分子信标技术在生物酶和ATP等重要生物分子检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物酶和ATP等重要生物分子是生物体和生命现象的结构基础和功能基础,在物质代谢、机体防御、血液凝固、肌肉收缩、细胞信息传递、个体生长发育、组织修复等方面发挥着不可替代的重要作用,它们的含量和活性直接关系到生物体的健康。因此,深入研究这些生物分子之间的相互作用,特别是建立这些生物分子快速、简便、准确、灵敏的分析方法,对分子水平上阐明生命的奥秘、新型药物的开发,攻克许多疑难病症以及促进信息科学的发展都有重要的意义,是当前生物分析化学研究的前沿和热点。
     本论文以上述科学问题为目标,结合当前发展的核酸探针技术和分子生物学手段,巧妙地利用了核酸酶(连接酶或聚合酶)、核酸以及分子信标核酸探针的特殊性质,发展了激酶、磷酸酶和限制性内切酶等生物酶活性实时检测的新方法。更重要的是,首次将分子信标探针用于三磷酸腺苷(ATP)、烟酰胺腺嘌呤二核苷酸(NAD)、烟酰胺腺嘌呤二核苷酸磷酸(NADP)等重要生物小分子的检测。主要内容归纳如下:
     首先,拓展了NTFS平台技术的应用,将其用于ATP、NAD、NADP、肌酸激酶、蛋白激酶等重要生物分子的检测,具体包括以下六个部分:
     1、分子信标技术结合T4 DNA连接酶用于ATP的检测。利用T4 DNA连接酶对ATP的高度依赖性,我们发展了一种ATP检测新方法。在ATP存在的条件下,T4 DNA连接酶以分子信标为模板,将两段短核酸片段连接,连接产物将分子信标打开,荧光信号增强,从而达到检测ATP的目的。该方法灵敏,简单,其线性响应范围为1~300 nM,检测下限为0.14 nM。并利用该方法对细胞内的ATP水平进行了初步分析。
     2、分子信标技术用于肌酸激酶活性的检测。二磷酸腺苷(ADP)与磷酸肌酸在肌酸激酶催化作用下生成肌酸和ATP,由于T4 DNA连接酶对ATP的高度依赖性,T4 DNA连接酶就会识别并利用生成的ATP进行DNA连接反应,产生的长链DNA将分子信标打开,使荧光信号增强,达到检测肌酸激酶活性的目的。其线性响应范围为1~50 U/L,检测下限为0.64 U/L。并用此方法考察了药物对CK活性的影响。该方法快速、简便、灵敏度高。
     3、分子信标技术用于蛋白激酶A活性的检测。以蛋白激酶A为模型,通过测定蛋白激酶催化后所剩余的ATP的量来检测蛋白激酶的活性。T4 DNA连接酶和分子信标底物被用于ATP的检测,其线性响应范围为12.5~150 nM,检测下限为1.25 nM。并考察了药物染料木素对蛋白激酶A的抑制作用。该方法不用进行同位素标记、操作简便、具有通用性。
     4、分子信标结合酶信号放大检测ATP。结合连接酶、腺苷酸激酶和核苷二磷酸激酶对ATP进行了检测。连接反应消耗ATP生成单磷酸腺苷(AMP),AMP与三磷酸脱氧胞苷酸(dCTP)在腺苷酸激酶的催化下生成ADP和2-脱氧胞苷5-二磷酸(dCDP),ADP和dCTP在核苷二磷酸激酶催化下生成ATP,使得ATP得到循环。利用T4 DNA连接酶对ATP的高度依赖性,ATP的不断产生使得被打开的分子信标不断增加,检测的线性范围为0.01~10 nM,检测下限为5 pM,与最灵敏的ATP检测方法生物发光法的灵敏度相当。
     5、基于分子信标的NAD高灵敏检测方法。本章利用大肠杆菌DNA连接酶对NAD的高度依赖性,发展了一种NAD检测新方法。在NAD存在的条件下,大肠杆菌DNA连接酶被激活,并以分子信标为模板,将两段短核酸片段连接,连接产物将分子信标打开,荧光信号增强,从而达到检测NAD的目的。该方法灵敏,简单,其线性范围为0.3~40 nM及40~300 nM,检测下限为0.3 nM。并利用该方法考察了卡路里限制对MCF7细胞内NAD水平的影响。
     6、基于分子信标的NADP高灵敏检测方法。首先利用碱性磷酸酶将NADP的磷酸根切除转化生成NAD,然后将NAD加入到分子信标及大肠杆菌DNA连接酶连接体系中进行检测,通过记录并计算荧光增强的初速度来定量,检测的线性范围为5~200 nM,检测下限为2 nM。这是一种简单、快速、高灵敏度的NADP分析新方法,且具有良好的特异性。
     其次,对NTFS平台技术进行了改进,基于聚合酶延伸反应发展了一种更简便快速的用于实时研究核酸与蛋白质(酶)相互作用的新技术,主要包括以下四个部分:
     7、分子信标用于DNA聚合酶活性的实时监测。研究聚合酶活性的传统方法主要是放射性同位素标记结合凝胶电泳,操作复杂费时,并且不能提供实时信息。本章利用分子信标技术,建立了一种简单、快速、灵敏地实时监测聚合酶活性的方法。其线性响应范围为0.003~6.25 U/mL,检测下限为0.003 U/mL。并探讨了聚合酶抑制剂对酶活性的影响,为以聚合酶为作用靶标的新药开发及筛选提供了一种新的思路。
     8、分子信标用于核酸3’端去磷酸化过程的实时监测。利用分子信标技术,结合DNA聚合酶发展了一种核酸3’端去磷酸化实时监测方法,建立了T4多聚核苷酸激酶(T4 PNK)的酯酶活性分析新方法。其线性响应范围为0.1~15 U/mL,检测下限为0.1 U/mL。并探讨了酶抑制剂对T4 PNK酯酶活性的影响,为T4 PNK抑制剂筛选提供了新的思路和方法。
     9、分子信标用于限制性内切酶活性的实时监测。传统的检测限制性内切酶活性的方法是不连续的,费时的。本章利用分子信标技术,建立了一种简便快捷、灵敏地连续监测限制性内切酶活性的方法。其线性响应范围为1~250 U/mL,检测下限为1 U/mL。并探讨了限制性内切酶抑制剂对酶活性的影响,为以限制性内切酶为作用靶标的新药开发及筛选提供了新的手段。
     10、分子信标用于碱性磷酸酶活性的分析。利用分子信标技术,建立了一种简单、快速、灵敏地监测磷酸酶活性的新方法,首次利用DNA作为酶作用底物对其活性进行检测。其线性响应范围为4×10-16~4×10-14 M,检测下限为4×10-16 M。并探讨了碱性磷酸酶抑制剂对酶活性的影响,为以碱性磷酸酶为作用靶标的新药开发及筛选提供了新的思路和手段。
Important biomolecules, such as enzymes and ATP, are the structural and functional base of organism and life’s phenomena. They play an important role in metabolism, recovery, blood coagulation, cell information transport, postnatal development, tissue synthesis and so on. It is very important for researchers to expound the secrets of life, to develop new functionalized medicine to surmount many difficult diseases and promote the development informatic science. What we should do is to further penetrate the interaction of the biomolecules and to develop rapid, convince, accurate and sensitive assay for them. This project is the forward position and hot point in bio-analytical chemical research.
     Aiming at the research goals mentioned above, this thesis utilized the advantageous of molecular beacon and nucleic acid enzyme (ligase or polymerase) to develop a series of methods for real-time monitoring the activity of kinase, phosphatase and restriction endonuclease. Moreover, novel detection methods for adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) have been developed with high sensitivity and selectivity. It is the first example of using molecular beacon as a biosensor for the detection of biologically important small molecules. The main points of this thesis are summarized as follows:
     Firstly, the applications of NTFS have been extended to detect important biomolecules, such as ATP, NAD, NADP, creatine kianse and protein kinase:
     1. Detection of ATP using molecular beacon (MB). A highly sensitive and simple fluorimetric method for the determination of ATP based on ATP-dependent T4 DNA ligase has been developed. This approach utilized a MB, T4 DNA ligase and two short oligonucleotides. In the presence of ATP, the T4 DNA ligase catalyzed the ligation reaction and the ligation product restored the fluorescence of MB. The increase of fluorescent intensity of MB was related to the concentration of ATP. This assay could determine ATP in the range of 1~300 nM with a detection limit of 0.14 nM. Cellular ATP concentration in several cell lines has also been determined.
     2. Detection of creatine kinase activity using MB. A novel method for the determination of creatine kinase activity based on ATP-dependent T4 DNA ligase has been developed. The ATP was produced from adenosine 5’-diphosphate (ADP) and creatine phosphate catalyzed by creatine kinase. Then T4 DNA ligase catalyzed the ligation reaction with ATP resulting the formation of match DNA, which caused conformation changes of molecular beacon. The increase of fluorescent intensity of molecular beacon was related to the concentration of creatine kinase. This assay could determine creatine kinase in the range of 1~50 U/L with a detection limit of 0.64 U/L. Moreover, the method was shown to be suitable for the sensitive detection of creatine kinase inhibitors.
     3. Detection of protein kinase A using MB. Protein kinase A was detected by quantifying the ATP after the protein kinase reaction. ATP assay was achieved by using T4 DNA ligase and molecular beacon. This assay could determine protein kinase A in the range of 12.5~150 nM with a detection limit of 1.25 nM. Moreover, the assay was available to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotope and homogeneous method for protein kinase A assay.
     4. An enzymatic cycling and signal amplification assay for ATP using MB. A sensitive assay for ATP was developed by enzymatic cycling and signal amplification assay. T4 DNA ligase consumed ATP and produced AMP, which was phosphorylated to ATP with 2’-deoxycytidine 5’-triphosphate (dCTP) as the phosphate donor catalyzed by adenylate kinase and nucleoside-diphosphate kinase. The ATP was detected by molecular beacon and T4 DNA ligase mentioned above. With the cycling of ATP→AMP→ATP, more and more molecular beacons were opened. This assay could determine ATP in the range of 0.01~10 nM with a detection limit of 5 pM. The sensitivity of the method developed here is comparable with bioluminescence.
     5. Detection of NAD based on DNA ligation using MB. A highly sensitive and simple fluorimetric method for the determination of NAD based on NAD-dependent E.Coli DNA ligase has been developed. This approach utilized a MB, E.Coli DNA ligase and two short oligonucleotides. In the presence of NAD, the E.Coli DNA ligase catalyzed the ligation reaction and the ligation product restored the fluorescence of MB. The increase of fluorescent intensity of MB was related to the concentration of NAD. This assay could determine NAD in the range of 0.3~40 nM and 40~300 nM with a detection limit of 0.3 nM. The calorie restriction effect on intracellular NAD level of the MCF7 cell has also been investigated.
     6. A high-sensitive method for the detection of NADP using MB. NADP assay was completed based on high-dependence of E. coli DNA ligase on coenzyme, nicotinamide adenine dinucleotide (NAD). First, NADP was transformed to NAD by alkaline phosphatase, and then NAD product was introduced into molecular beacon system and quantified. NADP concentration was represented by the initial enhancement rate of fluorescence intensity. This assay could determine NADP in the range of 5~200 nM with a detection limit of 2 nM. Compared with current assay methods, this approach was convenient, quick and highly sensitive.
     At last, the NTFS has been improved in investigating the interactions between nucleic acids and proteins (enzymes) by using MB based on polymerase extension reaction:
     7. Real-time monitoring of DNA polymerase activity using MB. Traditionally, polymerase is assayed by denaturing gel electrophoresis and autoradiography, which are complex and discontinuous, and incapable of providing the dynamic data. Here, a novel DNA polymerase assay based on MB has been proposed and developed. The polymerization process has been indicated by fluorescence singal in real-time. Under optimized conditions, this assay could determine Klenow Fragment exo- in the range of 0.003~6.25 U/mL with a detection limit of 0.003 U/mL. To our knowledge, there were no other methods having comparable sensitivity. The effect of drugs on the activity of polymerase has been investigated. This method was shown to be suitable for the sensitive detection of polymerase inhibitors.
     8. Real-time monitoring of nucleic acids dephosphorylation process using MB. A novel approach has been developed to monitor the dephosphorylation catalyzed by T4 polynucleotide kinase (PNK). The dephosphorylation process has been indicated by fluorescence singal in rea-time. This assay could determine T4 PNK in the range of 0.1~15 U/mL with a detection limit of 0.1 U/mL. The effect of inhibitor on the phosphatase activity of T4 PNK has been investigated. This method was shown to be suitable for screening potential inhibitors of T4 PNK.
     9. Real-time monitoring of restriction endonuclease activity using MB. Traditional methods to assay the activity of restriction endonuclease are discontinuous and time consuming. Here, a novel, continuous fluorescence assay for restriction endonuclease activity based on MB has been developed. This assay could determine Rsa I endonuclease in the range of 1~250 U/mL with a detection limit of 1 U/mL. The effect of inhibitor on the activity of Rsa I endonuclease has been investigated. This method was shown to be suitable for the sensitive detection of Rsa I endonuclease inhibitors.
     10. Detection of alkaline phosphatase activity using MB. A novel, continuous fluorescence assay for alkaline phosphatase activity based on MB has been developed. This assay could determine alkaline phosphatase in the range of 4×10-16~4×10-14 M with a detection limit of 4×10-16 M. It is comparable with or better than some commonly used techniques. And it is the first example of using DNA as a substrate for alkaline phosphatase assay. Furthermore, this method could be further improved by combing DNA amplification technique, such as PCR and LCR. The effect of inhibitor on the activity of alkaline phosphatase has been investigated. This method was shown to be suitable for screening potential inhibitors of alkaline phosphatase.
引文
[1] 古练权. 生物化学. 高等教育出版社, 2002
    [2] 王镜岩,朱圣庾,徐长法. 生物化学. 高等教育出版社, 2002
    [3] 胡亚男,王义明,罗国安. 质谱在糖分析中的应用. 药学学报, 2000, 35(5): 397-400
    [4] Stanford M. Advances in protein chemistry. Journal of the American Chemical Society, 1958, 80(19): 5326-5326
    [5] Zhang Y, Kim H, Heller H. Enzyme amplified amperometric detection of 3000 copies of DNA in a 10-L droplet at 0.5 fM concentration. Analytical Chemistry, 2003, 75(13): 3267-3269
    [6] Sazani P L, Larralde R, Szostak J W. A small aptamer with strong and specific recognition of the triphosphate of ATP. Journal of the American Chemical Society, 2004, 126(27): 8370-8371
    [7] Lin S J, Guarente L. Nitotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Currrent Opinion in Cell Biology, 2003, 15(2): 241-246
    [8] 王龙耀, 范利华, 肖安风等. ATP 的分析方法综述. 天津化工, 2003, 17(2): 30-33
    [9] 龙晓辉, 莫志宏, 张耀洲. 基于二维凝胶电泳的蛋白质定量分析技术. 化学进展, 2006, 18(4): 474-481
    [10] Qi F X, Edward S Y. Determination of lactate dehydrogenase isoenzymes in single lymphocytes from normal andleukemia cell lines. Journal of Chromatography B, 1996, 677(8): 233-240
    [11] Wang W, Sun X, Jin W. Determination of lactate dehydrogenase in human erythrocytes by capillary electrophoresis with electrochemical detection. Journal of Chromatography B, 2003, 798(4): 175-178
    [12] 何新亚, 周小棉, 林炳承. 毛细管电泳用于评价脱氧核糖核酸退火反应. 分析化学, 2003, 31(5): 10-13
    [13] Linhardt R J, Pervin A. Separation of negatively charged carbohydrates by capillary electrophoresis. Journal of Chromatography A, 1996, 720(1): 323-335
    [14] Beard N P, Mello A J. A polydimethylsiloxane/glass capillary electrophoresis microchip for the analysis of biogenic amines using indirect fluorescence detection. Electrophoresis, 2002, 23(11): 1722-1730
    [15] 林金明, 陈子林. 毛细管电泳在药物分析中的应用. 药学学报, 1999, 34(9): 716-720
    [16] Liao T, Jiang C M, Wu M C, et al. Quantification of L-ascorbic acid and total ascorbic acid in fruits and spinach by capillary zone electrophoresis. Electrophoresis, 2001, 22(8): 1484-1488
    [17] Saavedra L, Garcia A, Barbas C. Development and validation of a capillary electrophoresis method for direct measurement of isocitric, citric, tartaric and malic acids as adulteration markers in orange juice, Chromatogr A, 2000, 881(1-2): 395-401
    [18] 周冬梅, 邹汉法, 杨利等. 蛋白 A 高效亲和膜色谱法测定人血浆中免疫球蛋白 G 的含量. 色谱, 1998, 16(3): 195-197
    [19] Stratford M R, Dennis M F. Determination of adenine nucleotides by fluorescence detection using high-performance liquid chromatography and post-column derivatisation with chloroacetaldehyde. Journal of Chromatogram B Biomedicine Apply, 1994, 662(1): 15-20
    [20] 毛平, 黄晓兰, 李翠贞等. 高效液相色谱法测定血浆肝素含量. 中华医学检验杂志, 1995, 18(6): 358-360
    [21] Chait B T, Kent S B. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science, 1992, 257(5078): 1885-1894
    [22] 邹汉法, 黄晓冬. 生物分子的分离与检测. 色谱, 2003, 21(4): 311-315
    [23] Zou H, Zhang Q, Guo Z, et al. A mass spectrometry based direct-binding assay for screening binding partners of proteins. Angewandte Chemie-International Edition, 2002, 41(4): 646-648
    [24] Schiller J, Arnhold J, Benard S, et al. Cartilage degradation by hyaluronate lyase and chondroitin ABC lyase: a MALDI-TOF mass spectrometric study. Carbohydrate Research, 1999, 318(1-4): 116-122
    [25] 王郡, 郭玉凤, 郭茹辉等. 电化学检测方法在环境分析中的应用. 河北化工, 2006, 29(7): 47-49
    [26] Sun W, Jiao K. Linear sweep voltammetric determination of protein based on its interaction with alizarin red S. Talanta, 2002, 56(6): 1073-1080
    [27] Sun W, Jiao K, Wang X, et al. Determination of albumin with thorin by linear sweep polarography, Chin Chem Lett, 2003, 14(12): 1275-1277
    [28] 孙星炎, 徐春. DNA 电化学传感器在 DNA 损伤研究中的应用. 高等学校化学学报, 1998, 19(9): 1393-1396
    [29] Guilbault G G, Compagnone D. Glucose oxidase/hexokinase electrode for the determination of ATP. Analytica Chimica Acta, 1997, 340(1): 109-113
    [30] 李元宗, 常文保. 生化分析. 高等教育出版社, 2003
    [31] Lundin A. Use of firefly luciferase in ATP-related assay of biomass, enzymes and metabolites. Methods in Enzymology, 2000, 305(29): 346-370
    [32] Bostick W D, Denton M S, Dinsmore S R. Liquid-chromatographic separation and on-line bioluminescence detection of creatine kinase isoenzymes. Clinical Chemistry, 1980, 26(66): 712-717
    [33] Mitsunori K, Takayoshi O. High-throughput screening with quantitation of ATP consumption: a universal non-radioisotope, homogeneous assay for protein kinase. Assay and Drug Development Technologies, 2004, 2(2): 153-160
    [34] Blackburn G F, Shah H P, Kenten J H, et al. Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clinical Chemistry, 1991, 37(9): 1534-1539
    [35] Silvana C, Mónica I. R, Graciela S. Immunodiagnosis of human fascioliasis by an enzyme-linked immunosorbent assay (ELISA) and a micro-ELISA. Clinical and diagnostic laboratory immunology, 2001, 8(1): 174- 177
    [36] Balsari A, Poli G, Molina V. ELISA for toxoplasma antibody detection: a comparison with other serodiagnostic tests. Journal of clinical pathology, 1980, 337(7): 640-643
    [37] Krishna K D, Ramendra K S, Krishma M. A novel bifunctional fluorescent tag for use in molecular biology. Indian J Chem, 1995, 34(10): 876-878
    [38] Gordon G W, Berry G, Xiao H L, et al. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J, 1998, 74(5): 2702-2713
    [39] Hirano T, Kikuchi K, Uran Y, et al. Improvement and biological applications of fluorescent probes for Zinc, ZnAFs. Journal of the American Chemical Society, 2002, 124(23): 6555-6562
    [40] Pearce D A, Jotterand N, Carrico I S, et al. Derivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for Zinc sensors in biologicals ystems. Journal of the American Chemical Society, 2001, 123(21): 5160-5161
    [41] Walkup G k, BurdeRe S C, Lippard S J, et al. A new cell-permeable fluorescent probe for Zn2+. Journal of the American Chemical Society, 2000, 122(23): 5644-5645
    [42] Adamczyk M, Chan C, Fino J, et al. Synthesis of 5- and 6-hydroxymethylfluorescein phosphoramidites. J Org Chem, 2000, 65(2): 596-601
    [43] Harvey C L, Wright R, Nussbaum A L. Lambda phage DNA-joining of a chemically synthesized cohesive end. Science, 1973, 179(4070): 291-293
    [44] Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR. Clinical Chemistry and Laboratory Medicine, 1998, 36(5): 255-269
    [45] Cummings T J, Brown N M, Stenzel T T. TaqMan junction probes and the reverse transcriptase polymerase chain reaction: detection of alveolar rhabdomyosarcoma, synovial sarcoma, and desmoplastic small round cell tumor. Annals of Clinical and Laboratory Science, 2002, 32(3): 219-224
    [46] Yip S P, To S T, Leung P H M, et al. Use of dual taqman probes to increase the sensitivity of 1-step quantitative reverse transcription-PCR: application to the detection of SARS coronavirus. Clinical Chemistry, 2005, 51(10): 1885-1888
    [47] Yesilkaya H, Meacci F, Niemann S, et al. Evaluation of molecular-beacon, taqman, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed mycobacterium tuberculosis DNA extracts. Journal of Clinical Microbiology, 2006, 44(10): 3826-3829
    [48] Ward L N, Bej A K. Detection of vibrio parahaemolyticus in shellfish by use of multiplexed real-Time PCR with taqman fluorescent probes. Applied and Environmental Microbiology, 2006, 72(3): 2031-2042
    [49] Oberst R D, Hays M P, Bohra L K, et al. PCR-based DNA amplification and presumptive detection of escherichia coli O157:H7 with an internal fluorogenic probe and the 5' nuclease (TaqMan) assay. Applied and Environmental Microbiology, 1998, 64(9): 3389-3396
    [50] Luderer R, Verheul A, Kortlandt W. Rapid detection of the factor vleiden mutation by real-time PCR with taqman minor groove binder probes. Clinical Chemistry, 2004, 50(4): 787-788
    [51] Shi M M, Myrand S P, Bleavins M R, et al. High throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinone oxidoreductase (DT diaphorase) using TaqMan probes. Molecular Pathology, 1999, 52(5): 295-299
    [52] Liu H P, Wang H, Tan W H, et al. TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Research, 2006, 34(1): e4
    [53] Uematsu C, Makino I, Okano K. Real-time detection of PCR products for comparative analysis of expressed genes using module-shuffling taqman probes (MTPs). Nucleic Acids Symposium Series, 2002, 2(1): 211-212
    [54] Sando S, Kool E T. Quencher as leaving group: efficient detection of DNA-joining reactions. Journal of the American Chemical Society, 2002, 124(10): 2096-2097
    [55] Sando S, Abe H, Kool E T. Quenched auto-ligating DNAs: multicolor identification of nucleic acids at single nucleotide resolution. Journal of the American Chemical Society, 2004, 126(4): 1081-1087
    [56] Sando S, Kool E T. Imaging RNA in bacteria with selfligating quenched probes. Journal of the American Chemical Society, 2002, 124(33): 9686-9687
    [57] Abe H, Kool E T. Destabilizing universal linkers for signal amplification in self-ligating probes for RNA. Journal of the American Chemical Society, 2004, 126(43): 13980-13986
    [58] Silverman A P, Kool E T. Quenched probes for highly specific detection of cellular RNAs. Trends in Biotechnology, 2005, 23(5): 225-230
    [59] Abe H, Kool E T. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proceedings of National Academy of Sciences of the United States of America, 2006, 103(2): 263-268
    [60] Whitcombe D, Theaker J, Guy S P, et al. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol, 1999, 17(8): 804-807
    [61] Germer S, Holland M J, Higuchi R. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res, 2000, 10(2): 258-266
    [62] Thelwell N, Millington S, Solinas A, et al. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Research, 2000, 28(19): 3752-3761
    [63] Taveau M, Stockholm D, Spencer M, et al. Quantification of splice variants using molecular beacon or scorpion primers. Analytical Biochemistry, 2002, 305(2): 227-235
    [64] Huang Y P, Kong D M, Chen Q M, et al. Real-time detection of telomerase activity utilizing duplex scorpion primers and hairpin-like reverse primers. New Journal of Chemistry, 2004, 28(12): 1488-1493
    [65] Solinas A, Brown L J, McKeen C, et al. Duplex scorpion primers in SNP analysis and FRET applications. Nucleic Acids Research, 2001, 29(20): e96
    [66] Huang Y P, King D M, Yang Y, et al. Real-time quantitative assay of telomerase activity using the duplex scorpion primer. Biotechnology Letters, 2004, 26(11): 891-895
    [67] Wang L,Gaigalsa A K, Blasic J, et al. Flurescence energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template. Biopolymers, 2003, 56(6): 401-412
    [68] Connolly G R, Patel B K C. Development of fluorescent adjacent hybridization probes and their application in real-time PCR for the simultaneous detection and identification of fervidobacterium and caloramator. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(5): 1837-1843
    [69] Maruta S, Saitoh J, Asakura T. Analysis of conformational changes at the uniqueloop adjacent U the ATP binding site of smooth muscle myosin using a fluorescent probe. Journal of Biochemistry (Tokyo), 2000, 127(2): 199-204
    [70] Podkowinski J, Górnicki P. Ribosomal proteins S7 and L1 are located close to the decoding site of E coli ribosome-affinity labeling studies with modified tRNAs carrying photoreactive probes attached adjacent to the 3'-end of the anticodon. Nucleic Acids Research, 1989, 17(21): 8767-8782
    [71] Turin L, Behe P, Plonsky I, et al. Hydrophobic ion transfer between membranes of adjacent hepatocytes: a possible probe of tight junction structure. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(20): 9365-9369
    [72] Mayall F, Barratt K, Shanks J. The detection of simian virus 40 in mesotheliomas from New Zealand and England using real time FRET probe PCR protocols. Journal of Clinical Pathology, 2003, 56(10): 728-730
    [73] Wang J K, Li T X, Guo X Y, et al. Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Research, 2005, 33(2): e23
    [74] Abe H, Kool E T. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(2): 263-268
    [75] Karadag A, Riminucci M, Bianco P, et al. A novel technique based on a PNA hybridization probe and FRET principle for quantification of mutant genotype in fibrous dysplasia/McCune–albright syndrome. Nucleic Acids Research, 2004, 32(7): e63
    [76] Gustiananda M, Liggins J R, Cummins P L, et al. Conformation of prion protein repeat peptides probed by FRET measurements and molecular dynamics simulations. Biophysical Journal, 2004, 86(4): 2467-2483
    [77] Breen G. Novel and alternate SNP and genetic technologies. Psychiatric Genetics, 2002, 12(2): 83-88
    [78] Tsuji A, Koshimoto H, Sato Y, et al. Direct observation of specific of specific messenger RNA in a single living cell under a fluorescence microscope. Biophysical Journal, 2000, 78(6): 3260-3274
    [79] Li Q Q, Luan G Y, Guo Q P, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res, 2002, 30(2): e5
    [80] Cech T R. Ribozymes, the first 20 years. Biochem Soc Trans, 2002, 30(6): 1162-1166
    [81] Cech T R. Structural biology-The ribosome is a ribozyme. Science, 2000,289(5481): 878-879
    [82] Cech T R, Zaug A J, Grabowski P J. Invitro splicing of the ribosomal-RNA precursor of tetrahymena-involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell, 1981, 27(3): 487-496
    [83] Kruger K, Grabowski P J, Zaug A J, et al. Self-splicing RNA-auto-excision and auto-cyclization of the ribosomal-RNA intervening sequence of tetrahymena. Cell, 1982, 31(1): 147-157
    [84] Zaug A J, Been M D, Cech T R. The tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature, 1986, 324(6096): 429-433
    [85] Cech T R. RNA Chemistry-ribozyme self-replication. Nature, 1989, 339(6225): 507-508
    [86] Been M D, Cech T R. RNA as an RNA-polymerase-net elongation of an RNA primer catalyzed by the tetrahymena ribozyme. Science, 1988, 239(4846): 1412-1416
    [87] 詹林盛, 王全立, 孙红琰. 脱氧核酶研究进展. 生物化学与生物物理学报, 2002, 29(1): 42-45
    [88] Santoro S W, Joyce G F. A general purpose RNA-cleaving DNA enzyme. Proceedings of National Academy of Sciences of the United States of America, 1997, 94(9): 4262-4266
    [89] Santoro S W, Joyce G F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry, 1998, 37(38): 13330-13342
    [90] Feldman A R, Sen D. A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. J Mol Biol, 2001, 313(2): 283-294
    [91] Harris R S, Petersen-Mahrt S K, Neuberger M S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell, 2002, 10(5): 1247-1253
    [92] Mei S H J, Liu Z J, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. Journal of the American Chemical Society, 2003, 125(2): 412-420
    [93] Todd A V, Impey H L, Applegate T L, et al. Homogeneous amplification and detection of nucleic acid sequences using DzyNA (TM)-PCR. Clinical Chemistry, 1999, 45(11): 2049-2050
    [94] Todd A V, Fuery C J, Impey H L, et al. DzyNA-PCR: Use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. Clinical Chemistry, 2000, 46(5): 625-630
    [95] Applegate T L, Iland H J, Mokany E, et al. Molecular monitoring of acute promyelocytic leukemia by DzyNA reverse transcription-PCR. ClinicalChemistry, 2002, 48(10): 1858-1860
    [96] Applegate T L, Iland H J, Mokany E, et al. Diagnosis and molecular monitoring of acute promyelocytic leukemia using DzyNA reverse Transcription-PCR to quantify PML/RAR alpha fusion transcripts. Clinical Chemistry, 2002, 48(8): 1338-1343
    [97] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society, 2000, 122(42): 10466-10467
    [98] Lu Y, Liu J W, Li J, et al. New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron, 2003, 18(5-6): 529-540
    [99] Stojanovic M N, de Prada P, Landry D W. Catalytic molecular beacons. Chembiochem, 2001, 2(6): 411-415
    [100] Breaker R R. Molecular biology-making catalytic DNAs. Science, 2000, 290(5499): 2095-2096
    [101] Tuerk C, Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505-510
    [102] Lupold S E, Hicke B J, Lin Y, et al. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Research, 2002, 62(14): 4029-4033
    [103] Geiger A, Burgstaller P, Eltz H, et al. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Research, 1996, 24(6): 1029-1036
    [104] Nieuwlandt D, Wecker M, Gold L, et al. In vitro selection of RNA ligands to substance P. Biochemistry, 1995, 249(16): 5651-5659
    [105] Stojanovic M N, Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society, 2001, 123(21): 4928-4931
    [106] Sulay D J, Romy K, Ellington R C. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. Journal of the American Chemical Society, 2000, 122(11): 2469-2473
    [107] Fang X, Cao Z, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757
    [108] Yamamoto R, Kumar P K R. Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes to Cells, 2000, 5(5): 389-396
    [109] Shlyahovsky B, Li D, Weizmann Y. Spotlighting of cocaine by an autonomousaptamer-based machine. Journal of the American Chemical Society, 2007, 129(13): 3814-3815
    [110] Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine. Journal of the American Chemical Society, 2002, 124(33): 9678-9679
    [111] Hansen J A, Wang J, Kawde A N, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. Journal of the American Chemical Society, 2006, 128(7): 2228-2229
    [112] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of National Academy of Sciences of the United States of America, 2005, 102(48): 17278-17283
    [113] Baker B R, Lai, R Y, Wood M S, et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society, 2006, 128(10): 3138-3139
    [114] Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society, 2005, 127(51): 17990-17991
    [115] Beyer S, Simmel F C. A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Research, 2006, 34(5): 1581-1587
    [116] Nutiu R, Li Y. Structure-switching signaling aptamers. Journal of the American Chemical Society, 2003, 125(16): 4771-4778
    [117] Levy M, Cater S F, Ellington A D. Quantum-dot aptamer beacons for the detection of proteins. ChemBioChem, 2005, 6(1): 2163-2166
    [118] Li W, Wang K M, Tan W H, et al. Aptamer-based analysis of angiogenin by fluorescence anisotropy. Analyst, 2007, 132(2): 107-113
    [119] Tyagi S, Kramer F R. Molecular beacons.probes that fluoresce upon hybridization. Nature Biotechnol, 1996, 14(3): 303-308
    [120] Tyagi S, Marras S A E, Kramer F R. Wavelength-shifting molecular beacons. Nature Biotechnol, 2000, 18(11): 1191-1196
    [121] Tan W H, Wang K M, Drake T J. Molecular beacons. Current Opinion in Chemical Biology, 2004, 8(5): 547-553
    [122] Broude N E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends Biotechnol, 2002, 20(6): 249-256
    [123] Tyagi S, Bratu D P, Kramer F R.Multicolor molecular beacons for allele discrimination. Nature Biotechnol, 1998, 16(1): 49-53
    [124] Kostrikis L G, Tyagi S, Mhlanga M M, et al. Molecular beacons-spectral genotyping of human alleles. Science, 1998, 279(5354): 1228-1229
    [125] Maarten L S, Belinda A J G, Jacqueline A M V, et al. Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons. Clinical Chemistry, 2001, 47(4): 739-744
    [126] Giesendorf B A, Vet J A, Tyagi S, et al. Molecular beacons: a new approach for semiautomated mutation analysis. Clinical Chemistry, 1998, 44(3): 482-486
    [127] Heil S G, Lievers K J, Boers G H. Betaine-homocysteine methyltransferase (BHMT): genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans. Molecular Genetics and Metabolism, 2000, 71(2): 511-519
    [128] Szuhai K, Ouweland J, Dirks R, et al. Simultaneous A8344G heteroplasmy and mitochondrial DNA copy number quantification in Myoclonus Epilepsy and Ragged-Red Fibers (MERRF) syndrome by a multiplex Molecular Beacon based real-time fluorescence PCR. Nucleic Acids Research, 2001, 29(3): e13
    [129] Durand R, Eslahpazire J, Jafari S, et al. Use of molecular beacons to detect an antifolate resistance-associated mutation in plasmodium falciparum. Antimicrob Agents Chemother, 2000, 44(12): 3461-3464
    [130] Matsuo T. In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochimica Biophysica Acta, 1998, 1379(2): 178-184
    [131] Sokol D L, Zhang X, Lu P, et al. Real time detection of DNA-RNA hybridization in living cells. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(20): 11538-11543
    [132] Perlette J, Tan W. Real-time monitoring of intracellular mRNA hybridization inside single living cells. Analytical Chemistry, 2001, 73(22): 5544-5550
    [133] Cui Z Q, Zhang Z P, Zhang X E. Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells. Nucleic Acids Research, 2005, 33(10): 3245-3252
    [134] Bratu D P, Cha B J, Mhlanga M M. Visualizing the distribution and transport of mRNAs in living cells. Proceedings of National Academy of Sciences of the United States of America, 2003, 100(23): 13308-13313
    [135] Mhlanga M M, Vargas D Y, Fung C W. tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Research, 2005, 33(6): 1902-1912
    [136] Santangelo P J, Nix B, Tsourkas A, et al. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Research, 2004, 32(6): e57
    [137] Nitin N, Santangelo P J, Kim G, et al. Peptide-linked molecular beacons forefficient delivery and rapid mRNA detection in living cells. Nucleic Acids Research, 2004, 32(6): e58
    [138] ]Steemers F J, Ferguson J A, Walt D R, et al. Screening unlabeled DNA targets with randomly ordered fiber - optic gene arrays. Nat Biotechnol, 2000, 18(1): 91-94
    [139] 李军. 分子信标荧光探针用于遗传物质的超灵敏检测及微型 DNA、pH 传感器的研究: [博士学位论文]. 长沙: 湖南大学化学化工学院, 2002
    [140] Li J, Tan W H, Wang K M, et al. Ultrasensitive optical DNA biosensor based on surface immobilization of molecular beacon by a bridge structure. Analytical Science, 2001, 17(10): 1149-1153
    [141] Jin Y, Wang K M, Tan W H, et al. Monitoring molecular beacon/DNA interactions using atomic force microscopy. Analytical Chemistry, 2004, 76(19): 5721-5725
    [142] Wang H, Li J, Liu H P, et al. Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Research, 2002, 30(12): e61
    [143] Li J J, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 2000, 28(11): e52
    [144] Fang X H, Li J J, Tan W H. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Analytical Chemistry, 2000, 72(14): 3280-3285
    [145] Biggins J B, Prudent J R, Marshall D J, et al. A continuous assay for DNA cleavage: The application of break lights to enediynes, iron-dependent agents, and nucleases. Proceedings of National Academy of Sciences of the United States of America, 2000, 97(25): 13537-13542
    [146] Rizzo J, Gifford L K, Zhang X, et al. Chimeric RNA-DNA molecular beacon assay for ribonuclease H activity. Molecular and Cellular Probes, 2002, 16(4): 277-283.
    [147] 唐志文. 核酸片段检测系统(NTFS)的构建及其在生命科学中的重要应用: [博士学位论文]. 长沙:湖南大学化学化工学院, 2004
    [148] Tang Z W, Wang K M, Tan W H, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Research, 2003, 31(23): e148
    [149] Liu L F, Tang Z W, Wang K M, et al. Using molecular beacon to monitor activity of E. coli DNA ligase. Analyst, 2005, 130(3): 350-357
    [150] Tang Z W, Wang K M, Tan W H, et al. Real-time investigation of nucleic acidsphosphorylation process using molecular beacons. Nucleic Acids Research, 2005, 33(11): e97
    [151] 汪尔康. 21 世纪的分析化学. 北京: 科学出版社, 1996
    [152] 王柯敏, 谭蔚泓. 纳米尺度和单分子水平上的生物分析化学. 分析化学的明天:学科发展前沿与挑战, 梁文平, 庄乾坤 主编, 北京: 科学出版社, 2003, 268-281
    [153] Atkinson D E. Cellular energy metabolism and its regulations. Academic Press: New York, 1977.
    [154] Szewczyk A, Pikula S. Adenosine 5'-triphosphate: an intracellular metabolic messenger. Biochim Biopys Acta, 1998, 1365 (3): 333-353
    [155] 程叙扬, 李晓玫. 细胞外三磷酸腺苷的代谢及其生物学作用. 中国病理生理杂志, 1998, 14(4): 438-441
    [156] Gruenhagen G A, Lovell P, Moroz L L, et al. Monitoring real-time release of ATP from the molluscan central nervous system. J Neurosci Methods, 2004, 139(2): 145-152
    [157] Ishida A, Yoshikawa T, Nakazawa T, et al. Enhanced firefly bioluminescence assay of ATP in the presence of ATP extractants by using Diethylaminoethyl- dextran. Analytical Biochemistry, 2002, 305(2): 236-241
    [158] Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res, 1997, 57(5): 1835-1840
    [159] Wang Z, Haydon P G, Yeung E S. Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Analytical Chemistry, 2000, 72(9): 2001-2007
    [160] Price A K, Fischer D J, Martin R S. Deformation-induced release of ATP from erythrocytes in a poly(dimethylsiloxane)-based microchip with channels that mimic resistance vessels. Analytical Chemistry, 2004, 76(16): 4849-4855
    [161] Bronstein I, McGrath P. Chemiluminescence lights up. Nature, 1989, 338(6216): 599-600
    [162] Tamio K, Kenji Y, Hirofumi T. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposome. Analytical Chemistry, 2006, 78(1): 337-342
    [163] Sprung R, Spragur R, Spence D. Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo. Analytical Chemistry, 2002, 74(10): 2274-2278
    [164] Daddo R, Seto A G, Colon L A. End-column chemiluminescence detector for capillary electrophoresis. Analytical Chemistry, 1994, 66(2): 303-306
    [165] Perez Ruiz T, Martinez Lozano C, Tomas V. Determination of ATP via thephotochemical generation of hydrogen peroxide using flow injection luminol chemiluminescence detection. Analytical Bioanalytical Chemistry, 2003, 377(1): 189-194
    [166] Shtykov S N, Smirnova T D, Bylinkin Y G. Determination of adenosine triphosphoric acid by its effect on the quenching of the fluorescence of europium diketonate in micelles of brij-35. J Anal Chem, 2004, 59(5): 438-441
    [167] Foy G P, Pacey G E. Detemination of ATP using chelation-enhanced fouorescence. Talanta, 1996, 43(8): 225-232
    [168] Jhaveri S D, Kirby R, Conrad R. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. Journal of the American Chemical Society, 2000, 122(11): 2469-2473
    [169] Cho E J, Yang L, Levy M, et al. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. Journal of the American Chemical Society, 2005, 127(7): 2022-2023
    [170] Singhal P, Kuhr W G. Direct electrochemical detection of purine-and pyrimidine-based nucleotides with sinusoidal voltammetry. Analytical Chemistry, 1997, 69(17): 3552-3557
    [171] Kueng A, Kranz C, Mizaikoff B. Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens Bioelect 2004, 19(10): 1301-1307
    [172] Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of ATP, Journal of the American Chemical Society, 2007, 129(5): 1042-1043
    [173] 李治洪, 刘克江. 高效液相色谱法测定 ATP 制剂含量. 药物分析杂志, 1997, 17(4): 245-248
    [174] Liu B F, Ozaki M, Hisamoto H, et al. Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection. Analytical Chemistry, 2005, 77(2): 573-578
    [175] Kanekiyo Y, Naganawa R, Tao H. Fluorescence detection of ATP based on the ATP-mediated aggregation of pyrene-appended boronic acid on a polycation, Chem Commun, 2004, (8): 1006-1007
    [176] Llaudet E, Hatz S, Droniou M, et al. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Analytical Chemistry, 2005, 77(10): 3267-3273
    [177] Alan C, Mclaughin A. The interaction of 8-anilino-1-naph- thalen-esulfonate with creatine kinase. The Journal of Biological Chemistry, 1974, 249(5): 1445-1452
    [178] Willian E, Jacobus, Albert L L. Creatine kinase of rat heart mitochondria. TheJournal of Biological Chemistry, 1973, 248(13): 4803-4810
    [179] Wallimann T, Wyss M, Brdicaka D. Intracellular comparemention, structure and function of creatine kinase: isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit’for cellular energy homeostasis. Biochem J, 1992, 281(1): 21-40
    [180] Jaffe A S, Serota H, Grace A, et al. Diagnostic changes in plasma creatine kinase isoforms early after the onset of acute myocardial infarction. Circulation, 1986, 74(1): 105-109
    [181] Somer H, Kaste M, Troupp H, et al. Brain creatine kinase in blood after acute brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 1975, 38(6): 572-576
    [182] Towler E M, Wilson L K, Zhou Y C, et al. A complete systemfor identifying inhibitors of creatine kinase B. Analytical Biochemistry, 2000, 279(1): 96-99
    [183] Oliver I T. A spectrophotometric method for the determination of creative phosphokinase and myokinase. Biochemical Journal, 1955, 61(1): 116-122
    [184] Rosalki S B. An improved procedure for serum creatine phosphokinase determination. Journal of Laboratory and Clinical Medicine, 1967, 69(4): 696-705
    [185] Szasz G, Gruber W, Bernt E. Creatine kinase in serum: 1. Determination of optimum reaction conditions. Clinical Chemistry, 1976, 22(5): 650-656
    [186] Morin L G. Creatine kinase: re-examination of optimum reaction conditions. Clinical Chemistry, 1977, 23(9): 1569-1575
    [187] Hess J W, Murdock K J, Natho G J. Creatine phosphokinase: A spectrophotometric method with improved sensitivity. American Journal of Clinical Pathology, 1968, 50(1): 89-97
    [188] 顾亚凤. 用分光光度比色法测定肌肉中肌酸磷酸激酶(CPK). 南京农专学报, 2003, 19(1): 62-64
    [189] Bostick W D, Ausmus B S. Methodologies for the determination of adenosine phosphates. Analytical Biochemistry, 1978, 88(1): 78-92
    [190] DeLuca M, McElroy W D. Kinetics of the firefly luciferase catalyzed reactions. Biochemistry, 1974, 13(5): 921-925
    [191] Denburg J L, Mcelroy W D. Anion inhibition of firefly luciferase. Archives of Biochemistry and Biophysics, 1970, 141(2): 668-675
    [192] Aledort L M, Weed R I, Troup S B. Ionic effects on firefly bioluminescence assay of red blood cell ATP. Analytical Biochemistry, 1966, 7(2): 268-277
    [193] Danielson N D, Huth J A. Direct assay for creatine kinase by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1980,221(1): 39-48
    [194] Fujima J M, Danielson N D. Determination of creatine kinase activity and phospho- creatine in off-line and on-line modes with capillary electrophoresis. Analytica Chimica Acta, 1998, 375(3): 233-241
    [195] 张晓平, 米沙, 杨国林. 高效液相色谱法测定磷酸肌酸二钠盐含量及应用. 天津药学, 2003 ,15(1): 18-20
    [196] Hunter T. Signaling-2000 and beyond. Cell, 2000, 100(15): 113-127
    [197] Hunter T. Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell, 1995, 80(2): 225-236
    [198] Franklin R A, McCubrey J A. Kinases: Positive and negative regulators of apoptosis. Leukemia, 2000, 14(1212): 2019-2034
    [199] Garrett M D, Workman P. Discovering novel chemotherapeutic drugs for the third millennium. European Journal of Cancer, 1999, 35(4): 2010-2030
    [200] Bhagwat S S., Manning A M., Hoekstra M F. Gene-regulating protein kinases as importatnt anti-inflamatory targets. Drug Discovery Today, 1999, 4(10): 472-479
    [201] Fletcher L. Approval heralds new generation of kinase inhibitors? Nature Biotechnology, 2001, 19(7): 599-600
    [202] Cohen P. Protein kinases-the major drug targets of the twenty-first century? Nature Reviews in drug Discovery, 2002, 1(4): 309-315
    [203] Noble M E M, Endicott J A, Johnson L N. Protein kinase inhibitors: insights into drug design from structure. Science, 2004, 303(5665): 1800-1805
    [204] Sun L, Liu D, Wang Z. Microarray-based kinase inhibition assay by gold nanoparticle probes. Analytical Chemistry, 2007, 79(2): 773-777
    [205] Beveridge M, Park Y W, Hermes J. A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases. Journal of Biomolecular Screening, 2000, 5(2): 205-212
    [206] Natsue O, Jonathan M W, Hidenori Y. Development of a homogeneous time-resolved fluorescence assay for high throughput screening to identify lck inhibitors: comparison with scintillation proximity assay and streptavidin-coated plate assay. Journal of Biomolecular Screening, 2000, 5(6): 463-470
    [207] Rodems S M, Hamman B D, Lin C. A FRET-based assay platform for ultra-high density drug screening of protein kinases and phosphatases. Assay and Drug Development Technologies, 2002, 1(1): 9-19
    [208] Glickman J F, Wu X, Mercuri R. A comparison of ALPHA screen, TR-FRET, and TRF as assay methods for FXR nuclear receptors. Journal of BiomolecularScreening, 2002, 7(1): 3-10
    [209] Sadler T M, Achilleos M, Ragunathan S. Development and comparison of two nonradioactive kinase assays for I kappa B kinase. Analytical Biochemistry, 2004, 326(11): 106-113
    [210] Morgan A G, McCauley T J, Stanaitis M L. Development and validation of a fluorescence technology for both primary and secondary screening of kinases that facilitates compound selectivity and site-specific inhibitor determination. Assay and Drug Development Technologies, 2004, 2(5): 171-181
    [211] Gaudet E A, Huang K S, Zhang Y. A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases. Journal of Biomolecular Screening, 2003, 8(2): 164-175
    [212] Rininsland F, Xia W, Wittenburg S. Metal ion-mediated polymer superquenching for highly sensitive detection of kinase and phosphatase activities. Proceedings of National Academy of Sciences of the United States of America, 2004, 101(43): 15295-15300
    [213] Sun H, Karen E. L, Sam W. Real-time protein kinase assay. Analytical Chemistry, 2005, 77(7): 2043-2049
    [214] Jansson V, Jansson K. An enzymatic cycling assay for adenosine 5’-monophosphate using adenylate kinase, nucleotide-diphosphate kinase, and firefly luciferase. Analytical Biochemistry, 2003, 321(2): 263-265
    [215] Wang J, Jiang Y, Zhou C. Aptamer-based ATP assay using a luminescent light switching complex. Analytical Chemistry, 2005, 77(11): 3542-3546
    [216] Anderson R M, Esteves M L, Neves A R, et al. Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science, 2003, 302(5653): 2124-2126
    [217] Lin S G, Defossez P A, Guarente L G. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 2000, 289(5487): 2126-2128
    [218] Rutter J, Reick M, Wu L C, et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science, 2001, 293(5529): 510-514
    [219] Murray M F, Nghiem M, Srinivasan A. HIV infection decreases intracellular nicotinamide adinine dinucleotide. Biochem Biophy Res Commun, 1995, 212(1): 126-131
    [220] Kelley D E, He J, Menshikova E V, et al. Dysfunction of mitochondria in human skeletal muscle in type2 diabetes. Diabetes, 2002, 51(10): 2944-2950
    [221] Torabi F, Ramanthan K, Larsson P O, et al. Coulometric determination of NAD and NADH in normal and cancer cells using LDH, RVC and a polymer mediator.Talanta, 1999, 50(4):787-797
    [222] Hausler R E, Fischer K L, Flugge U I. Determiantion of low-abundant metabolites in plant extracts by NAD(H) fluorescence with a micortiter plate reader. Analytical Biochemsitry, 2000, 281(1): 1-8
    [223] Williams III D C, Seitz W R. Automated chemiluminescence method for determining the reduced form of nicotinamide adenine dehydrogenase activiry. Analytical Chemistry, 1976, 48(11): 1478-1481
    [224] Downey T M, Nieman T A. Chemiluminescence detection using regenerable tris (2,2-bipyridyl) ruthenium(II) immobilized in nafion. Analytical Chemistry, 1992, 64(3): 261-268
    [225] Alvarez M I, Saidman S B, Lobo-castanon M J, et al. Electrocatalytic detection of glycerol by NAD-modified carbon electrodes. Analytical Chemistry, 2000, 72(3): 520-527
    [226] Zhou D M, Fang H Q, Chen H Y. The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH. Analytica Chimica Acta, 1996, 329(1-2): 41-48
    [227] Cosford R J O, Kuhr W G. Capillary biosensor for glutamate. Analytical Chemistry, 1996, 68(13): 2164-2169
    [228] Anderson R M, Bitterman K J, Wood J G, et al. Nicotinamide and PNCI govern life span extension by calorie restriction in Saccharomyces cerevisiae. Nature, 2003, 423(6936): 181-185
    [229] Lin S J, Kaeberlein M, Andalis A A, et al. Calorie restriction extends life span by shifting carbon toward respiration. Nature, 2002, 418(6895): 344-348
    [230] Lin S J, Ford E, Haigis M, et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes and Development, 2004, 18(1): 12-16
    [231] 王乃兴. 一些生物活性分子的合成进展. 有机化学, 2002, 22(5): 299-306
    [232] Bu H, Mikkelsen S R. NAD(P)H sensors based on enzyme entrapment in ferrocene-containing polyacrylamide-based redox gels. Analytical Chemistry, 1998, 70(7): 4320-4325
    [233] Curulli A, Carelli I, Trischitta O, et al. Enzyme electrode probes obtained by electropolymerization of monomers with PMS and selected dehydrogenase enzymes. Talanta, 1997, 44(9): 1659-1669
    [234] Pogorelova S P, Zayats M, Bourenko T, et al. Analysis of NAD(P)/NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals. Analytical Chemistry, 2003, 75(3): 509-517
    [235] Wang Y, Liu J, Jiang C. Spectrofluorometric determination of trace amounts ofcoenzyme II using norfloxacin-terbium complex as a fluorescent probe. Analytical Sciences, 2005, 219(21): 709-711
    [236] Nguyen L T, Stephenson D G, Stephenson M M. A direct microfluorometric method for measuring subpicomole amounts of nicotinamide adenine dinucleotide. Analytical Biochemistry, 1998, 259(2): 274-278
    [237] Crescentini G, Stocchi V. Fast reversed-phase high-performance liquid chromatographic determination of nucleotides in red blood cells. Journal of Chromatogram A, 1984, 290(2): 393-399
    [238] Palfi M, Halasz A S, Tabi T, et al. Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase. Analytical Biochemistry, 2004, 326(1): 69-77
    [239] Martin F, Botton B, Msatef Y. Enzyme-linked immunosorbent assay of fungal NADP+-glutamate dehydrogenase. Plant Physiol, 1983, 72(2): 398-401
    [240] Schiffer L M, Markoe A M, Nelson J S. Estimation of tumor growth fraction in murine tumors by the primer-dvailable DNA-dependent DNA polymerase assay. Cancer Research, 1976, 36(7): 2415-2418
    [241] Sambrook J, Russell D W. Molecular cloning: a laboratory mamual (3rd ed)(分子克隆实验指南第三版).黄培堂等译.第三版.北京:科学出版社, 2002, 365-372, 866-874, 1005-1039
    [242] Summerer D, Marx A. A molecular beacon for quantitative monitoring of the DNA polymerase reaction in real-time. Angewandte Chemie-International Edition, 2002, 41(19): 3620-3622
    [243] 高毅, 华积德, 路德元. DNA 聚合酶与肿瘤. 肿瘤, 1992, 12(2): 90-92
    [244] Earnshaw D L, Pope A J. FlashPlate scintillation proximity assays for characterization and screening of DNA polymerase, primase, and helicase activities. Journal of Biomolecular Screening, 2001, 6(1): 39-46
    [245] Lutz S, Burgstaller P, Benner S A. An in vitro screening technique for DNA polymerises that can incorporate modified nucleotides. Pseudo-thymidine as a substrate for thermostable polymerises. Nucleic Acids Research, 1999, 27(13): 2792-2798
    [246] Brakmann S, Nieckchen P. The large fragment of escherichia coli DNA polymerase I can synthesize DNA exclusively from fluorescently labeled nucleotides. Chembiochem, 2001, 2(10): 773-777
    [247] Yu L, Hu G, Howell L. Fluorescence-based, high-throughput DNA polymerase assay. Biotechniques, 2002, 33(4): 938-941
    [248] Tveit H, Kristensen T. Fluorescence-based DNA polymerase assay. AnalyticalBiochemistry, 2001, 289(1): 96-98
    [249] 宁勇, 姚群峰. 应用生物发光技术检测 DNA 聚合酶活性. 临床输血与检验, 2005, 7(1): 25-26
    [250] Cohen S N, Yielding K L. Inhibition of DNA and RNA polymerase reactions by chloroquine. Proceedings of National Academy of Sciences of the United States of America, 1965, 54(2): 521-527
    [251] Richards C C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected escherichia coli. Proceedings of National Academy of Sciences of the United States of America, 1965, 54(1): 158-165
    [252] Whitehouse C J, Taylor R M, Thistlethwaite A, et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell, 2001, 104(1): 107-117
    [253] Wiederhold L, Leppard J B, Kedar P, et al. AP endonuclease-independent DNA base excision repair in human cells. Mol. Cell, 2004, 15(1): 209-220
    [254] Merjer M, Karimi-Busheri F, Huang T Y, et al. Pnk 1, a DNA kinase phosphatase required for normal response to DNA damage by radiation or camptothecin in Schizosaccharomyces pombe. The Journal of Biological Chemistry, 2002, 277(6): 4050-4055
    [255] Chappell C, Hanakahi L A, Karimi-Busheri F, et al. Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J, 2002, 21(11): 2827-2832
    [256] Wang L K, Lima C D, Shuman S. Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. EMBO J, 2002, 21(14): 3873-3880
    [257] Caldecott K W. Polynucleotide kinase: A versatile molecule makes a clean break. Structure, 2002, 10(9): 1151-1152
    [258] Sirotkin K, Cooley W, Runnels J, et al. Role in true-late gene-expression for bacteriophage-T4 5'-polynucleotide kinase 3'-phosphatase. J Mol Biol, 1978, 123(2): 221-233
    [259] Soltis D A, Uhlenbeck O C. Independent locations of kinase and 3'-phosphatase activities on T4-polynucleotide kinase. The Journal of Biological Chemistry, 1982, 257(19): 1340-1345
    [260] Vulimiri S V, Smith C V, Randerath E, et al. P-32 postlabeling of bile components-bulky adduct-like behavior in polyethyleneimine cellulose thin-layer chromatography. Carcinogenesis, 1994, 15(9): 2061-2064
    [261] El Atifi M, Dupre I, Rostaing B, et al. Quantification of DNA probes on nylon microarrays using T4 polynucleotide kinase labeling. Biotechniques, 2003, 35(2): 262-265
    [262] Ochiai M, Nakagama H, Turesky R J, et al. A new modification of the P-32-postlabeling method to recover IQ-DNA adducts as mononucleotides. Mutagenesis, 1999, 14(2): 239-242
    [263] Kurien B T, Scofield R H, Broyles R H. Efficient 5' end labeling of dephos- phorylated DNA. Analytical Biochemistry, 1997, 245(2): 123-126
    [264] Cameron V, Uhlenbeck O C. 3'-Phosphatase activity in T4 polynucleotide kinase. Biochemistry, 1977, 16(23): 5120-5126
    [265] Karimi-Busheri F, Lee J, Tomkinson A E, et al. Repair of DNA strand gaps and nicks containing 3’-phosphate and 5’-hydroxyl termini by purified mammalian enzymes. Nucleic Acids Research, 1998, 26(19): 4395-4400
    [266] Jilani A, Ramotar D, Slack C, et al. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3’-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. The Journal of Biological Chemistry, 1999, 274(34): 24176-24186
    [267] Wang L K, Shuman S. Domain structure and mutational analysis of T4 polynucleotide kinase. The Journal of Biological Chemistry, 2001, 276(29): 26868-26874
    [268] Rasouli-Nia A, Karimi-Busheri F, Weinfeld M. Stable down-regulation of human polynucleotide kinase enhances spontaneous mutation frequency and sensitizes cells to genotoxic agents. Proceedings of National Academy of Sciences of the United States of America, 2004, 101(18): 6905-6910
    [269] Dobson C J, Allinson S L. The phosphatase activity of mammalian poly- nucleotide kinase takes precedence over its kinase activity in repair of single strand breaks. Nucleic Acids Research, 2006, 34(8): 2230-2237
    [270] Dechatelet L R, Mccall C E, Cooper M R. Inhibition of leukocyte acid phosphatase by heparin. Clinical Chemistry, 1972, 18(12): 1532-1534
    [271] Nathans D, Smith H O. Restriction endonucleases in analysis and restructuring of DNA-molecules. Annu Rev Biochem, 1975, 44(2): 273-293
    [272] Morrow J F, Berg P: Cleavage of Simian virus 40 DNA at a unique site by a bacterial restriction enzyme. Proceedings of National Academy of Sciences of the United States of America, 1972, 69(11): 3365-3369
    [273] Leung D W, Lui A C P, Merilees H, et al. Restriction enzyme from fusobacterium nucleatum H-4 which recognizes gcngc. Nucleic Acids Research, 1979, 6(1): 17-25
    [274] Boyer H W. Restriction and modification of DNA-enzymes and substrates introductory-remarks. Fed Proc, 1974, 33(5): 1125-1127
    [275] Johnson F B, Sinclair D A, Guarente L. Molecular biology of aging. Cell, 1999,96(2): 291-302
    [276] Lander E S, Botstein D. Strategies for studying heterogeneous genetic-traits in humans by using a linkage Map of restriction-fragment- length-polymorphisms. Proceedings of National Academy of Sciences of the United States of America, 1986, 83(19): 7353-7357
    [277] Park J I, Nou I S, Lee S S, et al. Identification of S-genotypes by PCR-RFLP in breeding lines of brassica. Mol Cells, 2001, 12(2): 227-232
    [278] Xu R L, Ogino S, Lip V, et al. Comparison of PCR-RFLP with allele-specific PCR in genetic testing for spinal muscular atrophy. Genet Test, 2003, 7(4): 277-281
    [279] Kettling U, Koltermann A, Schwille P, et al. Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(4): 1416-1420
    [280] Koltermann A, Kettling U, Bieschke J, et al. Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: High throughput screening for enzyme activity. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(4): 1421-1426
    [281] Hiller D A, Fogg J M, Martin A M, et al. Simultaneous DNA binding and bending by EcoRV endonuclease observed by real-time fluorescence. Biochemistry, 2003, 42(49): 14375-14385
    [282] Moser A M, Patel M, Yoo H, et al. Real-time fluorescence assay for O-6-alkylguanine-DNA alkyltransferase. Analytical Biochemistry, 2000, 281(2): 216-222
    [283] Ray P C, Fortner A, Darbha G K.Gold nanoparticle based FRET assay for the detection of DNA cleavage. J Phys Chem B, 2006, 110(42): 20745-20748
    [284] Xu X Y, Han M S, Mirkin C A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angewandte Chemie-International Edition, 2007, 46(18): 3468-3470
    [285] Chen J Z, Herzenberg L A. Heparin inhibits EcoR I enconuclease cleavage of DNA. Nucleic Acids Research, 1990, 18(11): 3255-3260
    [286] Fishman W H. Clinical and biological significance of an isozyme tumor marker-PLAP. Clin Biochem, 1987, 20(2): 387-392
    [287] Bronstein I, Martin C S, Fortin J J, et al. Chemiluminescence: sensitive detection technology for reporter gene assays. Clinical Chemistry, 1996, 42(9): 1542-1546
    [288] Benez A, Geiselhart A, Handgretinger R, et al. Detection of circulatingmelanoma cells by immunomagnetic cell sorting. J Clin Lab Anal, 1999, 13(5): 229-233
    [289] Kokado A, Tsuji A, Maeda M. Chemiluminescence assay of alkaline phosphatase using cortisol-21-phosphate as substrate and its application to enzyme immunoassays. Analytica Chimica Acta, 1997, 337(3): 335-340
    [290] Ximenes V F, Campa A, Baader W J, et al. Facile chemiluminescent method for alkaline phosphatase determination. Analytica Chimica Acta, 1999, 402(1-2): 99-104
    [291] Kokado A, Arakawa H, Maeda M. Chemiluminescence assay of alkaline phosphatase using dihydroxyacetone phosphate as substrate detected with lucigenin. Luminescence, 2002, 17(1): 5-10
    [292] Ito S, Yamazaki S, Kano K, et al. Highly sensitive electrochemical detection of alkaline phosphatase. Analytica Chimica Acta, 2000, 424(1): 57-63
    [293] Kim H J, Kwak J. Electrochemical determination of total alkaline phosphatase in human blood with a micropatterned ITO film. J Electroanal Chem, 2005, 577(2): 243-248
    [294] Masson M, Runarsson O V, Johannson F, et al. 4-Amino-1- naphthylphosphate as a substrate for the amperometric detection of alkaline phosphatase activity and its application for immunoassay. Talanta, 2004, 64(1): 174-180
    [295] Kokado A, Arakawa H, Maeda M. New electrochemical assay of alkaline phosphatase using ascorbic acid 2-phosphate and its application to enzyme immunoassay. Analytica Chimica Acta, 2000, 407(1-2): 119-125
    [296] Limoges B, Degrand C. Ferrocenylethyl phosphate: an improved substrate for the detection of alkaline phosphatase by cathodic stripping ionexchange voltammetry. Application to the electrochemical enzyme affinity assay of avidin. Analytical Chemistry, 1996, 68(23): 4141-4148
    [297] Fenoll J, Jourquin G, Kauffmann J M. Fluorimetric determination of alkaline phosphatase in solid and fluid dairy products. Talanta, 2002, 56(6): 1021-1026
    [298] Zhu X J, Liu Q K, Jiang C Q. 2-Carboxy-1-naphthyl phosphate as a substrate for the fluorimetric determination of alkaline phosphatase. Analytica Chimica Acta, 2006, 570(1): 29-33
    [299] Ruan C M, Wang W, Gu B H, Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy. Analytical Chemistry, 2006, 78(10): 3379-3384
    [300] Serra B, Morales M D, Reviejo A J, et al. Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor. Analytical Biochemistry, 2005, 336(2): 289-294
    [301] Mestrovic V, Pavela-Vrancic M. Inhibition of alkaline phosphatase activity by okadaic acid, a protein phosphatase inhibitor. Biochimie, 2003, 85(7): 647-650
    [302] Fujiki H, Suganuma M. Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res, 1993, 61(7): 143-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700