALS)对12批辛夷挥发油的重叠色谱峰进行了批量解析,增加了定性定量的准确性;确定了12批样品中辛夷挥发油的共有组分及含量,确定了辛夷挥发油中最主要的化合物,包括桉油精,异合金欢醇,α-水芹烯,崁烯,柠檬烯,α-杜松醇,α-芳樟醇,石竹烯,邻聚伞花素等。采用n强峰、共有峰率及变异率对指纹图谱进行了评价,建立的方法稳定、可靠,较为全面的反映了辛夷挥发油的化学成分,为辛夷药材质量标准奠定了基础。
     4.辛夷挥发油中主要活性成分1,8-桉叶素的药代动力学初步研究
     以1,8-桉叶素为研究对象,采用液-液萃取法提取血浆样品,建立了以α-蒎烯为内标的气相色谱法检测血浆样品中1,8-桉叶素浓度的方法。色谱分离条件为毛细管柱:SPBTM-1,0.25 mm×30 m×0.25μm;FID检测器;载气:氮气,流速1.0 mL/min;程序升温条件:起始柱温50°C,保持2 min,再以5°C /min的速率升温至100°C,保持2 min。采用本文建立的生物样品预处理方法和气相色谱法测定样品中1,8-桉叶素的含量,生物样品预处理方法回收率高,色谱分离选择性好。本法的准确度、精密度、专属性和定量线性范围均达到体内药物分析的要求。线性相关系数为0.999,日内精密度范围是3.75~5.74%,日间精密度范围是2.41~5.58%。
     用上述建立的气相色谱法测定血浆中1,8-桉叶素的浓度,根据所得的血药浓度-时间曲线,采用非房室模型推算药物动力学参数。结果表明,SD大鼠口服1,8-桉叶素后体内血药浓度消除较慢,个体差异较大。经非房室模型法估算的SD大鼠口服给药后达峰时间为2h,达峰浓度为36.223μg/ml,药时曲线末端相消除半衰期为4.811h,平均滞留时间为7.923h,AUC0~12和AUC0~∞分别为227.09μg·h/ml,280.06μg·h/ml。
     5.辛夷挥发油抗炎作用的代谢组学初步研究
     首先建立角叉菜胶致大鼠急性炎症模型,然后从药效学角度证明辛夷挥发油具有较好的抗炎活性。然后采用GC-MS分析正常组、模型组及给药组的三种不同状态下大鼠的血浆代谢谱,采用NIST数据库对不同组别大鼠血浆中的内源性代谢物进行鉴定,使用多元模式识别方法分析大鼠不同组间的代谢物谱差异。在正常组和模型组的得分矩阵图中,两组的样本点完全分离,说明致炎后大鼠正常生理代谢被干扰,从机体生理内源性代谢物变化的层面可以认为炎症模型造模成功。在正常组、模型组及给药组的得分矩阵图中,三组的样本点也达到了分离,而对照组和给药组在第二主成分上毗邻,这表明给药组样本有向对照组移动的趋势。
     从三组的载荷矩阵图中,可以得到对分类贡献较大的生物标记物。数据结果表明,模型组中尿素、戊二胺、甘氨酸及乳酸的含量升高,且尿素和尸胺对分类贡献最大,可认为是角叉菜胶致炎对大鼠机体生理内源性代谢产生扰动的生物标记物。给药组中尿素、戊二胺、甘氨酸及乳酸的含量下降,回到正常水平,而软脂酸、亚油酸、油酸、硬脂酸、花生四烯酸、胆固醇的含量升高,且高于正常组,可认为是给药后的生物标记物。通过文献调研表明,这些标记物的改变和其抗炎活性存在一定的关系。这些脂肪酸及胆固醇可作为肝x受体的激活剂,并启动肝x受体信号通路从而发挥抗炎活性。
Based on the problems faced by complex system of Chinese medicine qualitative and quantitative analysis and the research of pharmacodynamics mechanism, in the present paper, Flos magnoliae volatile oil was chosen as the research subject, and gas chromatography-mass spectrometry was used as analytical tools and chemometric resolution methods and metabonomics research techniques were carried out to conduct a comprehensive and systematic study. This research provides the basis for pharmacological activity of Flos Magnoliae volatile oil, and gives a certain amount of reference and help for pharmacodynamic study of Chinese medicine formulation containing Flos Magnoliae.
     Some studies are as follows,
     1. Retention time prediction of target chromatographic peaks in gas chromatography condition
     When one non-isothermal run and another isothermal run were used to predict the retention time in capillary gas chromatography, the relative error is large; when two one-step programmed runs were used, the relative error is small. In the case, the relatively larger error could be due to the relatively larger difference of the sample in partition between under the non-isothermal condition and under the isothermal condition.
     Based on real needs, a modified method was proposed for retention time prediction in two-step temperature-programmed gas chromatography, based on the closed-form integral method which was formerly put forward to predict the retention time in one-step gas chromatography. The calculation process was simplified and the prediction error was reduced in the proposed method. The modified method was validated through predicting the retention time of two reference standards, n-hexadecanoic acid and nonacosane using two-step temperature-programmed gas chromatography, and the relative errors of prediction were less than 0.2%. Then the proposed method was applied to predict the retention time of Flos Magnoliae volatile oil, and satisfactory results were obtained as well. The relative errors of prediction were less than 0.15%. The results indicate that our modified method is effective for retention time prediction in the two-step temperature-programmed gas chromatography, and the prediction error could be reduced using the proposed method. The prediction method can be used to optimize the gas chromatographic conditions, save analysis time and improve the analysis efficiency. Thus, there are good application field in practical work.
     2. Determination of the volatile oil of Magnolia biondii Pamp by GC-MS combined with Chemometric Techniques
     An optimized temperature-programmed gas chromatography-mass spectrometry system combined with chemometric methods was firstly applied to analyze the volatile components of M. biondii Pamp (a kind of Flos Magnoliae). The peak purity of two-way data was controlled by fixed size moving window evolving factor analysis, two dimensional-evolving latent projection graph and three dimensional-evolving latent projection graph. Then the overlapped peak clusters were resolved using heuristic evolving latent projection. We choose peak cluster A and B as examples to illustrate the data analysis process. The results show that the components co-eluted in peak cluster A is o-cymene, D-limonene and eucalyptol. Their relative contents are 2.27%, 4.52% and 14.20%, respectively; the components co-eluted in peak cluster B is Carotol,τ-Cadinol,τ-Muurolol and 1á-Cadin-4-en-10-ol. Their relative contents are 0.13%, 1.41%, 1.01% and 0.41%, respectively. A total of 65 components were identified using similarity searches between mass spectra and MS database. This number was extended to 80 components with the help of chemometric techniques.
     In this study, we make full use of the 3D-ELPG information, and more accurate and reliable analytical results can be acquired. The research indicates GC-MS combined with chemometric techniques can be successfully used to analyze the volatile oil of Magnolia biondii Pamp, and the CRM method in analysis of complex systems have the potential advantages. The accuracy of qualitative and quantitative analysis can be improved. The results also prove that the reported approach is powerful for the analysis of complex herbal samples.
     3. Comparative study on fingerprints of Flos Magnoliae volatile oil by GC-MS combined with MCR-ALS
     Twelve different sources of Flos Magnoliae were analyzed and compared with each other. The overlapped chromatographic peaks of 12 batches of Flos Magnoliae volatile oils were resolved through MCR-ALS method, and the accuracy of qualitative and quantitative was increased. It is the first time to apply MCR-ALS method to resolve the chromatographic peaks in fingerprint research, and it reduces the burden of qualitative analysis as well as the subjectivity. Among the components were determined, there were 34 components coexisting in all samples. Eucalyptol, (E, E)-Farnesol,α-phellandrene, Camphene, D-Limonene,α-Cadinol,α-Linalool, Caryophyllene and o-cymene are the main components in Flos Magnoliae volatile oil. N strong peaks, Common and Variant peak ratios were used to evaluate their fingerprint. The results showed a fair consistency in their GC-MS fingerprint.
     4. Quantitative analysis and preliminary study on pharmacokinetics of 1, 8-cineole in rats plasma
     A gas chromatography method has been developed for the determination of 1,8-cineole in rat plasma usingα-pinene as internal standard. Liquid-liquid extraction was used as the sample pretreatment mode. Separation was obtained on a 30 m×0.25 mm i.d. capillary column coated with 0.25μm film SPBTM-1. Nitrogen was used as carrier gas at a 1.0 mL/min flow rate. To acquire good separation, the column temperature was initially maintained at 50°C for 2 min, and then increased from 50 to 100°C at a rate of 5°C/min, and held for 2 min. The chromatographic system used in this research provided good separation of compounds without interfering peaks from endogenous substances. The calibration curve was liner range with correction coefficients above 0.999. The precision of intra-day and inter-day were evaluated by analysis of variance with the result of 3.75~5.74% and 2.41~5.58%, respectively. The method has been successfully used to support the pharmacokinetics study of 1,8-cineole.
     Following a single oral administration with 400mg/kg to rats, the blood samples were collected at different time after dosing. All collected blood samples were centrifuged to obtain plasma and the concentration of 1,8-cineole in plasma were determined by gas chromatography method described as above. Pharmacokinetics parameter calculations were carried out using non-compartmental analysis method. It showed from the plasma concentration-time data that the concentrations of 1,8-cineole in rat plasma increased and then reduced slowly after oral administration and the individual difference of rats was evident. The peak plasma concentration was 36.223μg/ml at 2h. The estimated elimination half-time and Mean residence time in rats were 4.811h and 7.923h, respectively. AUC0~12 and AUC0~∞were 227.09μg·h/ml and 280.06μg·h/ml, respectively.
     These results indicated that 1,8-cineole has slow oral absorption and its biological half-time period is relative longer. If suitable pharmaceutical dosage forms could be used, its bioavailability would be higher. In addition, the relevant research suggests that 1,8-cineole has a strong permeability, it can be developed for the transdermal formulations as local anti-inflammatory or antibacterial drug.
     5. Intervention effect of Volatile Oil of Magnolia biondii Pamp (VOMbP) on rat model of acute inflammation: A plasma metabonomics study based on gas chromatography-mass spectrometry
     In the present study, GC-MS-based metabonomics was applied to investigate the metabolic profiles of rats with acute inflammation induced by carrageenan, and the intervention effects of VOMbP on acute inflammation were evaluated as well. The endogenous metabolites in rat plasma were identified by NIST library, and the metabolic patterns were investigated using principal component analysis. The PCA scores plot showed that the inflammation group was apparently separated to the control group, indicating that the two groups had completely different metabolic profiles. When PCA was applied to treat the data of the control, inflammation and VOMbP groups, however, it can be seen that the three groups were apparently apart from each other, whereas the VOMbP group and the control group were adjacent at the same side on PC2. This indicated that the metabolic profile of VOMbP pretreated group was totally different from that of the model group and was showing a trend to return to the control group.
     In the corresponding loadings plot based on the GC-MS data of three groups, the metabolites which are the furthest from zero could be considered as marker metabolites that contribute most strongly to the classification of the three groups. In inflammation group, levels of urea, cadaverine, glycine and lactic acid increased, whereas the other metabolites had reduced levels. After VOMbP pretreatment, however, it can be seen that the levels of urea, cadaverine, glycine and lactic acid were reduced and the levels of the other metabolites were elevated comparing to those in the inflammation group. Among them, six metabolites, namely hexadecanoic acid, linoleic acid, oleic acid, stearic acid, arachidonic acid and cholesterol, may be mostly related to the anti-inflammatory activity of VOMbP may be involved in the anti-inflammatory activation of VOMbP, these metabolites may be regarded to act as LXRs activators to hinder the release of the inflammatory mediators and inhibit the inflammatory response. Therefore, VOMbP may exert its effectiveness on anti-inflammatory activation by involving the LXRs signaling pathway.
引文
[1]景怡,任远.中药药效物质基础研究的思路与方法.甘肃中医学院学报, 2009, 26: 45-48.
    [2] O.M. Kvalheim, Y.Z. Liang. Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 1. Selectivity, Latent-Projective Graph, Datascope, Local Rank, and Unique Resolution. Anal. Chem. 1992, 64: 936-945.
    [3] Y.Z. Liang, O.M. Kvalheim, H.R. Keller, D.L. Massart, P. Kiechle, F. Erni. Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 2. Detection and Resolution of Minor Constituents. Anal. Chem. 1992, 64: 946-953.
    [4]王广基,查伟斌,郝海平,阿基业.代谢组学技术在中医药关键科学问题研究中的应用前景分析.中国天然药物, 2008, 6: 89-97.
    [5]刘因华.中药挥发油的研究现状.现代中医药, 2009, 29: 68-70.
    [6]杜光,孙明辉.中药挥发油在制剂中的几种处理方法.时珍国医国药, 2003, 14: 150-151.
    [7]胡玉兰,张忠义,林敬明.中药砂仁的化学成分和药理活性研究进展.中药材, 2005, 28: 72-74.
    [8]张维彬,谭敏,肖刚,胡少为.莪术油诱导小鼠HepA肝癌细胞凋亡及其对bcl-2蛋白表达的影响.现代中西医结合杂志, 2009, 18: 370-371.
    [1]国家药典委员会,中国药典2005版一部, 126.
    [2]蔡福养.鼻炎灵治疗360例鼻炎的介绍.新中医, 1981, 13: 10.
    [3]蔡天力.中药香囊预防小儿流感50例疗效观察.中国医院药学杂志, 1991, 11: 330.
    [4]顾国明,周宇红,于桂华,贾玲.辛夷花有效成分研究.中草药, 1994, 25: 397.
    [5]于宗渊,孙中矾,苏本正,刘青. HPLC法测定望春花蕾中望春花黄酮醇苷Ⅰ的含量.中草药, 2004, 35: 574-575.
    [6]郭群,苏红,方玮.望春花中的木脂素类化学成分研究.中草药, 2004, 35: 849-852.
    [7] W.Q. Zhao, T.T. Zhou, G.R. Fan, Y.F. Chai, Y.T. Wu. Isolation and purification of lignans from Magnolia biondii Pamp by isocratic reversed-phase two-dimensional liquid chromatography following microwave- assisted extraction. J Sep. Sci., 2007, 30: 2370-2381.
    [8]张鑫,姚光明,张峻松,李兴波.超临界CO2流萃取及与水蒸气蒸馏萃取辛夷挥发油的化学组分分析.精细化工, 1999, 6: 12-14.
    [9]李卫民,田恒康.辛夷二氧化碳超临界萃取物的化学成分研究.中国民族医药杂志, 1999, 5: 137-138.
    [10]赵欧,梁逸曾.辛夷挥发油不同提取方法的研究.质谱学报, 2007, 28: 106-113.
    [11]张钰,王诗珍,吴采樱. FFAP玻璃毛细管柱用于辛夷-望春花精油化学成分的研究.分析化学, 1986, 14: 325-327.
    [12]方洪钜,宋万志,闫雅平.武当玉兰花蕾及其枝条挥发油的化学成分分析和比较.药学学报, 1987, 22: 908-910.
    [13]苏中兴,张所明,侯丽琰.武当玉兰花挥发油化学成分分析.中药材, 1992, 15: 30-32.
    [14]杨健,徐植灵,潘炯光.辛夷挥发油的成分分析.中国中药杂志, 1998, 23: 295-298.
    [15]何娟,杨柳,康长安,卢奎.辛夷挥发油的GC-MS指纹图谱研究.分析试验室, 2008, 27: 78-80.
    [16]张涛.复方辛夷滴鼻剂的研制及应用.中国医药学杂志, 1996, 16: 37.
    [17] X.L. Li, Y.Z. Zhang. The experimental study of anti-allergic effects of volatile oil from Flos Magnoliae. Chin. Hosp. Pharma. J . 2002, 22: 520-521.
    [18] W.K. Wang, Y.J. Shen, Y. Qi, J.P. Liu, J.X. Song. Anti-inflammatory Mechanism of the Volatile Oil of Magnolia biondii Pamp. Chin. J. Vet. Sci., 2005, 25: 301-303.
    [19] T.Q. Xiong, X.H. Qin, L.Pang, Y.J. Shen. Experimental Study of VOMbP on Allergic Rhinitis. Chin. Arch. Trad. Chin. Med., 2006, 24: 1031-1032.
    [20] Y. Shen, E.C.K. Pang, C.C.L. Xue, Z.Z. Zhao, J.G. Lin, C.G. Li. Inhibitions of mast cell-derived histamine release by different Flos Magnoliae species in rat peritoneal mast cells. Phytomedicine, 2008, 15: 808-814.
    [21] X.W. Zhu, J.K. Yang, D.W. Hu. Summarize of Study on the Application in Medicine Function and the Ingredient of Magnolia Liliflora. Strait Pharm J., 2002, 14: 5-7.
    [22]梁逸曾,俞汝勤.分析化学手册第十分册:化学计量学.北京:化学工业出版社.2000: 287-288.
    [23] M. Maeder, A. Zilian. Evolving factor analysis, a new multivariate technique in chromatography. Chemom. Intell. Lab. Syst., 1988, 3: 205-213.
    [24] H.R. Keller, D.L. Massart. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Anal. Chim. Acta, 1991, 246: 379-390.
    [25] O.M. Kvalheim, Y.Z. Liang. Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 1. Selectivity, Latent-Projective Graph, Datascope, Local Rank, and Unique Resolution. Anal. Chem. 1992, 64: 936-945.
    [26] Y.Z. Liang, O.M. Kvalheim, H.R. Keller, D.L. Massart, P. Kiechle, F. Erni. Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 2. Detection and Resolution of Minor Constituents. Anal. Chem. 1992, 64: 946-953.
    [27] R. Manne, H.L. Shen, Y.Z. Liang. Subwindow factor analysis. Chemom. Intell. Lab. Syst., 1999, 45: 171-176.
    [28] C.J. Xu, J.H. Jiang, Y.Z. Liang. Evolving window orthogonal projections method for two-way data resolution. Analyst., 1999, 124: 1471-1476.
    [29]聂晶,田颂九,王国荣.中药指纹图谱的研究现状.中草药, 2000, 31: 881-884.
    [30]张聪,金德庄.中药山茱萸HPLC色谱指纹特征研究.中成药, 2008, 30: 1726-1731.
    [31]张聪,王智华,金德庄.中国红参与高丽红参的指纹谱(HPLC-FPS)比较研究.中成药, 2001, 23: 160-163.
    [32]黄茂华,雍克岚.棕榈科麒麟血竭与百合科剑叶血竭HPLC指纹图谱分析与比较,上海大学学报:自然科学版, 2001, 7: 326-330.
    [33]吴志成,黄维钱,胡广林.海南沉香挥发油的气相色谱指纹图谱研究.化学分析计量, 2009, 18: 23-25.
    [34]金宏,公衍玲,赵文英.佛手挥发油GC-MS指纹图谱研究.化学与生物工程, 2009, 26: 76-78.
    [35]石世学,潘勤,元英群,李梦寅. GC-MS法建立都江堰产川芎挥发油的指纹图谱.中草药, 2007, 38: 1177-1180.
    [36]吴素香,孙静芸,盛春. GC法建立蓝桉挥发油指纹图谱研究.中成药, 2008, 30: 318-320.
    [37]黄水清,魏刚,黄月纯,刘东辉.当归补血汤挥发油的气相色谱-质谱指纹图谱研究.中国实验方剂学杂志, 2007, 13: 1-3.
    [38]张志杰,蔡宝昌,李林等.百合的GC-MS指纹图谱研究.中成药, 2006, 28: 625-627.
    [39] R. Tauler, D. Bareelo. Multivariate curve resolution applied to liquid chromatography-diode array detection. Trends Anal. Chem., 1993, 12: 319-327.
    [40] R. Gargallo, R. Tauler, F. Cuesta-Sanchez, D.L. Massart. Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation. Trends Anal.Chem., 1996, 15: 279-286.
    [41] S.G. Oliver. Yeast as a navigational aid in genome analysis. Microbiology, 1997, 143: 1483-1487.
    [42] J.K. Nicholson, J.C. Lindon, E. Holmes. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29: 1181-1189.
    [43] O. Fiehn. Metabolic networks of Cucurbita maxima phloem. Phytochemistry, 2003, 62: 875-886.
    [44] M.M. Koek, B. Muilwijk, M.J. Van der Werf, T. Hankemeier. Microbial Metabolomics with Gas Chromatography/Mass Spectrometry. Anal. Chem. 2006, 78: 1272-1281.
    [45] Y.L. Wang, E. Holmes, J.K. Nicholson, O. Cloarec, J. Chollet, M. Tanner, B.H. Singer, J. Utzinger. Metabonomic investigations in mice infected with Schistosoma mansoni: An approach for biomarker identification. Proc. Nat. Acad. Sci. USA, 2004, 101: 12676-12681.
    [46] K.Yu, G. Sheng, Y. Chen, W. Xu, X. Liu, H. Cao, H. Qu, Y. Cheng, L. Li. A Metabonomic Investigation on the Biochemical Perturbation in Liver Failure Patients Caused by Hepatitis B Virus. J. Proteome Res. 2007, 6: 2413-2419.
    [47] J. Yang, G. Xu, Y. Zheng, H. Kong, T. Pang, S. Lv, Q. Yang. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B, 2004, 813: 59-65.
    [48] M.E. Bollard, E.G. Stanley, J.C. Lindon, J.K. Nicholson, E. Holmes. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed., 2005, 18: 143-162.
    [49]夏建飞,梁琼麟,胡坪,王义明,罗国安.代谢组学研究策略与方法的新进展.分析化学, 2009, 37:136-143.
    [50] C. Wang, H.W. Kong, Y.F. Guan, J. Yang, J.R. Gu, S.L. Yang, G.W. Xu. Plasma Phospholipid Metabolic Profiling and Biomarkers of Type 2 Diabetes Mellitus Based on High-Performance Liquid Chromatography/Electrospray Mass Spectrometry and Multivariate Statistical Analysis. Anal. Chem., 2005, 77: 4108-4116.
    [51] E. Werner, J.F Heilier, C. Ducruix, E. Ezan, C. Junot, J.C. Tabet. Mass spectrometry for the identification of the discriminating signals from metabolomics: Current status and future trends. J. Chromatogr. B, 2008, 871: 143-163.
    [52] H.J. Major, R. Williams, A.J. Wilson, I.D. Wilson. A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Commun. Mass Spectrom., 2006, 20: 3295-3302.
    [53] X.J. Wang, H.T. Lv, H. Sun, L. Liu, B. Yang ,W.J. Sun, P. Wang, D.X. Zhou, L. Zhao, S.S. Dou, G.M. Zhang, H.X. Cao. Metabolic urinary profiling of alcohol hepatotoxicity and intervention effects of Yin Chen Hao Tang in rats using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2008, 48: 1161-1168.
    [54] K. Dettmer, P.A. Aronov, B.D. Hammock. Mass spectrometry-based metabolomics. Mass Spectrom. Rev., 2007, 26: 51-78.
    [55] Z. Ramadan, D. Jacobs, M. Grigorov, S. Kochhar. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta, 2006, 68: 1683-1691.
    [56] Y. Ni, M.M. Su, J.C. Lin, X.Y. Wang, Y.P. Qiu, A.H. Zhao, T.L. Chen, Wei Jia. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronicunpredictable mild stress. FEBS Lett., 2008, 582: 2627-2636.
    [57] K.A. Aliferis, S. Materzok, G.N. Paziotou, M.C. Tokousbalides. Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. Chemosphere, 2009, 76: 967-973.
    [58] J.C. Lindon, E. Holmes, J.K. Nicholson. Toxicological applications of magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc., 2004, 45: 109-143.
    [59] X. Huang, L.Shao, Y.F. Gong, Y. Mao, C.X. Liu, H.B. Qu, Y.Y. Cheng. A metabonomic characterization of CCl4-induced acute liver failure using partial least square regression based on the GC/MS metabolic profiles of plasma in mice. J. Chromatogr. B, 2008, 870: 178-185.
    [60] S.J. Bruce, P. Jonsson, H. Antti, O. Cloarec, J. Trygg, S.L. Marklund, T. Moritz. Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis. Anal. Biochem., 2008, 372: 237-249.
    [61] J. Chen, W.Z. Wang, S. Lv, P.Y. Yin, X.J Zhao, X. Lu, F.X. Zhang, G.W. Xu. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal. Chim. Acta, 2009, 650: 3-9.
    [62] R. Rousseau, B. Govaerts, M. Verleysen, B. Boulanger. Comparison of some chemometric tools for metabonomics biomarker identification. Chemom. Intell. Lab. Syst., 2008, 91: 54-66.
    [1] S.L. Morgan, C.A. Jacques. J Chromatogr Sci., 1978, 16: 500.
    [2] H.J. Stan, B. Steinbach. Automated development of optimum temperature programmes for gas chromatographic separation of complex mixtures on capillary columns. J Chromatogr., 1984, 290: 311-319.
    [3] Y. Guan, P. Zheng, L. Zhou. Prediction, optimization of separation, and identification of unknown compounds in capillary gas chromatography. J. High Resolut Chromatogr., 1992, 15: 18-23.
    [4]关亚风,周良模,李灵娥.毛细管气相色谱程序升温条件下保留值的高精度模拟.分析化学, 1993, 21: 1378-1382.
    [5]周良模.气相色谱新技术.北京:科学出版社. 1994, 270.
    [6]林涛,雷根虎.网格搜索法优化毛细管气相色谱线性程序升温.色谱, 2001, 19: 51-54.
    [7]许国旺,张玉奎,卢佩章.气相色谱柱温的智能最佳化I.理论基础.化学学报, 1994, 52: 902-909.
    [8]许国旺,张祥民,杨黎,张玉奎,卢佩章.气相色谱柱温的智能最佳化Ⅱ.程序设计原理及其应用.化学学报, 1994, 52: 910-916.
    [9]张祥民,卢佩章.“第七次全国色谱学术报告文集”,中国化学会色谱委员会.北京, 1989, 546.
    [10] V. Bartu. Calculation of the retention time and peak width for the purpose of optimized gas chromatographic analysis. J. Chromatogr.A, 1983, 260: 255-264.
    [11] D. E. Bautz, J. W. Dolan, L. R. Snyder. Computer simulation as an aid in method development for gas chromatography I. The accurate prediction of separation as a function of experimental conditions. J. Chromatogr.A, 1991, 541: 1-19.
    [12] J. W. Dolan, L. R. Snyder, D. E. Bautz. Computer simulation as an aid in method development for gas chromatography II. Changes in band spacing as a function of temperature. J. Chromatogr.A, 1991, 541: 21-35.
    [13]李国新.气相色谱分析过程的计算机仿真模拟与优化,分析测试技术与仪器, 1998, 4: 214-221.
    [14] I. Amasaki, Z. Gao, M. Nakada. Determination of Arrhenius Parameters from a Single Rate Curve.Chem. Lett., 2000, 29: 520-523.
    [15] I. Amasaki, Z. Gao, T. Kaneko, M. Nakada. Calculation of Retention Time for Temperature-Programmed Gas Chromatography. Anal. Sci., 2000, 16: 1229-1231.
    [16] T. Kaneko, I. Amasaki, M. Nakada, Z. Gao, Evaluation of Retention Time for Temperature-programmed Gas Chromatography by Use of a Closed-form Integral, Anal. Sci., 2008, 24: 419-421.
    [1] M. Jalali-Heravi, H. Parastar, H. Sereshti. Development of a method for analysis of Iranian damask rose oil: Combination of gas chromatography-mass spectrometry with Chemometric techniques. Anal. Chim. Acta, 2008, 623: 11-21.
    [2] M. Maeder, A. Zilian. Evolving factor analysis, a new multivariate technique in chromatography. Chemom. Intell. Lab. Syst., 1988, 3: 205-213.
    [3] H.R. Keller, D.L. Massart. Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Anal. Chim. Acta, 1991, 246: 379-390.
    [4] E.R. Malinowski. Window factor analysis: Theoretical derivation and application to flow injection analysis data. J. Chemom. 1992, 6: 29-40.
    [5] O.M. Kvalheim, Y.Z. Liang. Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 1. Selectivity, Latent-Projective Graph, Datascope, Local Rank, and Unique Resolution. Anal. Chem. 1992, 64: 936-945.
    [6] Y.Z. Liang, O.M. Kvalheim, H.R. Keller, D.L. Massart, P. Kiechle, F. Erni. Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 2. Detection and Resolution of Minor Constituents. Anal. Chem. 1992, 64: 946-953.
    [7] R. Manne, H.L. Shen, Y.Z. Liang. Subwindow factor analysis. Chemom. Intell. Lab. Syst., 1999, 45: 171-176.
    [8] C.J. Xu, J.H. Jiang, Y.Z. Liang. Evolving window orthogonal projections method for two-way data resolution. Analyst. 1999, 124: 1471-1476.
    [9] F. Gong, Y.Z. Liang, Q.S. Xu, F.T. Chau. Gas chromatography–mass spectrometry and chemometric resolution applied to the determination of essential oils in Cortex Cinnamomi. J. Chromatogr. A, 2001, 905: 193-205.
    [10] M. Jalali-Heravi, M. Vosough. Characterization and determination of fatty acids in fish oil using gas chromatography–mass spectrometry coupled with chemometric resolution techniques. J. Chromatogr. A, 2004, 1024: 165-176.
    [11] M. Jalali-Heravi, B. Zekavat, H. Sereshti. Characterization of essential oil components of Iraniangeranium oil using gas chromatography–mass spectrometry combined with chemometric resolution techniques. J. Chromatogr. A, 2006, 1114: 154-163.
    [12] M. Jalali-Heravi, B. Zekavat, H. Sereshti. Use of gas chromatography–mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway. J. Chromatogr. A, 2007, 1143: 215-226.
    [13]朱衷榜,倪永年.直观推导式演进特征投影法解析多环芳烃的重叠色谱峰.分析化学, 2008, 36: 71-74.
    [14]王康,张方,李华.直观推导式演进特征投影法对酶催化反应的过程分析.化学学报, 2007, 65: 1493-1498.
    [15]李玮,胡昌勤,王明娟.直观推导式演进特征投影法测定庆大霉素C组分含量.药物分析杂志, 2007, 27: 1511-1514.
    [16]任淑清,孙长海,方洪壮,赵晨曦.紫苏叶挥发油GC-MS与直观推导式演进特征投影法分析.中国药房, 2008, 19: 914-916.
    [17] O. Zhao, Y.Z. Liang. Volatile Oil Obtained from Yulan Magnolia Flower Bud with Different Methods. J. Chin. Mass. Spect. Soci, 2007, 28: 106-113.
    [18] J. He, L. Yang, C.A. Kang, K. Lu. GC-MS fingerprint of volatile oil from magnolia. Chin. J. Anal. Lab., 2008, 27: 78-80.
    [19] Y.Z. Liang, O.M. Kvalheim, A. Rahmani, R.G. Brereton. Resolution of strongly overlapping two-way multicomponent data by means of heuristic evolving latent projections. J. Chemom. 1993, 7: 15-43.
    [20] Y.P. Qi, Y.T. Wu, Y.F. Chai, T.H. Li, G.R. Fan, F. Lu. Identification of Selective Regions in Overlapping Hyphenated Chromatographic Data Using Three-dimensional Latent Projective Graph (3D-LPG) and Chemometric Technique. Chem J Chinese U, 2004, 25: 1825-1829.
    [1]周福添,徐树棋,王兆基,龚范,陈子彬,黄璐琦,粱逸曾.化学计量学方法应用于中药化学特征指纹图谱.中药新药与临床药理2001, 12: 164-169.
    [2]何娟,杨柳,康长安,卢奎.辛夷挥发油的GC-MS指纹图谱研究.分析试验室, 2008, 27: 78-80.
    [3]黄从善.辛夷挥发油类成分气相色谱-质谱仪指纹图谱研究.湖北中医学院学报, 2008, 10: 51-52.
    [4]张方,李华.多元曲线分辨-交替最小二乘方法在联用数据分辨中的应用.分析化学. 2007, 35: 520-524.
    [5]刘根兰,倪永年.荧光光谱法结合多元曲线分辨-交替最小二乘法研究伞形花内酯与牛血清白蛋白的相互作用.高等学校化学学报. 2008, 29: 1339-1343.
    [6]郭方遒.基于化学计量学的指纹图谱技术及其用于复杂分析体系的表征和分析: [博士学位论文].湖南:中南大学, 2004.
    [7]单鸣秋,姚晓东,池玉梅,张丽,丁安伟.侧柏叶红外指纹图谱共有峰率和变异峰率双指标序列分析法.光谱学与光谱分析. 2009, 29: 2092-2095.
    [1] M. De Vincenzi, M. Silano, A. De Vincenzi, et al. Constituents of aromatic plants eucalyptol. Fitoterapia. 2002, 73: 269-275.
    [2]王文元,顾丽莉,吴志民. 1,8-桉叶油素的研究进展.食品与药品, 2007, 9: 112-115.
    [3] F.A. Santos, V.S.N. Rao. Antiinflammatory and Antinociceptive Effects of 1,8-Cineole a Terpenoid Oxide Present in many Plant Essential Oils. Phytother. Res. 2000, 14: 240-244.
    [4] F.A. Santos, R.M. Silva, A.R. Campos, R.P. de Araujo, R.C.P. Lima Junior, V.S.N. Rao. 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem. Toxicol. 2004, 42: 579-584.
    [5] U.R. Juergens, U. Dethlefsen, G. Steinkamp, A. Gillissen, R. Repges, H. Vetter. Anti-inflammatory activity of 1,8-cineole (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir. Med. 2003, 97: 250-256.
    [6] F.A. Santos, R.M. Silva, A.R. Tome, V.S.N. Rao, M.M.L. Pompeu, M.J. Teixeira, L.A.R. De Freitas, V.L. De Souza. 1,8-Cineole protects against liver failure in an in-vivo murine model of endotoxemic shock. J. Pharm. Pharmacol. 2001, 53: 505-511.
    [7] S. Lahlou, A. F. Figueiredo, P.J.C. Magalhaes, J.H. Leal-Cardoso. Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Can. J. Physiol. Pharmacol. 2002, 80: 1125-1131.
    [8]倪木兰,孙万邦.桉叶油体外抗菌作用的初步实验研究.遵义医学院学报, 1995, 18: 178-179.
    [9] D.R.L. Caccioni, M. Guizzardi, D.M. Biondi, A. Renda, G. Ruberto. Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int J Food Microbiol, 1998, 43: 73-79.
    [10] D. Mitic-Culafic, B.Zegura, B.Nikolic, et al. Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. Food Chem. Toxicol., 2009, 47: 260-266.
    [11]谷根妹,竺叶青,洪筱坤.新桉叶注射液中1,8-桉叶素的测定.上海医科大学学报, 1995, 22: 313-314.
    [12]严敖金,谭青安.桉叶精油对三种天牛的驱避效果.南京林业大学学报, 1998, 22: 87-90.
    [13] I.O. Ndiege, W.J. Bmdenberg, D.O. Otieno. 1,8-Cineole: An attractant for the banana weevil, Cosmopolites sordidus. Phytochemistry, 1996, 42: 369-371.
    [14] R.R. Boyle, S. Mclean, S. Brandon, G.J. Pass, N.W. Davies. Application of solid-phase microextraction to the quantitative analysis of 1,8-cineole in blood and expired air in a Eucalyptus herbivore, the brushtail possum (Trichosurus vulpecula). J. Chromatogr. B, 2002, 780: 397-406.
    [15] S. Mclean, R.R. Boyle, S. Brandon, N.W. Davies, J.S. Sorensen. Pharmacokinetics of 1,8-cineole, a dietary toxin, in the brushtail possum (Trichosurus vulpecula): Significance for feeding. Xenobiotica, 2007, 37: 903-922.
    [16]曹静.毛细管气相色谱法分析高纯1,8-桉叶素.四川轻化工学院学报,2003, 13: 31-34.
    [17]刘英波,李江,邱德文. GC色谱法测定大果木姜子油口服乳剂中1,8-桉叶素含量的方法学研究,贵阳中医学院学报, 2008, 30: 76-77.
    [18] J.S. Valdez, D.K. Martin, M. Mayersohn. Sensitive and selective gas chromatographic methods for the quantitation of camphor, menthol and methyl salicylate from human plasma. J. Chromatogr. B, 1999, 729: 163-171.
    [19]陈群.冰片对丹皮酚药代动力学及透血脑屏障的影响: [硕士学位论文].浙江:浙江大学, 2005
    [1] T.Q. Xiong, X.H. Qin, Y.J. Shen. Studies on the effects of VOMbP on allergic rhinitis in guinea-pig. Pharmacol. Clin. Chin. Mater. Med. 2006, 22: 24-26.
    [2] W.K. Wang, Y.J. Shen, Y. Qi, J.X. Song. Anti-inflammatory Mechanism of the Volatile Oil of Magnolia biondii Pamp.Chin. J. Clin. Rehabilitation. 2005, 9: 210-211.
    [3] Y.M. Wang, Y. Zhang, Y.J. Shen, Y. Qi. Anti-inflammatory Mechanism of the Volatile Oil of Flos Magnoliae. J. Shanxi. Agric. Univ. 2000, 20: 324-326.
    [4] X.P. Sun, N.S. Wang, Q. Xue, F. Wang. Volatile oil of Magnolia biondii inhibits expressions of P-selectin protein in serum and renal tissue of rats with diabetic nephropathy. J. Chin. Integr. Med. 2008, 6: 524-529.
    [5] W.M. Claudino, A. Quattrone, L. Biganzoli, M. Pestrin, I. Bertini, A. Di Leo. Metabolomics: Available Results, Current Research Projects in Breast Cancer, and Future Applications. J. Clin. Oncol. 2007, 25: 2840-2846.
    [6] R. Hewer, J. Vorster, F.E. Steffens, D. Meyer. Applying biofluid 1H NMR-based metabonomic techniques to distinguish between HIV-1 positive/AIDS patients on antiretroviral treatment and HIV-1 negative individuals. J. Pharmaceut. Biomed., 2006, 41: 1442-1446.
    [7] R.Y. Xue, Z.X. Lin, C.H. Deng, L. Dong, T.T. Liu, J.Y. Wang, X.Z. Shen. A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22: 3061-3068.
    [8] X.J. Wang, H.T. Lv, H. Sun, L. Liu, B. Yang ,W.J. Sun, P. Wang, D.X. Zhou, L. Zhao, S.S. Dou, G.M. Zhang, H.X. Cao. Metabolic urinary profiling of alcohol hepatotoxicity and intervention effects of Yin Chen Hao Tang in rats using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2008, 48: 1161-1168.
    [9] J.K. Nicholson, J. Connelly, J.C. Lindon, E. Holmes. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug. Discov. 2002, 1: 153-161.
    [10] X.Y. Zhang, H.F. Wu, P.Q. Liao, X.J. Li, J.Z. Ni, F.K. Pei. NMR-based metabonomic study on the subacute toxicity of aristolochic acid in rats. Food Chem. Tocicol., 2006, 44: 1006-1014.
    [11] K. Yu, G.P. Sheng, J.F. Sheng, Y.M. Chen, W. Xu, X.L. Liu, H.C. Cao, H.B. Qu, Y.Y. Cheng, L.J.Li. A metabonomic investigation on the Biochemical Perturbation in Liver Failure Patients Caused by Hepatitis B Virus. J. Proteom. Res. 2007, 6: 2413-2419.
    [12] X.J. Zhao, Y. Zhang, X.L. Meng, P.Y. Yin, C. Deng, J. Chen, Z. Wang, G.W. Xu. Effect of a traditional Chinese medicine preparation Xindi soft capsule on rat model of acute blood stasis: A urinary metabonomics study based on liquid chromatography-mass spectrometry. J. Chromatogr. B. 2008, 873: 151-158.
    [13] D. Robertson, J.C. Lindon, J.K. Nicholson, E. Holmes (Eds.), Metabonomics in Toxicity Assessment, CRC Press, Boca Raton, 2005.
    [14] T.P. Sangster, J.E. Wingate, L. Burton, F. Teichert, I.D. Wilson. Investigation of analytical variation in metabonomic analysis using liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21: 2965-2970.
    [15] H. Wu, R.Y. Xue, L. Dong, T.T. Liu, C.H. Deng, H.Z. Zeng, X.Z. Shen. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal. Chim. Acta. 2009, 648: 98-104.
    [16] A. Jjye, J. Trygg, J. Gullberg, A.I. Johansson, P. Jonsson, H. Antti, S.L. Marklund, T. Moritz. Extraction and GC/MS Analysis of the Human Blood Plasma Metabolome. Anal. Chem. 2005, 77: 8086-8094.
    [17] M.M. Koek, B. Muilwijk, M.J. Van der Werf, T. Hankemeier. Microbial Metabolomics with Gas Chromatography/Mass Spectrometry. Anal. Chem. 2006, 78: 1272-1281.
    [18] The Pharmacopoeia Commission of People’s Republic of China Pharmacopoeia of the People’s Republic of China. Chemical Industry Press, Beijing. 2005, 1: 126.
    [19] B.G. Xie, T. Gong, R. Gao, J. Liu, J. Zuo, X.L. Wang, Z.R. Zhang. Development of rat urinary HPLC-UV profiling for metabonomic study on Liuwei Dihuang Pills. J. Pharm. Biomed. Anal., 2009, 49: 492-497.
    [20] P. Arumugam, N.G. Priya, M. Subathra, A. Ramesh. Anti-inflammatory activity of four solvent fractions of ethanol extract of Mentha spicata L. investigated on acute and chronic inflammation induced rats. Environ. Toxicol. Phar. 2008, 26: 92-95.
    [21] C. Postic, R. Dentin, J. Girard. Role of the liver in the control of carbohydrate and lipidhomeostasis. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab. 2004, 30: 398-408.
    [22] Z. Ramadan, D. Jacobs, M. Grigorov, S. Kochhar. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta. 2006, 68: 1683-1691.
    [23] Y. Ni, M.M. Su, J.C. Lin, X.Y. Wang, Y.P. Qiu, A.H. Zhao, T.L. Chen, Wei Jia. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett. 2008, 582: 2627-2636.
    [24] J.L. Ning, X.N. Lai, H.J. Ge, S.L. Wang, L.W. Mo, L.L. Wang, J.W. Zhu. Effects of controlled hypothermia on inflammatory reaction and organ function after traumatic hemorrhagic shock in rabbits. J Trauma Surg. 2007, 9: 20-23.
    [25] I.M. Fernandez, M. Silva, R. Schuch, W.A. Walker, A.M..Siber, A.T. Maurelli, B.A. McCormick. Cadaverine prevents the escape of Shigella flexneri from the phagolysosome: a connection between bacterial dissemination and neutrophil transepithelial signaling. J. Infect. Dis. 2001, 184: 743-753.
    [26] H. Kohler, S.P. Rodrigues, A.T. Maurelli, B.A. McCormick. Inhibition of Salmonella typhimurium Enteropathogenicity by Piperidine, a Metabolite of the Polyamine Cadaverine. J. Infect. Dis. 2002, 186: 1122-1130.
    [27] A. Hartog, I. Leenders, P.M. van der Kraan, J. Garssen. Anti-inflammatory effects of orally ingested lactoferrin and glycine in different zymosan-induced inflammation models: Evidence for synergistic activity. Int. Immunopharmacol. Int. Immunopharmacol. 2007, 7: 1784-1792.
    [28] R. Garcia-Macedo, F. Sanchez-Munoz, J.C. Almanza-Perez, G. Duran-Reyes, F.J. Alarcon-Aguilar, M. Cruz. Glycine increases mRNA adiponectin and diminishes pro-inflammatory adipokines expression in 3T3-L1 cells. Eur J Pharmacol. 2008, 587: 317-321.
    [29] F.J. Alarcon-Aguilar, J.C. Almanza-Perez, G. Blancas, S. Angeles, R. Garcia-Macedo, R. Roman, M. Cruz. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. Eur J Pharmacol. 2008, 599: 152-158.
    [30] D. Torocsik, A. Szanto, L. Nagy. Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Mol. Asp. Med. 2009, 30: 134-152.
    [31] A.J. Fowler, M.Y. Sheu, M. Schmuth, , J. Kao, J.W. Fluhr, L. Rhein, J.L. Collins, T.M. Willson,D.J. Mangelsdorf, P.M. Elias, K.R. Feingold. Liver X receptor activators display anti-inflammatory activity in irritant and allergic contact dermatitis models: liver-X-receptor-specific inhibition of inflammation and primary cytokine production. J. Invest. Dermatol. 2003, 120: 246-255.
    [32] S.B. Joseph, E. McKilligin, L. Pei, M.A. Watson, A.R. Collins, B.A. Laffitte, M. Chen, G. Noh, J. Goodman, G.N. Hagger, J. Tran, T.K. Tippin, X. Wang, A.J. Lusis, W.A. Hsueh, R.E. Law, J.L. Collins, T.M. Willso, P. Tontonoz,. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl. Acad. Sci. USA. 2002b, 99: 7604-7609.
    [33] S. Ogawa, J. Lozach, C. Benner, G. Pascual, R.K. Tangirala, S. Westin, A. Hoffmann, S. Subramaniam, M. David, M.G. Rosenfeld, C.K. Glass. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell. 2005, 122: 707-721.
    [34] D. Wang, C.M. Miao, J.P. Gong. Role of liver X receptors alpha agonist on expressions of LPS-induced inflammatory response associated factor IRAK-4 and NF-kappaB in Kupffer cells. J. Med. Colle. PLA. 2008, 23: 70-75.
    [1]徐惠波,孙晓波,赵全成.羌活挥发油的药理作用研究.中草药, 1991, 22: 28-30.
    [2]郑虎占,董泽宏,佘靖.中药现代研究与应用(第4卷).北京:学苑出版社, 1999: 3010.
    [3] O.M. Kvalheim, Y.Z. Liang. Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 1. Selectivity, Latent-Projective Graph, Datascope, Local Rank, and Unique Resolution. Anal. Chem. 1992, 64: 936-945.
    [4] Y.Z. Liang, O.M. Kvalheim, H.R. Keller, D.L. Massart, P. Kiechle, F. Erni. Heuristic Evolving Latent Projections: Resolving Two-Way Multicomponent Data. 2. Detection and Resolution of Minor Constituents. Anal. Chem. 1992, 64: 946-953.
    [5] E.R. Malinowski. Automatic window factor analysis: A more efficient method for determining concentration profiles from evolutionary spectra. J Chemom, 1996, 10: 273-279.
    [6] R. Manne, B.V. Grande. Resolution of two-way data from hyphenated chromatography by means of elementary matrix transformations. Chemom Intel Lab Syst, 2000, 50: 35-46.
    [7] B.G.M. Vandeginste, W. Derks, G. Kateman. Kateman G. Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis. Anal. Chim. Acta, 1985, 173: 253-264.
    [8] R. Tauler, E. Casassas. Spectroscopic resolution of macromolecular complexes using factor analysis: Cu(II)-polyethyleneimine system. Chemom Intell Lab Syst, 1992, 14: 305-317.
    [9]郭方遒,梁逸曾,黄兰芳,徐承建. GC-MS与正交投影法或渐进窗口正交投影法用于羌活挥发油成分的测定.高等学校化学学报, 2004, 25: 430-436.
    [10] M. Maeder. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal. Chem., 1987, 59: 527-530.
    [11] E.R. Malinowski. Window factor analysis: Theoretical derivation and application to flow injection analysis data. J. Chemom. 1992, 6: 29-40.
    [12] F.C. Sánchez, S.C. Rutan, M.D.G. Garcia. D.L. Massart. Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemom. Intell. Lab. Syst., 1997, 36: 153-164.
    [13] Y.Z. Liang, O.M. Kvalheim. Diagnosis and resolution of multiwavelength chromatograms by rankmap, orthogonal projections and sequential rank analysis. Anal. Chim. Acta, 1994, 292: 5-15.
    [14] R. Manne, H.L. Shen, Y.Z. Liang. Subwindow factor analysis. Chemom. Intell. Lab. Syst., 1999, 45: 171-176.
    [15] C.J. Xu, J.H. Jiang, Y.Z. Liang. Evolving window orthogonal projections method for two-way data resolution. Analyst. 1999, 124: 1471-1476.
    [16] P. Comon. Independent component analysis, A new concept, Signal Process. 1994, 36: 287.
    [17]唐伟军,周菊峰,李晓宁,赵晨曦,周芸,梁逸曾.大叶桉叶挥发油的化学成分研究.分析科学学报, 2006, 22:182-186.
    [18]赵晨曦,梁逸曾,李晓宁,方洪壮.杜鹃嫩枝叶挥发油化学成分研究.药学学报, 2005, 40:854-860.
    [19]李晓如,梁逸曾,郭方遒,李晓宁,曾仲大.气相色谱/质谱-化学计量学法分析测定药对桃仁-红花挥发油.分析化学, 2007, 35:532-536.
    [20]任淑清,孙长海,方洪壮,赵晨曦.紫苏梗挥发油的GC-MS定性分析.中国药房, 2008, 19:683-685.
    [21]易伦朝,梁逸曾,曾仲大,王平,袁大林. GC-MS与交互移动窗口因子分析法(AMWFA)用于3种陈皮挥发油成分的比较分析.高等学校化学学报, 2006, 27:1626-1630.
    [22]李雅文,黄兰芳,梁晟,郭紫明,戴云辉,吴名剑,钟科军,郭方遒,梁逸曾.仙鹤草挥发油化学成分的气相色谱-质谱分析.中南大学学报(自然科学版), 2007, 38:502-506.
    [23]李晓如,赵君,兰正刚,梁逸曾.药对川芎-羌活挥发油的气-质联用分析与化学计量学解析.中南大学学报, 2007, 38: 681-685.
    [24]李国辉,李晓如,邹桥,谭斌斌.采用气相色谱-质谱法分析药对麻黄-羌活的挥发油.中南大学学报(自然科学报), 2007, 38: 888-892.
    [25] M. Jalali-Heravi, B. Zekavat, H. Sereshti. Use of gas chromatography–mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway. J. Chromatogr A, 2007, 1143: 215-226.
    [26]李国辉,曾笑,张斌,李晓如.气相色谱-质谱法分析羌活挥发油成分.现代中药研究与实践, 2007, 21: 19-22.
    [27] C.J. Xu, Y.Z. Liang, F.T. Chau. Identification of essential components of Houttuynia cordata by gaschromatography/mass spectrometry and the integrated chemometric approach. Talanta, 2005, 68: 108-115.
    [28] C.X. Zhao, Y.Z. Liang, H.Z. Fang, X.N. Li. Temperature-programmed retention indices for gas chromatography–mass spectroscopy analysis of plant essential oils. J. Chromatogr A, 2005, 1096: 76-85.
    [29] M. Jalali-Heravi, H. Parastar, H. Sereshti. Development of a method for analysis of Iranian damask rose oil: Combination of gas chromatography-mass spectrometry with Chemometric techniques. Anal. Chim. Acta, 2008, 623: 11-21.
    [30] M. Jalali-Heravi, B. Zekavat, H. Sereshti. Characterization of essential oil components of Iranian geranium oil using gas chromatography–mass spectrometry combined with chemometric resolution techniques. J. Chromatogr A, 2006, 1114: 154-163.
    [31] F.Q. Guo, Y.Z. Liang, C.J. Xu, X.N. Li, L.F. Huang. Analyzing of the volatile chemical constituents in Artemisia capillaris herba by GC–MS and correlative chemometric resolution methods. J. Pharm. Biomed. Anal., 2004, 35: 469-478.
    [32] F.Q. Guo, Y.Z. Liang, C.J. Xu, L.F. Huang, X.N. Li. Comparison of the volatile constituents of Artemisia capillaris from different locations by gas chromatography–mass spectrometry and projection method. J. Chromatogr A, 2004, 1054: 73-79.
    [33] F. Gong, Y.Z. Liang, Q.S. Xu, F.T. Chau. Gas chromatography–mass spectrometry and chemometric resolution applied to the determination of essential oils in Cortex Cinnamomi. J. Chromatogr. A, 2001, 905: 193-205.
    [34] F. Gong, Y.Z. Liang, Y.S. Fung. Analysis of volatile components from Cortex cinnamomi with hyphenated chromatography and chemometric resolution. J. Pharm. Biomed. Anal., 2004, 34: 1029-1047.
    [35]陈勇,李晓如,曾笑,张斌.荆芥挥发油成分的气相色谱-质谱分析.世界科技研究与发展, 2007, 29: 43-46.
    [36]陈勇,李晓如,曾笑,谭斌斌,赵真真.气相色谱-质谱和化学计量学解析法分析防风挥发油成分.中国医院药学杂志, 2008, 28: 500-502.
    [37]赵晨曦,梁逸曾,李晓宁.丁香挥发油化学成分与抗菌活性研究.天然产物研究与开发, 2006,18: 381-385.
    [38] Y.X. Zeng, C.X. Zhao, Y.Z. Liang, H. Yang, H.Z. Fang, L.Z. Yi, Z.D. Zeng. Comparative analysis of volatile components from Clematis species growing in China. Anal. Chim. Acta, 2007, 595: 328-339.
    [39]李晓如,梁逸曾,杨辉,郭方遒,李晓宁,曾仲大.中药药对的化学成分研究-川芎-赤芍挥发油的GC-MS分析.高等学校化学学报, 2006, 27: 443-448.
    [40]李晓如,梁逸曾,李晓宁.气相色谱-质谱和化学计量学解析法分析药对麻黄-桂枝挥发油成分.药学学报. 2007, 42: 187-191.
    [41]李国辉,李晓如,刘少印.药对桂枝-羌活挥发油成分分析.亚太传统医药, 2008, 4: 15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700