奥曲肽降门脉压及其空肠促吸收机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎是肝硬化主要病因,我国乙肝患者及乙肝病毒感染者众多,每年新发肝硬化者超过百万。门脉高压(portal hypertension, PH)是肝硬化失代偿期患者典型的临床表现,是肝硬化多种并发症发生的根源及主要致死原因。对PH进行积极有效防治是改善患者预后及降低病死率的关键。
     血红素氧合酶(heme oxygense, HO)/一氧化碳(carbon monoxide, CO)系统在肝硬化中晚期可加重PH程度,促多组织器官的进行性病变,加速肝硬化进程,我们曾通过肝硬化PH大鼠研究模型得到了证实。但目前对HO/CO系统在肝硬化PH时期作用临床研究较少,我们曾发现肝硬化PH患者血中可反映HO/CO系统水平的碳氧血红蛋白指标升高,本研究拟通过临床前瞻性研究进一步揭示该系统对PH患者伴多种并发症及对各脏器作用影响。奥曲肽(Octreotide,OCT)是公认的理想降门脉压药物,但其降压机制尚不清楚。因OCT可收缩内脏血管,降门脉血流达降压作用,而内源性CO维持PH的机理之一为扩张内脏血管,故推测OCT可能通过影响HO/CO系统而起到降压作用。本实验对OCT通过HO/CO系统降门脉压的可能机制进行探讨,并进一步证实HO/CO系统的关键作用。
     由上述实验并结合既往研究基础证明了HO/CO系统在肝硬化PH发展过程中的重要意义,OCT可通过抑制该系统表达而起到降低门脉压目的。结合OCT众多药物优点,若能实现其口服降压治疗,有利于解决PH防治的难题。但蛋白多肽类物质OCT,虽可抵抗胃肠道中酸或酶降解,但分子量大,脂溶性差,受肠肝首过效应及肠道吸收屏障影响,口服生物利用度极低。目前通过改变OCT的化学结构或加入促吸收剂等方法,实验结果均并不理想,且未研究PH病理情况下OCT吸收机制及促吸收研究。我们考虑直接研究影响OCT吸收的首过效应的因素,可能更有利于发现OCT促吸收策略。因在PH状态下门体静脉分流形成,侧支循环的建立及肝功异常等诸多因素,肝首过效应对OCT口服吸收影响较小,而肠首过效应影响可能更为显著。我们通过对主要的肠上皮转运蛋白P-糖蛋白、多耐药相关蛋白2和代谢酶细胞色素P4503A4进行研究,揭示OCT肠首过效应机制,及探及在肝硬化PH情况下,上述转运蛋白及代谢酶的变化对OCT肠道吸收影响,拟寻求实现OCT口服降压策略。此外对PH状态下寡肽类转运蛋白PepT1对OCT的作用做了初步研究,寻求该病理状态下的OCT直接转运蛋白。
     本研究旨在通过基础及临床多角度揭示HO/CO系统在肝硬化PH时期重要作用,了解在该系统介导下的OCT降门脉压机制,并明确OCT肠道吸收障碍机理,为提高OCT口服生物利用度提供有效方法及途径,有利于实现其口服降压治疗,同时为OCT临床合理用药提供理论依据。
     本研究共分三部分
     第一部分血红素氧合酶/一氧化碳系统介导的奥曲肽降门脉压机制研究
     第一节血红素氧合酶/一氧化碳系统对门脉高压并发症的影响
     第二节血红素氧合酶/一氧化碳系统介导的奥曲肽降门脉压机制探讨
     第二部分肠道转运蛋白及代谢酶对奥曲肽肠吸收的影响
     第三部分肝硬化门脉高压状态下奥曲肽空肠促吸收及降门脉压研究
     第一部分
     血红素氧合酶/一氧化碳系统介导的奥曲肽降门脉压机制研究
     第一节血红素氧合酶/一氧化碳系统对门脉高压并发症的影响
     目的:分析乙肝后肝硬化(hepatitis B virus-related cirrhosis, HBC)伴肝性脑病(hepatic encephalopathy, HE)患者碳氧血红蛋白(carboxyhemoglobin, COHb)水平及其在肝硬化常见门脉高压(portal hypertension, PH)并发症时的水平差异,并了解其与HE分期等的关系,揭示血红素氧合酶(heme oxygenase, HO)/一氧化碳(carbon monoxide, CO)系统对PH患者伴多种并发症及对各脏器的作用影响。
     方法:根据排除及诊断标准,68例入院治疗的HBC伴HE的大连医科大学附属第一医院患者纳入本研究入选标准(H组);除外了重要器官异常的急诊室患者(血气分析等所有检查数据均在正常范围以内)作为对照组(N组),共22例。
     收集患者临床资料,进行相关检查,收集COHb、氧分压(partial pressure ofoxygen, PaO2)、氧饱和度(oxygen saturation, SaO2)等检测数据,对患者进行HE分期、食管胃底静脉曲张、肝肾综合征(hepatic renal syndrom, HRS)、自发性腹膜炎(spontaneous bacterial peritonitis, SBP)、低氧血症等诊断分析。比较HE患者COHb水平变化,伴不同PH并发症时COHb水平差异及分析COHb水平与HE分期、PaO2及SaO2关系。
     结果
     1. H组患者COHb水平较N组明显升高((2.102±1.021)%vs.(0.983±0.231)%,p=0.000),COHb水平与HE分期呈正相关(p=0.003,rS=0.358)。
     2. HE伴HRS患者COHb水平较未发生HRS者明显降低((1.981±1.020)%vs.(2.502±1.073)%,p=0.029);COHb水平在患者有无食管胃底静脉曲张或SBP中无差异(p>0.05)。
     3. HE患者COHb水平与PaO2呈负相关(P=0.006, r=-0.336),与SaO2无关(P=0.576, r=-0.072)。HE患者达到低氧血症标准时,COHb水平升高((2.72±0.362)%vs.(1.93±0.242)%,p=0.012)。
     结论
     血红素氧合酶/一氧化碳系统在肝硬化门脉高压时期病理生理过程中起到重要作用,其表达具有组织特异性,对该时期患者具有重要临床意义。
     第二节血红素氧合酶/一氧化碳系统介导的奥曲肽降门脉压机制探讨
     目的:探讨血红素氧合酶(heme oxygense, HO)/一氧化碳(carbon monoxide, CO)系统介导下的奥曲肽(Octreotide, OCT)降门脉压机制,并进一步证实在肝硬化门脉高压(portal hypertension, PH)阶段HO/CO系统的关键作用。
     方法:将34只健康成年雄性Sprague-Dawley大鼠随机分为3组,即假手术组(Sham组)10只,肝硬化门脉高压组(PH组)12只及奥曲肽组(OCT组)12只。大鼠肝硬化PH模型采用胆总管结扎方法。术后4周,OCT及PH组制模完成,前者予OCT腹腔注射(100μg/kg/d,日2次)3天,PH组及Sham组给予同等剂量的生理盐水。给药结束后,禁食水24h,对三组大鼠进行门静脉压力测定,后处死大鼠,取血、取肝,采用全自动生化分析仪检测血清丙氨酸氨基转移酶(alanineaminotransferase, ALT)、天门冬氨酸氨基转移酶(aspartate aminotransferase, AST)水平;HE染色对肝脏进行病理形态学观察;通过免疫组织化学、western blot及RT-PCR方法观察大鼠肝脏HO-1蛋白及基因表达情况。
     结果
     1.对比ALT和AST值,PH组较Sham组明显升高(P﹤0.01);OCT组较PH组明显下降(p﹤0.01),但较Sham组升高(p﹤0.05)。
     2.大鼠肝脏HE染色结果显示PH组肝小叶结构紊乱,大量纤维组织增生,炎性细胞侵润,见多个假小叶,小叶间胆管增生明显。OCT组纤维组织增生程度较PH组明显减轻,炎细胞浸润减少(p﹤0.05),但较Sham组程度重(p<0.05)。
     3.大鼠门脉压力比较,PH组较Sham组明显升高((18.52±1.83)mmHg vs.(9.08±0.52)mmHg, p<0.01);OCT组(13.17±1.12mmHg)较PH组明显下降(p<0.05),但较SH组升高(p<0.05)。
     4.免疫组织化学方法及western blot方法结果显示HO-1蛋白表达, PH组较Sham组增高(p﹤0.01);OCT组表达较PH组显著减少,但较Sham组高(p﹤0.05)。应用RT-PCR方法对上述HO-1蛋白表达结果在基因水平进行了验证。
     结论
     1.奥曲肽可抑制肝硬化门脉高压时期血红素氧合酶-1在肝脏的表达,其对血红素氧合酶/一氧化碳系统进行调控可能是其降门脉压机制之一。
     2.血红素氧合酶/一氧化碳系统在门脉高压形成中具有重要作用。
     第二部分肠道转运蛋白及代谢酶对奥曲肽肠吸收的影响
     目的:研究肠上皮转运蛋白P-糖蛋白(P-glycoprotein, P-gp)、多药耐药相关蛋白2(multidrug resistance associated protein2, MRP2)及代谢酶细胞色素CYP4503A4(cytochrome P4503A4, CYP3A4)与奥曲肽(Octreotide, OCT)肠吸收关系,并了解在肝硬化门脉高压(portal hypertension, PH)状态下,P-gp、MRP2及CYP3A4变化对OCT肠吸收作用影响。
     方法
     1.运用Caco-2细胞转运模型,分别给予OCT(10μM)及加入P-gp抑制剂罗丹明123(1mM)或MRP2抑制剂丙磺舒(1mM)后(n=4),考察OCT在Caco-2细胞肠腔侧(apical side, AP)和基底侧(basolateral side, BL)双向转运的表观渗透系数(apparent permeability coefficient, Papp)及渗透方向率(permeability directionrate, PDR);考察OCT药物浓度(1μM或50μM)对转运的影响。
     2.建立胆管结扎肝硬化PH大鼠模型,运用离体翻转肠实验,考察P-gp抑制剂维拉帕米(1mM)及MRP2抑制剂丙磺舒(1mM)对浆膜侧OCT浓度影响。正常大鼠分组(n=4):单独予OCT(A组);予维拉帕米+OCT(B组);予丙磺舒+OCT(C组);予维拉帕米及丙磺舒+OCT(D组),OCT浓度10μM。PH大鼠分组同上,对应设为A1组,B1组,C1组及D1组(n=4)。
     3.运用大鼠在体空肠灌流实验,考察抑制剂对血中OCT浓度影响情况。正常大鼠分组(n=4):予OCT(A组);予P-gp抑制剂维拉帕米+OCT(B组);予丙磺舒+OCT(C组);同时予维拉帕米及丙磺舒(D组)。PH大鼠分组同上,对应分组为A1组,B1组,C1组及D1组。给药浓度同翻转肠实验。
     4.制备正常及PH大鼠肠微粒体,考察CYP3A抑制剂酮康唑对OCT代谢影响。
     正常大鼠微粒体实验分组(n=6):予OCT(N+OCT组),予OCT+酮康唑(N+OCT+K组);PH大鼠微粒体实验分组同正常大鼠,对应地设为PH+OCT组,PH+OCT+K组;对照组:未加微粒体,仅予OCT孵育(OCT组)。OCT浓度100μM,酮康唑浓度10μM。
     5.人CYP3A4重组酶实验,在2.5mg/mL重组微粒体酶中加入OCL(100mM),考察不同孵育时间对OCT代谢影响,选择最佳孵育时间。孵育10min,考察不同CYP3A4蛋白浓度(1.25,2.5,5,10,20mg/mL)对OCT(100mM)代谢影响,选择最佳重组酶的蛋白浓度。根据最适重组酶的蛋白浓度和最适反应时间,将不同浓度OCT(20,50,100,200,400mM)加入孵育体系中,检测剩余OCT浓度,考察孵育体系中是否有代谢物生成。
     结果
     1. OCT在Caco-2细胞转运无浓度依赖性,10μM是考察P-gp、MRP2主动转运最适宜浓度,分别单独予P-gp和MRP2抑制剂,PDR均>1.5。正常组Papp(B-A)较Papp(A-B)明显升高(p<0.05),予P-gp及MRP2抑制剂后,抑制剂组Papp(A-B)均高于Papp(B-A)(p<0.05);各抑制剂组Papp(A-B)较正常组明显升高,在两种抑制剂联用情况下升高更为显著(p<0.01);合用两种抑制剂,Papp(A-B)高于单用一种抑制剂组(p<0.05),且Papp(B-A)低于正常组(p<0.01)。
     2.离体翻转肠实验,对比OCT浓度,D组在三组中最高(p<0.05),B组较C组升高(p<0.05),PH大鼠离体翻转肠实验提示上述相同结果,且PH大鼠各组OCT浓度较相应正常大鼠各组下降(p<0.05)。正常大鼠B,C和D组AUC值分别是A组的176.22%,151.39%和220.63%。PH大鼠B1,C1和D1组AUC值分别是A1组的151.82%,128.23%,和165.33%。A1组的AUC值是A组的21.54%。
     3.在体空肠灌流实验,对比OCT浓度,D组较其他三组升高(p<0.05),B组较C组升高(p<0.05),PH大鼠实验结果与之相同,且PH大鼠各组OCT浓度较相应正常大鼠各组下降(p<0.05)。B,C和D组AUC值分别是组A的521.08%,418.95%和618.40%。B1,C1和D1组AUC值分别是组A1的384.61%,236.28%和461.78%。A1组的AUC值是A组的96%。
     4.肠微粒体实验,PH+OCT组OCT浓度低于N+OCT组(p<0.05);予抑制剂酮康唑后,OCT浓度显著升高(N+OCT组0.05)。
     5.人重组CYP3A4酶实验,最佳孵育时间为10min,最佳重组酶CYP3A4蛋白浓度为2.5mg/mL。随着体系中加入OCT浓度降低,残余OCT量减少,孵育体系中可检测到小分子OCT代谢产物。
     结论
     奥曲肽是肠上皮转运蛋白P-糖蛋白、多药耐药相关蛋白2及代谢酶细胞色素CYP4503A4的底物,三者具有明显抑制奥曲肽肠吸收效应。在肝硬化门脉高压病
     理状态下,上述转运蛋白及代谢酶表达或活性升高,对OCT肠吸收的抑制作用更为显著。
     第三部分肝硬化门脉高压状态下奥曲肽空肠促吸收及降门脉压研究
     目的:考察应用肠上皮转运蛋白P-糖蛋白(P-glycoprotein, P-gp)、多药耐药相关蛋白2(multidrug resistance associated protein2, MRP2)及代谢酶细胞色素CYP4503A(4cytochrome P4503A4, CYP3A4)抑制剂后对门脉高压(portal hypertension, PH)大鼠奥曲肽(Octreotide, OCT)肠吸收影响及降门脉压效果测定;了解PH状态下,寡肽转运蛋白PepT1变化对OCT肠吸收影响,期待寻求实现OCT口服用药的有效方法。
     方法
     1.建立胆管结扎肝硬化PH大鼠模型,进行在体吸收实验,观察加入P-gp,MRP2及CYP3A抑制剂后,大鼠肠吸收效果变化。正常大鼠分2组(n=4):OCT静脉给药及OCT十二指肠给药组;PH大鼠分组:OCT静脉给药组,OCT十二指肠给药组及OCT联合抑制剂(维拉帕米4.9mg/kg,丙磺舒300mg/kg,酮康唑5.3mg/kg)十二指肠给药组(n=4)。OCT十二指肠给药剂量1mg/kg,静脉给药剂量0.1mg/kg。给药后不同时间点于颈静脉取血,计算药代动力学参数。
     2.正常大鼠分为2组,未加药物组(N组),予OCT组(N+OCT组);PH大鼠分3组,无药物组(PH组),予OCT组(PH+OCT组),及OCT+混合抑制剂组(抑制剂剂量同上),OCT给药剂量1mg/kg,日1次,连续给药3天,处死大鼠,取空肠,用western blot、免疫组化及逆转录聚合酶链式反应(reverse transcriptionpolymerase chain reaction, RT-PCR)方法观察各组大鼠空肠上皮P-gp,MRP2及CYP3A4蛋白和基因的表达。
     3.测压实验:正常大鼠不给药(N组),PH大鼠分为无药物组(PH组),OCT组(PH+OCT组)及OCT+混合抑制剂(抑制剂剂量同上)组(PH+OCT+I组)(n=4),
     OCT给药剂量为1mg/kg,日1次,连续3天灌胃给药后,测定门静脉压力。
     4.对PH状态下,PepT1对OCT转运效果考察。正常大鼠分不给药组(N组),及OCT给药组(N+OCT组),PH大鼠分组相同,设为PH及PH+OCT组(n=4),OCT给药剂量为1mg/kg,日1次,连续灌胃给药3天,处死大鼠,取空肠,通过westernblot、免疫组化及RT-PCR方法观察各组大鼠PepT1蛋白及基因表达情况。运用Caco-2细胞转运模型,考察PepT1抑制剂甘氨酰肌氨酸(glycylsarcosine,Gly-Sar)(1mM)对OCT(10μM)在肠腔侧(apical side, AP)和基底侧(basolateral side, BL)双向转运的表观渗透系数(apparent permeability coefficient, Papp)及渗透率(permeability direction rate, PDR)。建立离体翻转肠模型(n=4),正常大鼠分为给予OCT(10μM)组(N组)及OCT+Gly-Sar(1mM)组(N+G组),PH大鼠给药及分组相同,设为PH及PH+G组。建立大鼠空肠灌流模型,分组及给药同翻转肠实验。
     结果
     1.大鼠在体吸收实验,静脉注射后OCT浓度从血浆中快速清除,t1/2较短,正常大鼠Vd、AUC较PH大鼠升高,表明药物清除缓慢。空肠输注OCT后,PH大鼠较正常大鼠Tmax延长,Cmax和AUC(0-12h)下降。OCT联合P-gp/MRP2/CYP3A混合抑制剂后Tmax减少,同时Cmax, AUC(0-12h)较正常大鼠及未应用抑制剂的PH大鼠明显升高,F及ER约是未应用抑制剂的PH大鼠的4倍。
     2. western blot、免疫组化结果均发现PH组P-gp,MRP2和CYP3A4蛋白均较N组升高(p<0.05),予OCT后显著升高(N+OCT组> N组, PH+OCT组> PH组, p<0.05),予OCT联合混合抑制剂后蛋白表达最少(p<0.01),N+OCT组和PH组表达无差异(p>0.05)。RT-PCR方法见基因表达与蛋白表达结果一致。
     3.考察混合抑制剂对大鼠门脉压力影响发现,PH组大鼠平均门脉压力较正常组((15.56±2.36mmHg) vs.(9.24±0.76mmHg)明显升高(p<0.01),且高于PH+OCT组(12.51±1.50mmHg,p<0.05)。PH+OCT+I组门脉压力(6.95±1.12mmHg)较PH组及PH+OCT组明显下降(p<0.01),在正常范围内。
     4.考察PepT1与OCT肠吸收关系,免疫组化及western blot检测发现对比PepT1蛋,PH组较N组表达升高(p<0.05),应用OCT组较未应用组无差异(N+OCT组vs. N组, PH+OCT组vs. PH组, p>0.05), PH+OCT组高于N+OCT组(p<0.01)。RT-PCR基因检测结果与蛋白表达结果一致。Caco-2细胞研究发现,Gly-Sar抑制PepT1后,Papp(A-B)较Papp(B-A)仍明显降低,无升高趋势,且PDR<1.5,故表明PepT1不能介导OCT在Caco-2细胞的主动转运。翻转肠实验见较N组,N+OCT组浆膜腔中OCT浓度无明显差异,在PH大鼠中,亦无明显改变(p>0.05)。PH大鼠各组OCT浓度较相应正常大鼠各组下降(p<0.05),PH组是N组的52.4%。在体空肠灌流模型,OCT浓度在N组和N+G组中无差异,在PH组和PH+G组中亦无差异(p>0.05)。PH大鼠各组OCT浓度较相应正常大鼠各组下降(p<0.05),PH组是N组的62.7%。
     结论
     1. P-糖蛋白,多药耐药相关蛋白2及细胞色素CYP4503A4在奥曲肽肠吸收中具有重要作用,对其进行抑制可以明显促肝硬化门脉高压大鼠肠吸收,降压效果理想。
     2.寡肽转运蛋白PepT1在肝硬化门脉高压时期表达增强,但对奥曲肽无转运作用。
Objective: Hepatitis B is an important reason to cause liver cirrhosis. There arehundreds of patients with hepatitis B or with hepatitis B virus infection in China, andmillions of them can develop to cirrhosis very year. Portal hypertension (PH) is thetypical manifestation of patients at the decompensated stage of cirrhosis, and it is themain reason to result in various complications and death. So it is important to preventand treat of patients with PH, thus improving the prognosis and decreasing the mortalityof patients.
     It is revealed that heme oxygenase/carbon monoxide (HO/CO) system canaggravate PH during the middle and end stage of cirrhosis, and induce progressivedamages of various organs and tissues, thus accelerating cirrhosis process. The resultswere also confirmed by our studies on the basis of cirrhotic rats with PH. But up to now,the researches focused on HO/CO system mostly are basic studies, and lack of clinicalstudies. We had found that carboxyhemoglobin, which could reflect the level of HO/COsystem was obviously increased in patients with PH. The current research was the firsttime to perform perspective study to reveal the importance of HO/CO system onpatients with PH complicated by various complications and the effects of it on organs.As a kind of Somatostatin, Octrotide (OCT) is an ideal drug for decrease portal pressure,but the detail mechanism is unclear. Due to the effects of vascular contraction, OCT canreduce portal blood volumn and decrease portal pressure. Due to the mechanism ofendogenous OCT to maintain PH is dilation of splanchnic vessels, we thought OCTmight play effects in decreasing portal pressure by influence on HO/CO system. Thisstudy was to deeply research the mechanism of OCT effects on PH by HO/CO system,and further confirm the key role of HO/CO system on cirrhosis.
     On the basis of the two parts of experiments and results of previous studies, we found that HO/CO system played great role during PH development and OCT coulddecrease portal pressure by inhibition of the system. Consideration of variouspharmacological advantages of OCT, it is useful to realize oral administration of OCTin order to resolve the difficulties of prevention and treatment of PH. Due to itsstabilized structure against enzymatic degradation, OCT can partially overcome theproblems of therapeutically active peptides often limited by their short biologicalhalf-lives. But OCT has high molecular weight, less fat-soluble quality, influenced byfirst-pass effect of intestines and liver, and prohibited by intestinal absorption barrier, soits oral bioavailability is low. Up to now, many researchers are focused on increasingOCT absorption by change its chemical structures or increase paracellular absorptionsthrough adding absorption enhancers, and enhancing permeability of biologicalmembrane, but the absorption effects are not ideal. In addition, the mechanisms of OCTabsorption and ways to increase absorption have not been studied underwent PH state.We thought studies on factors which directly influence on first-pass effects of OCTabsorption might be useful for finding out the absorbed strategies. Because ofportosystemic shunt formation, collateral circulation establishment and abnormal liverfunction, hepatic first-pass effects plays little influence on OCT absorption, while thefirst-pass effects of intestine may take obvious roles. The current study was to studyp-glycoprotein (P-gp) and multidrug resistance associated protein2(MRP2) which arethe transport proteins located on intestines, and intestinal metabolic enzyme cytochromeP4503A4(CYP3A4), in order to reveal the absorption mechanisms of OCT inintestines. In addition, whether OCT absorption would be affected by changes of thesetransporters and enzyme underwent cirrhosis with PH was also been considered.Moreover, the effects of PepT1changes underwent PH on OCT absorption were alsobeen studied, for finding a transporter which could transport OCT directly.
     The aim of this study was to reveal the pivotal effects of HO/CO system duringcirrhosis with PH by basic and clinical researches from various angles, in order to findout the mechanism of decreasing portal pressure by OCT mediated by this system,definite the reason hindered the intestinal absorption of OCT and provide the solutionsfor reducing intestinal-pass effects. It was also useful to find out the effective ways forincreasing oral bioavailability of OCT, realize portal pressure reduction by oraladministration of it, and provide theory evidence for rational use of OCT in clinic at thesame time. Part I
     Study on the mechanism of decreasing portal pressure by Octreotide
     mediated by heme oxygenase/carbon monoxide systemQuarter I
     The effects of heme oxygenase/carbon monoxide system on portal hypertension
     Object: The aim of this study is to detect changes of carboxyhemoglobin (COHb)levels and the relationship between them and portal hypertension (PH) complicated byadvanced complications, and to know the correlation of COHb levels and hepaticencephalopathy (HE) degrees on patients of hepatitis B related cirrhosis with HE,hoping for revealing the effects of heme oxygenase/carbon monoxide (HO/CO) systemon patients with PH complicated by complications and on various organs.
     Methods: According to the diagnostic and excluding criterions,68inpatients withhepatitis B virus-related cirrhosis (HBC) complicated by HE who were admitted to theGastrointestinal Department of the First Affiliated Hospital of Dalian MedicalUniversity without treatment were enrolled (group H).22patients who were inemergency department and excluded vital organs disorders (all related clinical testswere normal) were selected as control group (group N). The information of clinical datawas collected. The patients were performed related tests, and the data ofcarboxyhemoglobin (COHb) levels, partial pressure of oxygen (PaO2), oxygensaturation (SaO2) and so on were gathered. The patients were received diagnosticanalyses of HE stages, esophagogastric varices, hepatic renal syndrome (HRS),spontaneous bacterial peritonitis (SBP) and hypoxemia. The differentiations of COHb inHE patients with PH complications and none were compared, and the relationship ofCOHb level among grades of HE, PaO2and SaO2were analyzed.
     Results: The level of COHb in Group H was higher than in Group N((2.102±1.021)%vs.(0.983±0.231)%, P=0.000). The COHb standard has positivecorrelation with Grade of HE (p=0.003, r=0.358). The content of COHb was increasedin patients without HRS comparison to patients with HRS ((1.981±1.020)%vs.(2.502±1.073)%,p=0.029), with no differences between patients with SBP or not(p=0.75), and with esophagogastric varices or none (p>0.05). COHb level has anegative correlation with PaO2(p=0.006, r=-0.336) and no relative to SaO2(p=0.576,r=-0.072). It was higher when the two parameters met diagnostic criteria of hypoxemia ((2.72±0.362)%vs.(1.93±0.242)%,p=0.012).
     Conclusions:Heme oxygenase/carbon monoxide system played an important rolein pathophysiological process of hepatic cirrhosis with portal hypertension, and its levelhas tissue-specific. This system has great clinical meanings in cirrhotic patients with PHcomplicated by various complications.
     Quarter II
     The research on the mechanism of decreasing portal hypertension by Octreotidemediated by heme oxygense/carbon monoxide system
     Object: The aim was to understand the mechanism of reducing portal pressure byOCT, to observe whether the process was mediated by heme oxygenase/carbonmonoxide (HO/CO) system and to confirm the pivotal effects of HO/CO on cirrhosiswith portal hypertension (PH).
     Methods:34Male Sprague-Dawley rats were divided randomly into a Sham group(n=10), PH group (n=12) and OCT group (n=12). The cirrhotic rats with PH wereestablished by common bile duct ligation. The group which intraperitoneallyadministrated Otreotide (100μg/kg/d) was regarded as group OCT. The rats in group PHand group Sham was treated with the same doses of saline. After drugs administrationfor3days, all rats were measured portal venous pressure and then were killed forcollection of blood and liver tissues. HE staining was performed to observe thepathomorphology of liver tissues. The expressions of HO-1protein and mRNA weretested by the ways of immunohistochemistry, western blot and reverse transcriptionpolymerase chain reaction (RT-PCR), respectively. The levels of alanineaminotransferase (ALT) and aspartate aminotransferase (AST) were assayed byautomatic blood biochemistry analyzer.
     Results: In group PH, the levels of ALT and AST were much higher, and wascharacterized by fibrosis proliferation, amount of inflammatory cells infiltration,pseudolobule formation, and proliferation of interlobular bile duct, moreover, the portalpressure ((18.52±1.83) mmHg) was greatly increased, all the results were exited statistical difference between group Sham (p<0.01). In group OCT, the contents of ALTand AST, the lesions degree of liver tissues by HE staining and portal pressure((13.17±1.12mmHg) were greatly lightened (p<0.05), but worse than in group Sham(p<0.05). The methods of immunohistochemistry and western blot showed that theprotein expressions of HO-1in group OCT was evidently lower than in group PH(P<0.01), but higher than in group Sham (p<0.05), moreover, the way of RT-PCR wasconfirmed the results form mRNA levels.
     Conclusions: The expressions of heme-1in liver can be inhibited by OCT at thestage of cirrhosis with portal hypertension. The regulation of OCT to heme oxygense/carbon monoxide system may be regarded as a mechanism of it effects on portalpressure. The heme oxygense/carbon monoxide system plays an important role on theformation of portal hypertension.
     Part II
     The effects of transports and metabolic enzymes onOctreotide absorption in intestines
     Object: The transports, such as P-glycoprotein (P-gp) and multidrug resistanceassociated protein2(MRP2), and metabolic enzyme cytochrome P4503A4(CYP3A4)located on intestines are regared as key factors for affecting on drugs transport andmetabolism. The aim of this study was to know the relationship of them and Octreotide(OCT), and to understand whether their changes underwent cirrhosis with portalhypertension (PH) can influence on OCT absorption.
     Methods: The effects of P-gp or Mrp2inhibitors rhodamine123(1mM) andprobenecid (1mM) on the uptake and transepithelial transport of OCT (10μM) wereobserved by permeability direction rate (PDR) and from apparent permeabilitycoefficient (Papp) received by OCT bidirectional transportation from apical side (AP) orbasolateral side (BL). The effects of OCT concentrations (1μM and50μM) ontransportation were also considered. The cirrhotic rats with PH were established bycommon bile duct ligation. The effects of P-gp or MRP2inhibitors verapamil (1mM)and probenecid (1mM) on transportation of OCT (10μM) were observed by the model of everted intestinal sacs. The normal rats were divided into group A, B, C and D (n=4).The PH rats were did the same experiments and in accordance divided into group A1,B1, C1and D1(n=4). In situ jejunal perfusions of rats were also performed, and thedoses and grouping were the same as in the experiments of everted intestinal sacs (n=4).The effect of CYP3A inhibitor ketoconazole on intestinal metabolism of OCT wasdetermined by intestinal microsomes obtained from both kinds of rats. Each group wasadded OCT (100μM). According to whether ketoconazole (10μM) was added, thenormal rats were separated to group N+OCT and group N+OCT+K. The same drugs’doses and grouping were performed to PH rats, and in accordance divided into groupPH+OCT and group PH+OCT+K (n=6). The group without microsomes was regardedas control (group OCT).
     The experiment of human recombinant CYP3A4was applied for determinewhether OCT was one of substrates of CYP3A4. Firstly, the best incubation time wasdetermined by changes of reaction time by limitation of protein content of recombinantCYP3A4(2.5mg/mL) and the OCT concentration (100mM). Secondly, the bestincubated protein concentration of recombinant CYP3A4was observed by limitation ofother two factors. According to the optimized protein contents of CYP3A4and reactiontime, different OCT concentrations (20,50,100,200,400mM) were put into thereaction mixture and found out the metabolic products
     Results
     1. It was no concentration dependence of OCT transportation across Caco-2cells.The permeability direction rate PDR>1.5when P-gp or/and MRP2were inhibited at theconcentrtation of OCT10μM. The Pappof transportation for10μM OCT from side B toA mediated by P-gp and MRP2was significantly increased than the Pappoftransportation from side A to B, and Papp (A-B)s were much increased when inhibitedP-gp or MRP2, especially for inhibition P-gp and MRP2at the same time, on thecontrary, Papp (B-A)s were decreased obviously.
     2. In the model of everted intestinal sacs, the concentration of OCT in group D wasincreased comparison to other three groups (p<0.05). Moreover, compared with group C,the OCT content in group B was much higher (p<0.05). The same phenomenon couldbe seen in PH rats. Moreover, the OCT contents in PH rats were decreased obviouslycompared with those of the corresponding normal group (p<0.05). The AUC values ingroup B, C and D were176.22%,151.39%, and220.63%of that of the group A,respectively. The AUC values of the group B1, C1and D1were151.82%,128.23%, and165.33%of that in the group A1. While the AUC of the group A1was21.54%ofthat in the group A.
     3. In the model of in situ jejunal perfusions of rats, the levels of OCT in Group Dwere increased significantly (p<0.05). The OCT content in group C was much higherthan in group C (p<0.05). The same phenomenon could be seen in PH rats. In addition,the OCT contents in PH rats were decreased compared with those of the correspondingnormal group (p<0.05). The AUCs of the group B, C and D were521.08%,418.95%,618.40%of that of the respective control group (group A). The AUCs of the Group B1,C1and D1were384.61%,236.28%,461.78%of that in the group A1. While the AUCof the group A1was96%of that of the group A.
     4. In the experiments of intestinal microsomes, the levels of OCT were eminentlylowered in group PH+OCT than in group N+OCT (p<0.05), were obviously increasedwhen usage of ketoconazole (group N+OCT0.05).
     5. In the experiments of human recombinant CYP3A4, the best incubation timewas10min and the best protein was2.5mg/mL. Under the optimized incubation timeand protein content of CYP3A4, the residual OCT contents were decreased along withreduced initial concentration of OCT (p<0.05), and also many micromolecularmetabolites were found by test of Liquid chromatography-tandem mass spectrometry.
     Conclusions: P-glycoprotein, multidrug resistance associated protein2, andmetabolic enzyme cytochrome P4503A4were played inhibitory effects on Octreotideintestinal absorption, and Octreotide is the substrate of them. Up-regulated expressionsor activities of them were found under cirrhosis with portal hypertension, and enhancedblocking effects of OCT in intestines.
     Part III
     The research on pormoting intestinal absorption ofOctreotide and decreasing portal pressuer under cirrhosiswith portal hypertension
     Object: The aim was to know the influence of inhibitors of P-glycoprotein (P-gp),multidrug resistance associated protein2(MRP2) and cytochrome P4503A4(CYP3A4)on intestinal absorption of Octreotide (OCT) and the effects of them on decreasingportal pressuer. In addition, the impact of oligopeptide transporter PepT1on OCTabsorption was also studied, in order to find an effective way for realizaion of OCT byoral administration.
     Methods:
     1. The in vivo absorption experiment in rats was performed. The Normal rats weredivided randomly into two groups:1) intra-jejunal (IJ) injection of OCT (1mg/kg),2) i.v.infusion of OCT (0.1mg/kg)(n=4). PH rats were divided randomly into three groups:1)IJ injection of OCT (1mg/kg),2) i.v. infusion of OCT (0.1mg/kg),3) IJ injection ofOCT (1mg/kg) and mixed inhibitors (verapamil hydrochloride4.9mg/kg, probenecid300mg/kg and ketoconazole5.3mg/kg)(n=4, separately). The pharmacokineticparameters were caculated.
     2. The normal rats were divided into three groups according to if administratedOCT or not (group N and group N+OCT, respectively). PH rats were divided inaccordance to group PH and group PH+OCT, and the rats with OCT and mixedinhibitors (verapamil hydrochloride4.9mg/kg, probenecid300mg/kg and ketoconazole5.3mg/kg, once a day) were regared as group PH+OCT+I (n=4, separately). The dose ofOCT was1mg/kg, once a day. After3days, all rats were killed and the ways of westernblot, immunohistochemistry and reverse transcription polymerase chain reaction(RT-PCR) were performed to test the protein and mRAN expressions of P-gp, MRP2and CYP3A4on jejumns of each group.
     3. The PH rats were divided into three groups according to whether oraladministration of OCT (1mg/kg, once a day), and if orally administrated mixedinhibitors or not (group PH, group OCT, and group PH+OCT+I). The normal rats weregiven routine food and water without any drug. The doses of inhibitors were the same asabove (n=4, separately). After3days, the portal pressure of each rat was measured.
     4. The normal rats were divided into two groups according to whether oral administration of OCT (1mg/kg, once a day) or not (group N and group N+OCT). ThePH rats were did the same experiments and were grouping in accordance to group PHand group PH+OCT. After3days, the rats were killed and the ways of western blot,immunohistochemistry and RT-PCR were performed to test the protein and mRANexpressions of PepT1on jejumns of each group. The effects of PepT1inhibitorglycylsarcosine (Gly-Sar)(1mM) on the uptake and transepithelial transport of OCT(10μM) in Caco-2cells were observed by permeability direction rate (PDR) and fromapparent permeability coefficient (Papp) received by OCT bidirectional transportationfrom apical side (AP) or basolateral side (BL)(n=4, respectively). The models ofeverted intestinal sacs were established, and according to whether Gly-Sar wasadministrated, normal rats were divided into group N and group N+G. The PH rats weredid the same experiments, and in accordance to divided as group PH and group PH+G(n=4). In situ jejunal perfusions of rats were also performed, the doses and groupingwere the same as in the experiments of everted intestinal sacs (n=4).
     Results
     1. In vivo experiments, OCT was rapidly dispelled from plasma after i.v. infusion,and it underwent slower elimination or easier absorption in normal rats than in PH rats.Increased expression or activities of transporters and metabolic enzymes in liver mayoccur, leading to quicker elimination in PH state. By IJ administration of OCT, longerTmax, lower Cmaxand AUC0-12hwere found in PH rats than in normal rats, indicating thatincreased expressions or activities of transporters and metabolic enzymes might exist inintestines of PH rats to inhibit OCT absorption. Shorter Tmax, higher Cmaxand AUC0-12hwere observed in the group of OCT with P-gp/MRP2/CYP3A mixed inhibitorscomparing to normal rats and PH rats without inhibitors. In addition, F and ER wereobviously increased about4times for PH rats when usage of mixed inhibitors.
     2. The results from western blot and immunohistochemistry found that proteinexpressions of P-gp/MRP2/CYP3A4were significantly increased in Group PH than inGroup N (p<0.05), were obviously increased when usage of OCT (GroupN+OCT>Group N, Group PH+OCT> Group PH, p<0.05), and were the least in GroupPH+OCT+I among all the groups because of inhibitors usage (p<0.01), whereas noeminent difference between Group N+OCT and Group PH (p>0.05). The results ofRT-PCR were the same as western blot showed from mRNA levels.
     3. The average PVP level of Group PH (15.56±2.36mmHg) was increased thannormal rats (9.24±0.76mmHg, p<0.01) and was higher than that of Group PH+OCT (12.51±1.50mmHg, p<0.05). The PVP level of Group PH+OCT+I (6.95±1.12mmHg)was much lower than that of Group PH and Group PH+OCT (p<0.01). It was indicatedthat OCT with mixed inhibitors by oral via could decrease PVP effectively.
     4. RT-PCR showed that the expressive levels of PepT1mRNA were significantlyhigher in PH group than in group N (p<0.05). Compared the groups without OCTtreatment, the mRNA expression levels of PepT1in groups with OCT were no obviousdifference (group N+OCT vs. group N, group PH+OCT vs. group PH, p>0.05), whilein Group PH+OCT was higher than in group N+OCT (p>0.05). The results of westernblot and immunohistochemistry were the same as RT-PCR showed from protein levels.Caco-2cell model was used to examine the effects of PepT1inhibitor on OCT uptake.The Papp of transportation for OCT from side A to B mediated by influx pumptransporter PepT1was significantly decreased than the Papp of transportation from sideB to A. The PDR<1.5revealed that PepT1could not mediate OCT transport in Caco-2cells. On the basis of everted intestinal sacs, compared with Group N, the serosal sideconcentration of OCT in Group N+G was no obvious difference (p>0.05). The samephenomenon could be seen in PH rats. These results suggested PepT1could not mediateOCT transport, not only in normal rats, but also for rats with PH. While the AUC of thegroup PH was52.4%of that in the group N. In the model of in situ perfusions of rats,there was no obvious difference of OCT concentration between Group N and GroupN+G (p>0.05). The same phenomenon could be seen in PH rats. The results revealedthe similar conclusions of experiments of everted small intestinal sacs that PepT1couldnot transport the OCT uptake in situ, either for normal rats or PH rats. While the AUCof the group PH was67.2%of that in the group N.
     Conclusions: P-glycoprotein, multidrug resistance associated protein2andcytochrome P4503A4play great important role in intestinal absorption of Octreotide.Inhibition of them can induce OCT absorption of rats with portal hypertension, andrealize ideal effects of decreasing portal pressure. The expressions of oligopeptidetransporter PepT1were enhanced on the stage of cirrhosis with portal hypertension, butit has no effect on transportation of OCT in intestines of rats.
引文
[1]马骁,刘冰熔.门静脉高压药物治疗的新进展.世界华人消化杂志,2008,16(33):3775-3781.
    [2] Lebrec D, Vinel JP, Dupas JL. Complications of portal hypertension in adults: aFrench consensus. Eur J Gastroenterol Hepatol,2005,17(4):403-410.
    [3] Al-Khafaji A, Huang DT. Critical care management of patients with end-stageliver disease. Crit Care Med,2011,39(5):1157-1166.
    [4] Sass DA, Chopra KB. Portal hypertension and variceal hemorrhage. Med Clin North Am,2009,93(4):837-853.
    [5] Yamada K, Murakami M, Yamamoto A, Takada K, Muranishi S. Improvement of intestinal absorption of thyrotropin-releasing hormone by chemical modification with lauric acid. J Pharm Pharmacol,1992,44(9):717-721.
    [6] Guo SB, Duan ZJ, Li Q, Sun XY. Effects of heme oxygenase-1on pulmona-ry function and structure in rats with liver cirrhosis. Chin Med J,2011,124(6):918-922.
    [7] Guo SB, Duan ZJ, Li Q, Sun XY. Effect of heme oxygenase-1on renal function in rats with liver cirrhosis. World J Gastroenterol,2011,21,17(3):322-328.
    [8]刘洁,段志军,朱丽萍,杨冬,王丽霞,邵海燕.肝硬化门脉高压患者血红素氧合酶—一氧化碳系统与血浆内皮素关系的初步研究.胃肠病学和肝病学杂志,2008,9(17):745-748.
    [9] Nolan L, Schmid H, Levy A. Octreotide and the novel multireceptor ligandsomatostatin receptor agonist pasireotide (SOM230) Block the adrenalectomy-induced increase in mitotic activity in male rat anterior pituitary. Endocrinology,2007,148(6):2821-2827.
    [10]Lamberts SWJ, vanderLely AJ, Hofland LJ. New somatostatin analogs: willthey fulfil old promises? Eur J Endocrinol,2002,146(6):701–705.
    [11]Zhai Z, Zhang J, Shang HW, Lu SC, Wang ML, You H, Jia JD, Ding HG.Octreotide decreases portal pressure: Hepatic stellate cells may play a pivotalrole. Afr J Biotechnol,2010,9(12):1833-1838.
    [12]Fort J, Oberti F, Pilette C, Veal N, Gallois Y, Douay O, Rousselet MC, Rosenbaum J, Calès P. Antifibrotic and hemodynamic effects ofthe early and chronic ad-ministration of octreotide in two models of liverfibrosis in rats. Hepatology,1998,28(6):1525-1531.
    [13]Xidakis C, Ljumovic D, Manousou P, Notas G, Valatas V, Kolios G, Kouroumalis E. Production of pro-and anti-fibrotic agents by rat Kupffer cells; the effect of octreotide. Dig Dis Sci,2005,50(5):935-941.
    [14]Spahr L, Giostra E, Frossard JL, Morard I, Mentha G, Hadengue A. A3-month course of long-acting repeatable Octreotide (Sandostatin LAR) improves portal hypertension inpatients with cirrhosis: A randomized controlled study. Am J Gastroenterol,2007,102(7):1397-1405.
    [15]Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H. Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. AngewChem Int Ed Engl,2008,47(14):2595-2599.
    [16]Gomes P, Vale N, Moreira. R: Cyclization-activated prodrugs. Molecules,2007,12(11):2484-2506.
    [17]Drewe J, Fricker G, Vonderscher J. Beglinger C. Enteral absorption of octreotide: absorption enhancement by polyoxyethylene-24-cholesterol ether. Br JPharmacol,1993,108(2):298-303.
    [18]Fricker G, Fahr A, Beglinger C, Kissel T, Reiter G, Drewe J. Permeation enhancement of octreotide by specific bile salts in rats and human subjects: invitro, in vivo correlations. Br J Pharmacol,1996,117(1):217-223.
    [19]Roger K, Verbeeck. Pharmacokinetics and dosage adjustment in patients withhepatic dysfunction. Eur J Clin Pharmacol,2008,64(12):1147-1161.
    [20]Ghosh RD, Chakraborty P, Banerjee K, Adhikary A, Sarkar A, Chatterjee M,Das T, Choudhuri SK. The molecular interaction of a copper chelate with human P-glycoprotein. Mol Cell Biochem,2012,364(1-2):309-320.
    [21]Martínez-Augustin O, Sánchez de Medina F. Intestinal bile acid physiologyand pathophysiology. World J Gastroenterol,2008,14(37):5630-5640.
    [22]Liu W, Feng Q, Li Y, Ye L, Hu M, Liu Z. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for theintestinal disposition and poor bioavailability of emodin. Toxicol Appl Pharmacol,2012,265(3):316-324.
    [23]Gutmann H, Miller DS, Droulle A, Drewe J, Fahd A, Fricker G. P-glycoprotein-and mrp2-mediated octreotide transport in renal proximal tubule. Br JPharmacol,2000,129(2):251-256.
    [24]Fang HM, Xu JM, Mei Q, Diao L, Chen ML, Jin J, Xu XH. Involvement of cytochrome P4503A4and P-glycoprotein in first-pass intestinal extractionof omeprazole in rabbits. Acta pharmacol Sin,2009,30(11):1566-1572.
    [25]Kato M. Intestinal first-pass metabolism of CYP3A4substrates. Drug MetabPharmacol,2008,23(2):87-94.
    [26]Fricker G, Nobmann S, Miller DS. Permeability of porcine blood brain barrier to somatostatin analogues. Br J Pharmacol,2002,135(5):1308-1314.
    [27]Gutmann H, Miller DS, Droulle A, Drewe J, Fahd A, Fricker G. P-glycoprotein-and mrp2-mediated octreotide transport in renal proximal tubule. Br JPharmacol,2000,129(2):251-256.
    [1] Araujo JA, Zhang M, Yin F. Heme oxygenase-1, oxidation, inflammation, andatherosclerosis. Front Pharmacol,2012,3:119.
    [2] Chen TM, Li J, Liu L, Fan L, Li XY, Wang YT, Abraham NG, Cao J. Effectsof heme oxygenase-1upregulation on blood pressure and cardiac function inan animal model of hypertensive myocardial infarction. Int J Mol Sci,2013,14(2):2684-2706.
    [3] Onyiah JC, Sheikh SZ, Maharshak N, Steinbach EC, Russo SM, KobayashiT, Mackey LC, Hansen JJ, Moeser AJ, Rawls JF, Borst LB, Otterbein LE, PlevySE. Carbon monoxide and heme oxygenase-1prevent intestinal inflammationin mice by promoting bacterial clearance. Gastroenterology,2013,144(4):789-798.
    [4] Yang H, Zhao LF, Zhao ZF, Wang Y, Zhao JJ, Zhang L. Heme oxygenase-1prevents liver fibrosis in rats by regulating the expression of PPARγ and NF-κB. World J Gastroenterol,2012,18(14):1680-1688.
    [5] Wang F, Duan ZJ, Sun YJ. Influence of heme oxygenase-1expression induced by cobalt protoporphyrin on immune liver fibrosis in rats. World J Gastroenterol,2009,15(24):3009-3014.
    [6]孙英杰,段志军,王飞.抑制血红素氧合酶-1对大鼠免疫性肝纤维化的影响.世界华人消化杂志2009,17(6):560-565.
    [7] Suttner DM, Dennery PA. Reversal of HO-1related cytoprotection with increased expression is due to reactive iron. FASEB J,1999,13(13):1800-1809.
    [8] Geuken E, Buis CI, Visser DS, Blokzijl H, Moshage H, Nemes B, Leuvenink HG, de Jong KP, Peeters PM, Slooff MJ, Porte RJ. Expression of heme oxygenase-1in human livers before transplantation correlates with graft injury andfunction after transplantation. Am J Transplant,2005,5(8):1875-1885.
    [9] Durante W. Targeting heme oxygenase-1in vascular disease. Curr Drug Targets,2010,11(12):1504-1516.
    [10]Guo SB, Duan ZJ, Li Q, Sun XY. Effects of heme oxygenase-1on pulmonary function and structure in rats with liver cirrhosis. Chin Med J,2011,124(6):918-922.
    [11]Guo SB, Duan ZJ, Li Q, Sun XY. Effect of heme oxygenase-1on renal function in rats with liver cirrhosis. World J Gastroenterol,2011,21,17(3):322-328.
    [12]Tran TT, Martin P, Ly H, Balfe D, Mosenifar Z. Carboxyhemoglobin and ItsCorrelation to Disease Severity in Cirrhotics. J Clin Gastroenterol,2007,41(2):211-215.
    [13]Tarquini R, Masini E, La Villa G, Barletta G, Novelli M, Mastroianni R, Romanelli RG, Vizzutti F, Santosuosso U, Laffi G. Increased plasma carbon monoxide in patients with viral cirrhosis and hyperdynamic circulation. Am J Gastroenterol,2009,104(4):891-897
    [14]刘洁,段志军,朱丽萍,杨冬,王丽霞,邵海燕.肝硬化门脉高压患者血红素氧合酶—一氧化碳系统与血浆内皮素关系的初步研究.胃肠病学和肝病学杂志,2008,9(17):745-748.
    [15]Chen YC, Ginès P, Yang J, Summer SN, Falk S, Russell NS, Schrier RW. Increased vascular heme oxygenase-1expression contributes to arterial vasodilation in experimental cirrhosis in rats. Hepatology,2004,39(4):1075-1087.
    [16]中华医学会肝病学分会,中华医学会感染病学分会.慢性乙型肝炎防治指南(2010年版).临床肝胆病杂志,2011,27(1):1-16.
    [17]Bleibel W, Al-Osaimi AM. Hepatic encephalopathy. Saudi J Gastroenterol,2012,18(5):301-309.
    [18]Montagnese S, Biancardi A, Schiff S, Carraro P, Carlà V, Mannaioni G, MoroniF, Tono N, Angeli P, Gatta A, Amodio P. Different biochemical correlates fordifferent neuropsychiatric abnormalities in patients with cirrhosis. Hepatology,2011,53(2):558–566.
    [19]Seo JH, Kim SU, Park JY, Kim do Y, Han KH, Chon CY, Ahn SH. Predictors of refractory ascites development in patients with hepatitis B virus-related cirrhosis hospitalized tocontrol ascitic decompensation. Yonsei Med J,2013,54(1):145-153.
    [20]Badawy AA, Zaher TI, Sharaf SM, Emara MH, Shaheen NE, Aly TF. Effect of alternative antibiotics in treatment of cefotaxime resistant spontaneous bacterial peritonitis. World J Gastroenterol,2013,19(8):1271-1277.
    [21]Leffler CW, Parfenova H, Jaggar JH. Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol,2011,301(1):1-11.
    [22]Matsumi M, Takahashi T. Increased Heme Oxygenase-1Gene Expression inthe Livers of Patients with Portal Hypertension due to Severe Hepatic Cirrhosis. J Int Med Res,2002,30(3):282-288.
    [23]Itoh T, Ando M, Tsukamasa Y, Wakimoto T, Nukaya H. Whiskey congeners suppress LPS/IFNγ-induced NO production in murine macrophage RAW264cells by inducing heme oxygenase-1expression. J Agric Food Chem,2012,60(51):12491-12500.
    [24]Yayeh T, Hong M, Jia Q, Lee YC, Kim HJ, Hyun E, Kim TW, Rhee MH. Pistacia chinensis inhibits NO production and upregulates HO-1induction via PI-3K/Akt pathway in LPS stimulated macrophage cells. Am J Chin Med,2012,40(5):1085-1097.
    [25]De las Heras D, Fernández J, Ginès P, Cárdenas A, Ortega R, Navasa M, Barberá JA, Calahorra B, Guevara M, Bataller R, Jiménez W, Arroyo V, Rodés J. Increased carbon monoxide produ-ction in patients with cirrhosis withand without spontaneous bacterial peritonitis. Hepatology,2003,38(2):452-459.
    [26]Arguedas MR, Drake BB, Kapoor A, Fallon MB. Carboxyhemoglobin levelsin cirrhotic patients with and without hepatopulmonary syndrome. Gastroenterology,2005,128(2):328-333.
    [27]Yang S, Wang J, He B, Fang G, Fu R, Chen X. Relationship between plasma carbon monoxide and blood-brain barrier permeability in cirrhotic rats.Zhonghua Gan Zang Bing Za Zhi,2002,10(2):129-131.
    [28]Jiang W, Desjardins P, Butterworth RF. Minocycline attenuates oxidative/nitrosative stress and cerebral complications of acute liver failure in rats. Neurochem Int,2009,55(7):601-605.
    [29]Chastre A, Jiang W, Desjardins P, Butterworth RF. Ammonia and proinflammatory cytokines modify expression of genes coding for astrocytic proteins implicated in brain edema in acute liver failure. Metab Brain Dis,2010,25(1):17-21.
    [30]Miyazono M, Garat C, Morris KG Jr, Carter EP. Decreased renal heme oxygenase-1expression contributes to decreased renal function during cirrhosis.Am J Physiol Renal Physiol,2002,283(5):1123-1131.
    [31]Liu X, Yang C, He X. Expression of HO-1in chronic renal insufficiency.Rat kidney and implication. J Huazhong Univ Sci Technolog Med Sci,2003,23(3):271-274.
    [32]Rodríguez-Vilarrupla A, Graupera M, Matei V, Bataller R, Abraldes JG, BoschJ, García-Pagán JC.Large-conductance calcium-activated potassium channelsmodulate vascular tone in experimental cirrhosis. Liver International,2008,28(4):566-573.
    [33]Malaguarnera L, Madeddu R, Palio E, Arena N, Malaguarnera M. Heme oxygenase-1levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol,2005,42(4):585-591.
    [34]Geuken E, Buis CI, Visser DS, Blokzijl H, Moshage H, Nemes B, Leuvenink HG, de Jong KP, Peeters PM, Slooff MJ, Porte RJ. Expression of heme oxygenase-1in human livers before transplantation correlates with graft injury andfunction after transplantation. Am J Transplant,2005,5(8):1875-1885.
    [35]Fernandez M, Lambrecht RW, Bonkovsky HL. Increased heme oxygenase activity in splanchnic organs from portal hypertensive rats: role in modulatingmesenteric vascular reactivity. J Hepatol,2001,34(6):812-817.
    [36]Angermayr B, Mejias M, Gracia-Sancho J, Garcia-Pagan JC, Bosch J, Fernandez M. Heme oxygenase attenuates oxi-dative stress and inflammation, and increases VEGF expression in portal hypertensive rats. J Hepatol,2006,44(6):1033-1039.
    [37]Liu X, Yang C, He X. Expression of HO-1in chronic renal insufficiency. Rat kidney and implication. J Huazhong Univ Sci Technolog Med Sci,2003,23(3):271-274.
    [38]周晓黎,田德安.实验性肝硬化大鼠肺脏血红素氧合酶的表达与定位.中华肝脏病杂志,2003,11(10):599-601.
    [39]Carter EP, Hartsfield CL, Miyazono M, Jakkula M, Morris KG Jr, McMurtryIF. Regulation of heme oxygenase-1by nitric oxide during hepatopulmonarysyndrome. Am J Physiol Lung Cell Mol Physiol,2002,283(2):346-353.
    [1] Spahr L, Giostra E, Frossard JL, Morard I, Mentha G, Hadengue A. A3-month course of long-acting repeatable Octreotide (Sandostatin LAR) improves portal hypertension inpatients with cirrhosis: A randomized controlled study. Am J Gastroenterol,2007,102(7):1397-1405.
    [2] Fernández Pérez FJ, Jiménez Sáenz M, García Montes JM, Rebollo BernárdezJ, Herrerías Gutiérrez JM. Splanchnic hemodynamic effects of somatostatin and octreotide in cirrhotic patients. A Doppler ultrasonographic study. Rev EspEnferm Dig,2008,100(9):552-559.
    [3] Bosch J, Abraldes JG. Variceal bleeding: pharmacological therapy. Dig Dis,2005,23(1):18-29.
    [4] Abraldes JG, Dell'Era A, Bosch J. Medical management of variceal bleedingin patients with cirrhosis. Can J Gastroenterol,2004,18(2):109-113.
    [5] Wells M, Chande N, Adams P, Beaton M, Levstik M, Boyce E, Mrkobrada M.Meta-analysis: vasoactive medications for the management of acute varicealbleeds. Aliment Pharmacol Ther,2012,(11):1267-1278.
    [6] Tracy TF Jr, Tector AJ, Goerke ME, Kitchen S, Lagunoff D. Somatostatin analogue (octreotide) inhibits bile duct epithelial cell proliferation and fibrosis after extrahepatic biliary obstruction. Am J Pathol,1993,143(6):1574-1578.
    [7]王捷,龚浩,王宇.奥曲肽预防肝纤维化形成的实验研究.中华肝胆外科杂志,2003,9(2):100-102.
    [8] Corley DA, Cello JP, Adkisson W, Ko WF, Kerlikowske K. Octreotide foracute esophageal variceal bleeding: a meta-analysis. Gastroenterology,2001,120(4):946-954.
    [9] Fallon MB, Abrams GA, Luo B, Hou Z, Dai J, Ku DD. Common bile ductligation in the rat: a model of intrapulmonary vasodilatation and hepatopulmonary syndrome. Am J Physiol,1997,113(2):606-614.
    [10]B Luo, GA Abrams, MB Fallon. Endothelin-1in the rat bile duct ligation model of hepatopulmonary syndrome: correlation with pulmonary dysfunction. JHepatol,1998,29(4):571-578.
    [11]段志军李吉彦,谭晨,周仕壮,王冬梅,马晓凯,杨洪涛,白长川,胡祥.益气软肝方与肝刺激因子对大鼠免疫性肝纤维化保护作用的对照研究.中医杂志,2003,44(5):374-376
    [12]Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection(ER-ICA) in breast cancer tissue. Pathologe,1987,8(3):138-140.
    [13]Zhou DX, Zhou HB, Wang Q, Zou SS, Wang H, Hu HP. The effectivenessof the treatment of octreotide on chylous ascites after liver cirrhosis. Dig Dis Sci,2009,54(8):1783-1788.
    [14]Bosoi CR, Yang X, Huynh J, Parent-Robitaille C, Jiang W, Tremblay M, RoseCF. Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med,2012,52(7):1228-1235.
    [15]Pan Q, Li DG, Lu HM, Lu LY, Wang YQ, Xu QF. Antiproliferativeand proapoptotic effect s of somatostatin on actived hepatic stelate cell. World J Gastroenterol,2004,10(7):1015-1018.
    [16]Cha JY, Jung JY, Jung JY, Lee JR, Cho IJ, Ku SK, Byun SH, Ahn YT, Lee CW, Kim SC, An WG. Inhibitory effects of traditional herbal formula pyungwi-san on inflammatory response in vitro and in vivo. Evid Based ComplementAlternat Med,2013:630198.
    [17]McCuskey RS. Anatomy of efferent hepatic nerves. Anat Rec A Discov MolCell Evol Biol,2004,280(1):821-826.
    [18]Wang J, Wang L, Song G, Han B. The mechanism through which octreotide inhibits hepatic stellate cell activity. Mol Med Rep,2013,7(5):1559-1564.
    [19]Lang A, Sakhnini E, Fidder HH, Maor Y, Bar-Meir S, Chowers Y. Somatostatin inhibits pro-inflammatory cytokine secretion from rat hepatic stellate cells. Liver Int,2005,25(4):808-816.
    [20]Reynaert H, Rombouts K, Jia Y, Urbain D, Chatterjee N, Uyama N, GeertsA. Somatostatin at nanomolar concentration reduces collagen I and III synthesis by, but not proliferation of activated rat hepatic stellate cells. Br J Pharmacol,2005,146(1):77-88.
    [21]Pawlikowski M, Melen-Mucha G. Perspectives of new potential therapeuticapplications of somatostatin analogs. Neuro Endocrinol Lett,2003,24(1-2):21-27.
    [22]Xiang Q, Wang CL, Song S, Shi TJ. Highly efficient agonist-induced internalization of somatostatin SST2receptor in mouse dorsal root ganglion and spinalcord: molecular evidence for mechanism of somatostatin inhibits neuropathicpain. Regul Pept,2013, pii: S0167-0115(13)00042-6.
    [23]Jarvis SS, Florian JP, Curren MJ, Pawelczyk JA. A somatostatin analog improves tilt table tolerance by decreasing splanchnic vascular conductance. J ApplPhysiol,2012,112(9):1504-1511.
    [24]Zhang HB, Wong BC, Zhou XM, Guo XG, Zhao SJ, Wang JH, Wu KC, Ding J, Lam SK, Fan DM. Effects of somatostatin, octreotide and pitressin plus nitroglycerine on systemic and portal haemodynamics in the control of acute variceal bleeding. Int J Clin Pract,2002,56(6):447-451.
    [25]Vanheule E, Geerts AM, Reynaert H, Van Vlierberghe H, Geerts A, De VosM, Colle I. Influence of somatostatin and octreotide on liver microcirculationin an experimental mouse model of cirrhosis studied by intravital fluorescence microscopy. Liver Int,2008,28(1):107-116.
    [26]Guo SB, Duan ZJ, Li Q, Sun XY. Effects of heme oxygenase-1on pulmonary function and structure in rats with liver cirrhosis. Chin Med J,2011,124(6):918-922.
    [27]Froh M, Conzelmann L, Walbrun P, Netter S, Wiest R, Wheeler MD, LehnertM, Uesugi T, Scholmerich J, Thurman RG. Heme oxygenase-1overexpressionincreases liver injury after bile duct ligation in rats. World J Gastroenterol,2007,13(25):3478-3486.
    [28]Guo SB, Duan ZJ, Li Q, Sun XY. Effect of heme oxygenase-1on renal function in rats with liver cirrhosis. World J Gastroenterol,2011,17(3):322-328.
    [29]Georgiadou M, Notas G, Xidakis C, Drygiannakis I, Sfakianaki O, KlironomosS, Valatas V, Kouroumalis E. TNF receptors in Kupffer cells. J Recept SignalTransduct Res,2011,31(4):291-298.
    [30]Tran TT, Martin P, Ly H, et al. Carboxyhemoglobin and Its Correlation toDisease Severity in Cirrhotics. J Clin Gastroenterol,2007,41(2):211-215.
    [31]Angermayr B, Mejias M, Gracia-Sancho J, et al. Heme oxygenase attenuatesoxi-dative stress and inflammation, and increases VEGF expression in portal hypertensive rats. J Hepatol,2006,44(6):1033-1039.
    [32]Xidakis C, Ljumovic D, Manousou P, Notas G, Valatas V, Kolios G, Kouroumalis E. Production of pro2and anti2fibrotic agents by rat Kupffer cells; theeffect of octreotide. Dig Dis Sci,2005,50(5):935-941.
    [1] Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, SchmidHA, Jelinek R, Gilon C, Hoffman A, Kessler H. Improving oral bioavailability ofpeptides by multiple N-methylation: somatostatin analogues. Angew Chem Int EdEngl,2008,47(14):2595-2599.
    [2] Gomes P, Vale N, Moreira R. Cyclization activated prodrugs. Molecules,2007,12(11):2484-2506.
    [3] Lyons KC, Charman WN, Miller R, Porter CJ.Factors limiting the oralbioavailability of N-acetylglucosaminyl-N-acetylmuramyl dipeptide (GMDP) andenhancement of absorption in rats by delivery in water in oil microemulsion. Int JPharm,2000,199(1):17-28.
    [4] Fricker G., Fahr A, Beglinger C, T, Kissel T, Reiter G, Drewe J. Permeationenhancement of octreotide by specific bile salts in rats and human subjects: in vitro,in vivo correlations. Br J Pharmacol,1996,117(1):217-223.
    [5] Thanou M, Verhoef J.C. Intestinal Absorption of Octreotide Using TrimethylChitosan Chloride: Studies in Pigs. Pharm Res,2001,18(6):823-828.
    [6] Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepaticdysfunction. Eur J Clin Pharmacol,2008,64(12):1147-1161.
    [7] Bosilkovska M, Walder B, Besson M, Daali Y, Desmeules J. Analgesics in patientswith hepatic impairment: pharmacology and clinical implications. Drugs,2012,72(12):1645-1669.
    [8]李丽.文题:微乳载药系统促奥曲肽肠吸收研究.授予单位所在地:大连医科大学硕士论文,2011.
    [9] Gu L, Chen J, Synold TW, Forman BM, Kane SE. Bioimaging real-timePXR-dependent mdr1a gene regulation in mdr1a.fLUC reporter mice. J PharmacolExp Ther,2013,345(3):438-445.
    [10]Kanagasabai R, Krishnamurthy K, Druhan LJ, IIangovan G. Forced expression ofheat shock protein27(Hsp27) reverses P-glycoprotein (ABCB1)-mediated drugefflux and MDR1gene expression in adriamycin-resistant human breast cancercells. J Biol Chem,2011,286(38):33289-33330.
    [11]Yan YX, Li WZ, Huang YQ, Liao WX. The COX-2inhibitor Celecoxib enhancesthe sensitivity of KB/VCR oral cancer cell lines to Vincristine by down-regulatingP-glycoprotein expression and function. Prostaglandins Other Lipid Mediat,2012,97(1-2):29-35.
    [12]Tran TP, Kim HG, Choi JH, Na MK, Jeong HG. Reversalof P-glycoprotein-mediated multidrug resistance is induced by mollugin inMCF-7/adriamycin cells. Phytomedicine,2013,20(7):622-631.
    [13]Furuta S, Tamura M, Hirooka H, Mizuno Y, Miyoshi M, Furuta Y. Pharmacokineticdisposition of anagliptin, a novel dipeptidyl peptidase-4inhibitor, in rats and dogs.Eur J Drug Metab Pharmacokinet,2013, Feb23.[Epub ahead of print]
    [14]Ballent M, Wilkens MR, Maté L, Muscher AS, Virkel G, Sallovitz J, Schr derB, Lanusse C, Lifschitz A. P-glycoprotein in sheep liver and small intestine: geneexpression and transport efflux activity. J Vet Pharmacol Ther,2013, Feb14.[Epubahead of print]
    [15]Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studieson drug discovery and development. Pharmacol Rev,2003,55(3):425-461.
    [16]Olga Martínez-Augustin, Fermín Sánchez de Medina. Intestinal bile acidphysiology and pathophysiology. World J Gastroenterol,2008,14(37):5630-5640.
    [17]Ke SZ, Ni XY, Zhang YH, Wang YN, Wu B, Gao FG. Camptothecin and cisplatinupregulate ABCG2and MRP2expression by activating the ATM/NF-κB pathwayin lung cancer cells. Int J Oncol,2013,42(4):1289-1296.
    [18]Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation ofdrug pharmacokinetics and drug-drug interactions. Curr Drug Targets,2011,12(5):600-620.
    [19]Fricker G, Nobmann S, Miller DS. Permeability of porcine blood brain barrier tosomatostatin analogues. Br J Pharmacol,2002,135(5):1308-1314.
    [20]Gutmann H, Miller DS, Droulle A, Drewe J, Fahd A, Fricker G. P-glycoprotein-and mrp2-mediated octreotide transport in renal proximal tubule. Br J Pharmacol,2000,129(2):251-256.
    [21]孙雅,陈西敬. CYP3A和P-糖蛋白在药物肠首过效应中的协同作用.中国药科大学学报,2008,39(3):285-288.
    [22]Kapil RP, Cipriano A, Michels GH, Perrino P, O'Keefe SA, Shet MS, ColucciSV, Noveck RJ, Harris SC. Effect of ketoconazole on the pharmacokinetic profileof buprenorphine following administration of a once-weekly buprenorphinetransdermal system. Clin Drug Investig,2012,32(9):583-592.
    [23]Li L, Sinz M, Zimmermann K, Wang H. An IGF-1R inhibitor induces CYP3A4expression through a PXR-independent, non-canonical CAR-related mechanism. JPharmacol Exp Ther,2012,340(3):688-697.
    [24]Tavelin S, Gr sj J, Taipalensuu J, Ocklind G, Artursson P. Applications ofepithelial cell culture in studies of drug transport. Methods Mol Biol,2002,188:233-272.
    [25]刘志浩.文题: JBP485经PEPT1的摄取,转运和调节.授予单位所在地:大连医科大学硕士论文,2011.
    [26]Wilson TH, Wiseman G. The use of sacs of everted small intestine for the study oftransference of substances from the mucosal to the serosal surface. J. Physiol,1954,123(1):116–125.
    [27]Zhang QH, Liu Q, Wu JJ, Wang CY, Peng JY, Ma XC, Liu KX. PEPT1involved inthe uptake and transepithelial transport of cefditoren in vivo and in vitro. Eur. J.Pharmacol,2009,612(1-3):9–14.
    [28]Mohri K, Uesawa Y. Enzymatic activities in the microsomes prepared from ratsmall intestinal epithelial cells by differential procedures. Pharm Res,2001,18(8):1232-1236.
    [29]He F, Bi HC, Xie ZY, Zuo Z, Li JK, Li X, Zhao LZ, Chen X, Huang M.Rapid determination of six metabolites from multiple cytochrome P450probe substrates in human livermicrosome by liquid chromatography/mass spectrometry: application to high-throughput inhibition screening ofterpenoids.Rapid Commun Mass Spectrom.2007;21(5):635-43.
    [30]Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B, Dehertogh P, FisherK, Fossati L, Hovenkamp E, Korjamo T, Masungi C,Maubon N, Mols R, MüllertzA, M nkk nen J, O'Driscoll C, Oppers-Tiemissen HM, RagnarssonEG, Rooseboom M, Ungell AL. Comparison of drug transporter gene expressionand functionality in Caco-2cells from10different laboratories. Eur J Pharm Sci,2008,35(5):383-396.
    [31]Toda T, Ohi K, Kudo T, Yoshida T, Ikarashi N, Ito K, Sugiyama K. Antibioticssuppress Cyp3a in the mouse liver by reducing lithocholic acid-producing intestinalflora. Yakugaku Zasshi,2009,129(5):601-608.
    [32]Risa Haigou, Mitsuo Miyazawa. Metabolism of (+)-Terpinen-4-ol by CytochromeP450Enzyme in Human Liver Microsomes. J Oleo Sci,2012,61(1):35-43.
    [33]Wang H, Liao ZX, Chen M, Hu XL. Effects of hepatic fibrosis on ofloxacin pharma-cokinetics. Pharmacol Res,2006,53(1):28-34.
    [34]Barnes SN, Aleksunes LM, Augustine L, Scheffer GL, Goedken MJ, JakowskiAB, Pruimboom-Brees IM, Cherrington NJ, Manautou JE. Induction ofhepatobiliary efflux transporters in acetaminophen-induced acute liver failure cases.Drug Metab Dispos,2007,35(10):1963-1969.
    [35]Zollner G, Fickert P, Silbert D, Fuchsbichler A, Marschall HU, Zatloukal K, DenkH, Trauner M. Adaptive changes in hepatobiliary transporter expression in primarybiliary cirrhosis. J Hepatol,2003,38(6):717-727.
    [36]Kneuer C, Honscha W, G bel G, Honscha KU. Adaptive response to increased bileacids: induction of MDR1gene expression and P-glycoprotein activity in renalepithelial cells. Pflugers Arch,2007,454(4):587-594.
    [37]Fang HM, Xu JM, Mei Q, Diao L, Chen ML, Jin J, Xu XH. Involvement ofcytochrome P4503A4and P-glycoprotein in first-pass intestinal extraction ofomeprazole in rabbits. Acta pharmacol Sin,2009,30(11):1566-1572.
    [38]Andersen V, Pedersen N, Larsen NE, Sonne J, Larsen S. Intestinal first passmetabolism of midazolam in liver cirrhosis-effect of grapefruit juice. Br J ClinPharmacol,2002,54(2):120-124.
    [39]Kojima H, Nies AT, K nig J, Hagmann W, Spring H, Uemura M, Fukui H, KepplerD. Changes in the expression and localization of hepatocellular transporters andradixin in primary biliary cirrhosis. J Hepatol,2003,39(5):693-702.
    [40]Kullak-Ublick GA, Baretton GB, Oswald M, Renner EL, Paumgartner G, Beuers U.Expression of the hepatocyte canalicular multidrug resistance protein(MRP2) inprimary biliary cirrhosis. Hepatol Res,2002,23(1):78-82.
    [41]Oswald M, Kullak-Ublick GA, Paumgartner G, Beuers U. Expression of hepatictransporters OATP-C and MRP2in primary sclerosing cholangitis. Liver,2001,21(4):247-253.
    [42]Eldesoky ES, Kamel SI, Farghaly AM, Bakheet MY, Hedaya MA, Siest JP. Studyof the urinary ratio of6beta-hydroxycortisol/cortisol as a biomarker of CYP3A4activity in Egyptian patients with chronic liver diseases. Biomarker Insights,2007,1(1):157-164.
    [43]Orlando R, Piccoli P, De Martin S, Padrini R, Palatini P. Effect of the CYP3A4inhibitor erythromycin on the pharmacokinetics of lignocaine and itspharmacologically active metabolites in subjects with normal and impaired liverfunction. Br J Clin Pharmacol,2003,55(1):86-93.
    [44]Yang LQ, Li SJ, Cao YF, Man XB, Yu WF, Wang HY, Wu MC. Differentalterations of cytochrome P4503A4isoform and its gene expression in livers ofpatients with chronic liver diseases. World J Gastroenterol,2003,9(2):359-363.
    [45]Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P,Stauber RE, Krejs GJ, Denk H, Zatloukal K, Trauner M. Hepatobiliary transporterexpression in percutaneous liver biopsies of patients with cholestatic liver diseases.Hepatology,2001,33(3):633-646.
    [46]Long AH, Liu P, Li FH, Ge Yong P, Dou GL, Wang L. Dynamic changesof cholestatic cirrhosis in rats and its significance. Chin. J. Integr. Tradit. WesternNephrol,2006,16(2):87-89.
    [1] Fernández Pérez FJ, Jiménez Sáenz M, García Montes JM, Rebollo BernárdezJ, Herrerías Gutiérrez JM. Splanchnic hemodynamic effects of somatostatinand octreotide in cirrhotic patients. A Doppler ultrasonographic study. Rev EspEnferm Dig,2008,100(9):552-559.
    [2] Tracy TF Jr, Tector AJ, Goerke ME, Kitchen S, Lagunoff D. Somatostatin analogue(octreotide) inhibits bile duct epithelial cell proliferation and fibrosis afterextrahepatic biliary obstruction. Am J Pathol,1993,143(6):1574-1578.
    [3]王捷,龚浩,王宇.奥曲肽预防肝纤维化形成的实验研究.中华肝胆外科杂志,2003,9(2):100-102.
    [4] Dalmasso G, Charrier-Hisamuddin L, Thu Nguyen HT, Yan Y, Sitaraman S, MerlinD. PepT1-mediated tripeptide KPV uptake reduces intestinal inflammation.Gastroenterology,2008,134(1):166-178.
    [5]李镜清.文题:大黄素对CYP450酶的影响及参与其吸收与代谢的转运体与代谢酶.授予单位所在地:中山大学硕士论文,2011.
    [6] Smith DE, Clémen on B, Hediger MA. Proton-coupled oligopeptide transporterfamily SLC15: Physiological, pharmacological and pathological implications. MolAspects Med,2013,34(2-3):323-336.
    [7] Newstead S. Towards a structural understanding of drug and peptide transportwithin the proton-dependent oligopeptide transporter (POT) family. Biochem SocTrans,2011,39(5):1353-1358.
    [8] Thanou M, Verhoef JC, Marbach P, Junginger HE.Intestinal absorption of octreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability andabsorption properties of the somatostatin analogue in vitroand in vivo. J Pharm Sci,2000,89(7):951-957.
    [9] Griffin BT, O'Driscoll CM. An examination of the effect of intestinal first passextraction on intestinal lymphatic transport of saquinavir in therat. Pharm Res,2008,25(5):1125-1133.
    [10]李秀琴,陈西敬,任伟超,张辉,顾萱,王广基.丙磺舒等药物对双环铂肾排泄的影响及其机理.中国药科大学学报,2006,37(5):447-449.
    [11]Andersen V, Pedersen N, Larsen NE, Sonne J, Larsen S. Intestinal first passmetabolism of midazolam in liver cirrhosis-effect of grapefruit juice. Br J ClinPharmacol,2002,54(2):120-124.
    [12]Fasinu P, Choonara YE, Khan RA, Du Toit LC, Kumar P, Ndesendo VM, Pillay V.Flavonoids and polymer derivatives as CYP3A4inhibitors for improved oral drugbioavailability. J Pharm Sci,2013,102(2):541-555.
    [13]Fang HM, Xu JM, Mei Q, Diao L, Chen ML, Jin J, Xu XH. Involvement ofcytochrome P4503A4and P-glycoprotein in first-pass intestinal extraction ofomeprazole in rabbits. Acta pharmacol Sin,2009,30(11):1566-1572.
    [14]Cho YA, Lee W, Choi JS. Effects of curcumin on the pharmacokinetics oftamoxifen and its active metabolite,4-hydroxytamoxifen, in rats: possible roleof CYP3A4and P-glycoprotein inhibition by curcumin. Pharmazie,2012,67(2):124-130.
    [15]Scaglione F. New oral anticoagulants: comparative pharmacology with vitamin Kantagonists. Clin Pharmacokinet,2013,52(2):69-82.
    [16]Liu C, Zhu S, Zhou Y, Wei Y, Pei Y. In situ intestinal absorption ofcyclosporine Asolid dispersion in rats. Drug Dev Ind Pharm,2008,34(6):627-631.
    [17]Xidakis C, Ljumovic D, Manousou P, Notas G, Valatas V, Kolios G, KouroumalisE. Production of pro-and anti-fibrotic agents by rat Kupffer cells; the effect ofoctreotide. Dig Dis Sci,2005,50(5):935-941.
    [18]Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, SchmidHA, Jelinek R, Gilon C, Hoffman A, Kessler H. Improving Oral Bioavailability ofPeptides by Multiple N-Methylation: Somatostatin Analogues. Angew Chem Int EdEngl,2008,47(14):2595-2599.
    [19]Gomes P, Vale N, Moreira R. Cyclization activated prodrugs. Molecules,2007,12(11):2484-2506.
    [20]Fricker G, Fahr A, Beglinger C, Kissel T, Reiter G, Drewe J. Permeationenhancement of octreotide by specific bile salts in rats and human subjects: in vitro,in vivo correlations. Br J Pharmacol,1996,117(1):217-223.
    [21]Thanou M, Verhoef J.C. Intestinal Absorption of Octreotide Using TrimethylChitosan Chloride: Studies in Pigs. Pharm Res,2001,18(6):823-828.
    [22]Gao ZG, Shin HJ, Park, S KM, Lim J, Hwang KJ, Kim CK. Physicochemicalcharacterization and evalu-ation of a microemulsion system for oral delivery ofCyclosporin A. Int J Pharm,1998,161(1):75-86.
    [23]Lyons KC, Charman WN, Miller R, Porter CJ. Factors limiting the oralbioavailability of N-acetylglucosaminyl-N-acetylmuramyl dipeptide (GMDP) andenhancement of absorption in rats by delivery in water in oil microemulsion. Int JPharm,2000,199(1):17-28.
    [24]Zheng JY, Fulu MY. Decrease of genital organ weights and plasma testosteronelevels in rats following oral administration of leuprolide microemulsion. Int JPharm,2006,307(2):209.
    [25]Bucking C, Schulte PM. Environmental and nutritional regulation of expression andfunction of two peptide transporter (PepT1) isoforms in a euryhaline teleost. CompBiochem Physiol A Mol Integr Physiol,2012,161(4):379-387.
    [26]Ingersoll SA, Ayyadurai S, Charania MA, Laroui H, Yan Y, Merlin D. The role andpathophysiological relevance of membrane transporter PEPT1in intestinalinflammation and inflammatory bowel disease. Am J Physiol Gastrointest LiverPhysiol,2012,302(5):484-492.
    [27]Dalmasso G, Nguyen HT, Ingersoll SA, Ayyadurai S, Laroui H, Charania MA, YanY, Sitaraman SV, Merlin D. The PepT1-NOD2signaling pathway aggravatesinduced colitis in mice. Gastroenterology,2011,141(4):1334-1345.
    [28]Hang CH, Shi JX, Sun BW, Li JS. Apoptosis and functional changes of dipeptidetransporter (PepT1) in the rat small intestine after traumatic brain injury. J Surg Res,2007,137(1):53-60.
    [29]N ssl AM, Rubio-Aliaga I, Fenselau H, Marth MK, Kottra G, Daniel H. Aminoacid absorption and homeostasis in mice lacking the intestinal peptide transporterPEPT1. Am J Physiol Gastrointest Liver Physiol,2011,301(1):128-137.
    [1] Groszmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, PlanasR, Escorsell A, Garcia-Pagan JC, Patch D, Matloff DS, Gao H, Makuch R. Betablockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl JMed,2005,353(21):2254–2261.
    [2] Bosch J, Berzigotti A, Garcia-Pagan JC, Abraldes JG. The management of portalhypertension: rational basis, available treatments and future options. J Hepatol,2008,48(1):68-92.
    [3] Yamada K, Murakami M, Yamamoto A, Takada K, Muranishi S. Improvement ofintestinal absorption of thyrotropin-releasing hormone by chemical modificationwith lauric acid. J Pharm Pharmacol,1992,44(9):717-721.
    [4] D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicatorsof survival in cirrhosis: a systematic review of118studies. J Hepatol,2006,44(1):217–231.
    [5] Villanueva C, Balanzó J. Variceal bleeding: pharmacological treatment andprophylactic strategies. Drugs,2008,68(16):2303-2324.
    [6] Ripoll C, Groszmann R, Garcia-Tsao G, Grace N, Burroughs A, PlanasR, Escorsell A, Garcia-Pagan JC, Makuch R, Patch D, Matloff DS, Bosch J, PortalHypertension Collaborative Group. Hepatic venous pressure gradient predictsclinical decompensation in patients with compensated cirrhosis. Gastroenterology,2007,133(2):481–488.
    [7] U. Thalheimer, L. Bellis, C. Puoti, and A. K. Burroughs, Should we routinelymeasure portal pressure in patients with cirrhosis, using hepatic venous pressuregradient (HVPG) as a guide for prophylaxis and therapy of bleeding andrebleeding? No. Eur J Intern Med,2011,22(1):5–7.
    [8] de Franchis R. Revising consensus in portal hypertension: report of the Baveno Vconsensus workshop on methodology of diagnosis and therapy in portalhypertension. J Hepatol,2010,53(4):762–768.
    [9] Ashkenazi E, Kovalev Y, Zuckerman E. Evaluation and treatment of esophagealvarices in the cirrhotic patient. Isr Med Assoc J,2013,15(2):109-115.
    [10] de Franchis R. Stellate cells and the “reversible component” of portal hypertension.Dig Liver Dis,2000,32(2):104–107.
    [11] Reynaert H, Urbain D, Geerts A. Regulation of sinusoidal perfusion in portalhypertension. Anat Rec (Hoboken),2008,291(6):693-698.
    [12]黄莚庭.门脉高压症外科学.北京:人民卫生出版社,2002:113-125.
    [13]陈文.肾上腺髓质素对大鼠活化肝星状细胞调亡的影响.四川医学,2007,28(2):133-134.
    [14] Kojima H, Sakurai S, Uemura M, Satoh H, Nakashima T, Minamino N, KangawaK, Matsuo H, Fukui H. Adrenomedullin contributes to vascular hyporeactivity incirrhotic rats with ascites via a release of nitric oxide. Scand J Gastroenterol,2004,39(7):686-693.
    [15] Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. Journalof Hepatology,2007,46(5):927-934.
    [16] Snowdon VK, Guha N, Fallowfield JA. Noninvasive evaluation of portalhypertension: emerging tools and techniques. Int J Hepatol,2012,691089.
    [17] Iwakiri Y. Endothelial dysfunction in the regulation of cirrhosis and portalhypertension. Liver Int,2012,32(2):199-213.
    [18] Laleman W, Omasta A, Van de Casteele M, Zeegers M, Vander Elst I, VanLandeghem L, Severi T, van Pelt J, Roskams T, Fevery J, Nevens F. A role forasymmetric dimethylarginine in the pathophysiology of portal hypertension in ratswith biliary cirrhosis. Hepatology,2005,42(6):1382-1390.
    [19] Fernandez M, Mejias M, Garcia-Pras E, Mendez R, Garcia-Pagan JC, Bosch J.Reversal of portal hypertension and hyperdynamic splanchnic circulation bycombined vascular endothelial growth factor and platelet-derived growth factorblockade in rats. Hepatology,2007,46(4):1208-1217.
    [20] Groszmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Planas R,Escorsell A, Garcia-Pagan JC, Patch D, Matloff DS, Gao H, Makuch R.B-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl JMed,2005,353(1):2254-2261.
    [21] Abraldes JG, Villanueva C, Ba ares R, Aracil C, Catalina MV, Garci A-PagánJC, Bosch J. Hepatic venous pressure gradient and prognosis in patients with acutevariceal bleeding treated with pharmacologic and endoscopic therapy. J Hepatol,2008,48(2):229-236.
    [22] Villanueva C, Piqueras M, Aracil C, Gómez C, López-Balaguer JM, Gonzalez B,Gallego A, Torras X, Soriano G, Sáinz S, Benito S, Balanzó J. A randomizedcontrolled trial comparing ligation and sclerotherapy as emergency endoscopictreatment added to somatostatin in acute variceal bleeding. J Hepatol,2006,45(4):560-567.
    [23] Augustin S, Altamirano J, González A, Dot J, Abu-Suboh M, Armengol JR,Azpiroz F, Esteban R, Guardia J, Genescà J. Effectiveness of combinedpharmacologic and ligation therapy in high-risk patients with acute esophagealvariceal bleeding. Am J Gastroenterol,2011,106(10):1787-1795.
    [24] Garcia-Tsao G, Sanyal AJ, Grace ND, Carey WD. Prevention and management ofgastroesophageal varices and variceal hemorrhage in cirrhosis. Am J Gastroenterol,2007,102(12):922–938.
    [25] Albillos A, Penas B, Zamora J. Role of endoscopy in primary prophylaxis foresophageal variceal bleeding. Clin Liver Dis,2010,14(2):231-250.
    [26] Gluud LL, Klingenberg S, Nikolova D, Gluud C. Banding ligation versusb-blokers as primary prophylaxis in esophageal varices: systematic review ofrandomized trials. Am J Gastroenterol,2007,102(12):2842-2848.
    [27] Bosch J, Abraldes JG, Berzigotti A, Garcia-Pagan JC. Portal hypertension andgastrointestinal bleeding. Semin Liver Dis,2008,28(1):3-25.
    [28] Solís-Mu oz P, Solís-Herruzo JA, Fernández-Moreira D, Gómez-IzquierdoE, García-Consuegra I, Mu oz-Yagüe T, García Ruiz I. Melatonin improvesmitochondrial respiratory chain activity and liver morphology in ob/ob mice. JPineal Res,2011,51(1):113-123.
    [29] Longacre AV, Imaeda A, Garcia-Tsao G, Fraenkel L. A pilot project examiningthe predicted preferences of patients and physicians in the primary prophylaxis ofvariceal hemorrhage. Hepatology,2008,47(1):169-176.
    [30] Villanueva C, Aracil C, Colomo A, Hernández-Gea V, López-BalaguerJM,Alvarez-Urturi C, Torras X, Balanzó J, Guarner C. Acute hemodynamicresponse to β-blockers and prediction of longterm outcome in primary prophylaxisof variceal bleeding. Gastroenterology,2009,137(1):119-128.
    [31] Sersté T, Melot C, Francoz C, Durand F, Rautou PE, Valla D, Moreau R, LebrecD. Deleterious effects of beta-blockers on survival in patients with cirrhosis andrefractory ascites, Hepatology,2010,52(3):1017-1022.
    [32] Wong F, Salerno F. Beta-blockers in cirrhosis: friend and foe? Hepatology,2010,52(3):811-813.
    [33] Tripathi D, Ferguson JW, Kochar N, Leithead JA, Therapondos G, McAvoy NC,Stanley AJ, Forrest EH, Hislop WS, Mills PR, Hayes PC. Randomized controlledtrial of carvedilol versus variceal band ligation for the prevention of the firstvariceal bleed. Hepatology,2009,50(3):825-833.
    [34] Al-Busafi SA, Ghali P, Wong P, Deschenes M. Endoscopic management of portalhypertension. Int J Hepatol,2012:747095.
    [35] Colomo A, Hernandez-Gea V, Muniz-Diaz E, Villanueva C. Transfusion strategyin patients with cirrhosis and acute gastrointestinal bleeding. Hepatology,2008,48(4):413.
    [36] Casta eda B, Morales J, Lionetti R, Moitinho E, Andreu V, Pérez-Del-Pulgar S,Pizcueta P, Rodés J, Bosch J. Effects of blood volume restitution following aportal hypertensive-related bleeding in anesthetized cirrhotic rats. Hepatology,2001,33(4):821-825.
    [37] Fernández J, Ruiz del Arbol L, Gómez C, Durandez R, Serradilla R, Guarner C,Planas R, Arroyo V, Navasa M. Norfloxacin vs ceftriaxone in the prophylaxis ofinfections in patients with advanced cirrhosis and hemorrhage. Gastroenterology,2006,131(4):1049-1056.
    [38] García-Pagán JC, Caca K, Bureau C, Laleman W, Appenrodt B, Luca A, AbraldesJG, Nevens F, Vinel JP, M ssner J, Bosch J. Early use of TIPS in patients withcirrhosis and variceal bleeding. N Engl J Med,2010,362(25):2370-2379.
    [39] Hubmann R, Bodlaj G, Czompo M, Benk L, Pichler P, Al-Kathib S, Kiblb ck P,Shamyieh A, Biesenbach G. The use of self-expanding metal stents to treat acuteesophageal variceal bleeding. Endoscopy,2006,38(9):896-901.
    [40] Wright G, Lewis H, Hogan B, Burroughs A, Patch D, O’Beirne J. Aself-expanding metal stent for complicated variceal hemorrhage: experience at asingle center. Gastrointest Endosc,2010,71(1):71-78.
    [41] Ba ares R, Albillos A, Rincón D, Alonso S, González M, Ruiz-del-Arbol L,Salcedo M, Molinero LM. Endoscopic treatment versus endoscopic plus pharma-cologic treatment for acute variceal bleeding: a meta-analysis. Hepatology,2002,35(3):609-615.
    [42] Abraldes JG, Villanueva C, Ba ares R, Aracil C, Catalina MV, Garci A-Pagán JC,Bosch J. Hepatic venous pressure gradient and prognosis in patients with acutevariceal bleeding treated with pharmacologic and endoscopic therapy. J Hepatol,2008,48(2):229-236.
    [43] Gonzalez R, Zamora J, Gomez-Camarero J, Molinero LM, Ba ares R, Albillos A.Meta-analysis: combination endoscopic and drug therapy to prevent varicealrebleeding in cirrhosis. Ann Intern Med,2008,149(2):109-122.
    [44] Ravipati M, Katragadda S, Swaminathan PD, Molnar J, Zarling E.Pharmacotherapy plus endoscopic intervention is more effective thanpha-racotherapy or endoscopy alone in the secondary prevention of esophagealvariceal bleeding: a meta-analysis of randomized, controlled trials. GastrointestEndosc,2009,70,(4):658.e5–664.e5.
    [45] Tursi T. Use of-blocker therapy to prevent primary bleeding of esophagealvarices. J Am Acad Nurse Pract,2010,22(12):640-647.
    [46] Mi ano C, Garcia-Tsao G. Clinical pharmacology of portal hypertension.Gastroenterol Clin North Am,2010,39(3):681-695.
    [47] Gluud LL, Langholz E, Krag A. Meta-analysis: isosorbide-mononitrate alone orwith either b-blockers or endoscopic therapy for the management of oesophagealvarices. Aliment Pharmacol Ther,2010,32(7):859-871.
    [48] Lo GH, Chen WC, Lin CK, Tsai WL, Chan HH, Chen TA, Yu HC, Hsu PI, LaiKH. Improved survival in patients receiving medical therapy as compared withbanding ligation for the prevention of esophageal variceal rebleeding. Hepatology,2008,48(2):580-587.
    [49] Henderson JM, Boyer TD, Kutner MH, Galloway JR, Rikkers LF, Jeffers LJ,Abu-Elmagd K, Connor J. Distal splenorenal shunt versus transjugularintrahepatic portal systematic shunt for variceal bleeding: a randomized trial.Gastroenterology,2006,130(6):1643-1651.
    [50] Thalheimer U, Christie J, Burroughs AK. Benefits of Beta blockade beyondbleeding prophylaxis and the role of adherence. Am J Gastroenterol,2012,107(10):1593.
    [51] Bari K, Garcia-Tsao G. Treatment of portal hypertension. World JGastroenterol,2012,21,18(11):1166-1175.
    [52] Bosch J. The sixth Carlos E. Rubio Memorial Lecture. Prevention and treatmentof variceal hemorrhage. P R Health Sci J,2000,19(1):57-67.
    [53]林向飞,王吉耀.安体舒通对慢性胆总管结扎肝硬化犬门脉高压和门体分流的影响.胃肠病学和肝病学杂志,1997,6(3):260.
    [54]徐克群,陆建云,蒋利峰,张维. B受体阻滞剂联合小剂量利尿剂预防肝硬化门脉高压性再出血疗效观察.实用临床医学,2005,6(10):39.
    [55] Mileti E, Rosenthal P. Management of portal hypertension in children. CurrGastroenterol.Rep,2011,13(1):10-16.
    [56] Escorsell A, Ruiz del Arbol L, Planas R, Albillos A, Ba ares R, Calès P, PateronD, Bernard B, Vinel JP, Bosch J. Multicenter randomized controlled trial ofterlipressin versus sclerotherapy in the treatment of acute variceal bleeding: theTEST study. Hepatology,2000,32(3):471-476.
    [57] Wiest R, Tsai MH, Groszmann RJ. Octreotide potentiates PKC-dependentvasoconstrictors in a portal-hypertensive and control rats. Gastroenterology,2000,120(4):975-983.
    [58] Nolan L, Schmid H, Levy A. Octreotide and the novel multireceptor ligandsomatostatin receptor agonist pasireotide (SOM230) Block the adrenalectomy-induced increase in mitotic activity in male rat anterior pituitary. Endocrinology,2007,148(6):2821-2827.
    [59] Zhai Y, Zhang J, Shang HW, Lu SC, Wang ML, You H, Jia JD, Ding HG.Octreotide decreases portal pressure: Hepatic stellate cells may play a pivotal role.Afr J Biotechnol,2010,9(5):1833-1838.
    [60] Eroglu Y, Emerick KM, Whitington PF, Alonso EM. Octreotide therapy forcontrol of acute gastrointestinal bleeding in children. J Pediatr Gastroenterol Nutr,2004,38(1):41-47.
    [61] Moitinho E, Planas R, Ba ares R, Albillos A, Ruiz-del-Arbol L, Gálvez C, BoschJ.Variceal Bleeding Study Group. Multicenter randomized controlled trialcomparing different schedules of somatostatin in the treatment of acute varicealbleeding. J Hepatol,2001,35(6):712-718.
    [62] Park SY, Shin HW, Lee KB, Lee MJ, Jang JJ. Differential expression of matrixmetalloproteinases and tissue inhibitors of metalloproteinases inthioacetamide-induced chronic liver injury. J Korean Med Sci,2010,25(4):570-576.
    [63] Shaker ME, Salem HA, Shiha GE, Ibrahim TM. Nilotinib counteractsthioacetamide-induced hepatic oxidative stress and attenuates liver fibrosisprogression. Fundam Clin Pharmacol.2011,25(2):248-257.
    [64] Garcia-Tsao G. Current management of the complications of cirrhosis and portalhypertension: varices and variceal hemorrhage, ascites and spontaneous bacterialperitonitis. Gastroenterology,2001,120(3):726–748.
    [65] Schepke M, Wiest R, Flacke S, Heller J, Stoffel-Wagner B, Herold T, Ghauri M,Sauerbruch T. Hemodynamic effects of the angiotensin II receptor antagonistirbesartan in patients with cirrhosis and portal hypertension. Gastroenterology,2001,121(2):389–395.
    [66] Bari K, Garcia-Tsao G. Treatment of portal hypertension. World JGastroenterol,2012,21,18(11):1166-1175.
    [67] Schepke M, Werner E, Biecker E, Schiedermaier P, Heller J, Neef M, Stoffel-agner B, Hofer U, Caselmann WH, Sauerbruch T. Hemodynamic effects of theangiotensin II receptorantagonist irbesartan in patients with cirrhosis and portalhypertension. Gastroenterology,2001,121(2):389–395.
    [68] García-Pagán JC, Villanueva C, Vila MC, Albillos A, Genescà J, Ruiz-Del-ArbolL, Planas R, Rodriguez M, Calleja JL, González A, Solà R, Balanzó J, Bosch JIsosorbide mononitrate in the prevention of first variceal bleed in patients whocannot receive beta-blockers. Gastroenterology,2001,121(4):908–914.
    [69] Tandon P, Abraldes JG, Berzigotti A, Garcia-Pagan JC, Bosch J. Renin-ngiotensin-aldosterone inhibitors in the reduction of portal pressure: a systematicreview and meta-analysis. J Hepatol,2010,53(2):273–282.
    [70] Abraldes JG, Albillos A, Ba ares R, Turnes J, González R, García-PagánJC, Bosch J. Simvastatin lowers portal pressure in patients with cirrhosis andportal hypertension: a randomized controlled trial. Gastroenterogy,2009,136(5):1651-1658.
    [71] Villanueva C, Aracil C, Colomo A, Lopez-Balaguer JM, Piqueras M, GonzalezB, Torras X, Guarner C, Balanzo J. Clinical trial: a randomized controlled studyon prevention of variceal rebleeding comparing nadolol+ligation vs. hepaticvenous pressure gradient-guided pharmacological therapy. Aliment PharmacolTher,2009,29(4):397-408.
    [72] Turnes J, Garcia-Pagan JC, Abraldes JG, Hernandez-Guerra M, Dell'Era A, BoschJ. Pharmacological reduction of portal pressure and long-term risk of first varicealbleeding in patients with cirrhosis. Am J Gastroenterol,2006,101(3):506-512.
    [73] Bruha R, Vitek L, Petrtyl J, Lenicek M, Urbanek P, Zelenka J, JachymovaM, Svestka T, Kalab M, Dousa M, Marecek Z. Effect of carvedilol on portalhypertension depends on the degree of endothelial activation and inflammatorychanges. Scand J Gastroenterol,2006,41(12):1454–1463.
    [74] Bosch J. Carvedilol for Preventing Recurrent Variceal Bleeding: Waiting forconvincing evidence. Hepatology,2013,57(4):1665-1667.
    [75] Shchekochikhin D, Tkachenko O, Schrier RW. Hyponatremia: an update oncurrent pharmacotherapy. Expert Opin Pharmacother,2013,14(6):747-755.
    [76] Kim JH, Lee JS, Lee SH, Bae WK, Kim NH, Kim KA, Moon YS.The association between the serum sodium level and the severity of com licationsin liver cirrhosis. Korean J Intern Med,2009,24(2):106-112.
    [77] Hackworth WA, Heuman DM, Sanyal AJ, Fisher RA, Sterling RK, Luketic VA,Shiffman ML, Maluf DG, Cotterll AH, Posner MP, Stravitz RZ. Effect ofhyponatraemia on outcomes fpllowing orthotopic liver transplantation. Liver Int,2009,29(7):1071-1077.
    [78] Weismüller TJ, Fikatas P, Schmidt J, Barreiros AP, Otto G, Beckebaum S, PaulA, Scherer MN, Schmidt HH, Schlitt HJ, Neuhaus P, Klempnauer J, Pratschke J,Manns MP, Strassburg CP. Multicentric evaluation of model for end-stage liverdisease-based allocation and survival after liver transplantation inGermany--limitations of the 'sickest first'-concept. Transpl Int,2011,24(1):91-99.
    [79] Gaglio P, Marfo K, Chiodo J3rd. Hyponatremia in cirrhosis and end-stage liverdisease: treatment with the vasopressin V2-receptor antagonist tolvaptan. Dig DisSci,2012,57(11):2774-2785.
    [80] Burrell LM, Risvanis J, Dean RG, Patel SK, Velkoska E, Johnston CI.Age-dependent regulation of renal vasopressin V(1A) and V receptors in rats withgenetic hypertension: implications for the treatment of hypertension. J Am SocHypertens,2013,7(1):3-13.
    [81] Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N; Conivaptan StudyGroup. Assessment of the efficacy and safety of intravenous conivaptan ineuvolemic and hypervolemic hyponatremia. Am J Nephrol,2007,27(5):447-457.
    [82] O’Leary JG, Davis GL. Conivaptan increases serum sodium in hyponatremicpatients with end-stage liver disease. Liver Transpl,2009,15(10):1325-1329.
    [83] Ali F, Raufi MA, Washington B, Ghali JK. Therapeutic potential of vasopressinreceptor antagonists. Drugs,2007,67(6):847-858.
    [84] Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, OrlandiC. SALT Investigators for the SALT Investigators. Tolvaptan, a selective oralvasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med,2006,355(20):2099-2112.
    [85] Wang BE. Treatment of chronic liver disease with traditional Chinese Medicine. JGastroenterol Hepatol.2000, Suppl:E67-70.
    [86] Wang BE. Inhibition and Reversion of Liver Fibrosis with Integrated Chinese andWestern Medicine. J Gastroenterol Hepatol,1999,14(1):258.
    [87] Sarin SK, Lahoti D, Saxena SP, Murthy NS, Makwana UK. Revalence,classification and natural history of gastric varices: a long-term follow-up study in568portal hypertension patients. Hepatology,1992,16(6):1343-1349.
    [88] Costaguta A, Alvarez F. Etiology and management of hemorrhagic complicationof portal hypertension in children. Int J Hepatol,2012,879163:8.
    [89] El-Saadany M, Jalil S, Irisawa A, Shibukawa S, Ohira H, Bhutani MS. US forportal hypertension: a comprehensive and critical appraisal of clinical andexperimental indications. Endoscopy,2008,40(8):690–696.
    [90] Kane L, Kahaleh M, Shami VM, Caldwell SH, Berg CL, Abdrabbo KM, YoshidaCM, Arseneau KO, Yeaton P. Comparison of the grading of esophageal varices bytransnasal endoluminal ultrasound and esophagogastroduodenoscopy. ClinGastroenterol Hepatol,2005,3(8):806-810.
    [91] Ginès A, Fernández-Esparrach G. Endoscopic ultrasonography for the evaluationof portal hypertension. Clin Liver Dis,2010,14(2):221-229.
    [92] Romero-Castro R, Pellicer-Bautista FJ, Jimenez-Saenz M, Marcos-Sanchez F,Caunedo-Alvarez A, Ortiz-Moyano C, Gomez-Parra M,Herrerias-Gutierrez JM.EUS-guided injection of cyanoacrylate in perforating feeding veins in gastricvarices: results in5cases. Gastrointest Endosc,2007,66(2):402-407.
    [93] de Franchis R, Eisen GM, Laine L, Fernandez-Urien I, Herrerias JM, Brown RD,Fisher L, Vargas HE, Vargo J, Thompson J, Eliakim R. Esophageal capsuleendoscopy for screening and surveillance of esophageal varices in patients withportal hypertension. Hepatology,2008,47(5):1595–1603.
    [94] Rondonotti E, Villa F, Dell’ Era A, Tontini GE, de Franchis R. Capsule endoscopyin portal hypertension. Clinics in Liver Disease,2010,14(2):209-220.
    [95] Canlas KR, Dobozi BM, Lin S, Smith AD, Rockey DC, Muir AJ, AgrawalNM, Poleski MH, Patel K, McHutchison JG. Using capsule endoscopy to identifyGI tract lesions in cirrhotic patients with portal hypertension and chronic anemia. JClin Gastroenterol,2008,42(7):844-848.
    [96] D'Amico G, De Franchis R. Upper digestive bleeding in cirrhosis. Post-herapeuticoutcome and prognostic indicators. Hepatology,2003,38(3):599–612.
    [97] Crafford C, Frenckner P. New surgical treatment of varicose veins of theesophagus. Acta Oto-Laryngologica,1939,27:422-429.
    [98] Baillie J, Yudelman P. Complications of endoscopic sclerotherapy of esophagealvarices. Endoscopy,1992,24(4):284-291.
    [99] Park WG, Yeh RW, Triadafilopoulos G. Injection therapies for variceal bleedingdisorders of the GI tract. Gastrointest Endosc,2008,67(2):313-323.
    [100]D’Amico G, Pagliaro L, Pietrosi G, Tarantino I. Emergency sclerotherapy versusvasoactive drugs for bleeding oesophageal varices in cirrhotic patients. CochraneDatabase Syst Rev,2010,17(3):CD002233.
    [101]Stiegmann GV, Goff JS, Sun JH, Davis D, Bozdech J. Endoscopic varicealligation: an alternative to sclerotherapy. Gastrointest Endosc,1989,35(5):431-434.
    [102]Polski JM, Brunt EM, Saeed ZA. Chronology of histological changes after bandligation of esophageal varices in humans. Endoscopy,2001,33(5):443-447.
    [103]Laine L, Cook D. Endoscopic ligation compared with sclerotherapy for treatmentof esophageal variceal bleeding. A meta-analysis. Ann Intern Med,1995,123(4):280-287.
    [104]Avgerinos A, Armonis A, Stefanidis G, Mathou N, Vlachogiannakos J, Kougoumtzian A, Triantos C, Papaxoinis C, Manolakopoulos S, Panani A, Raptis SA.Sustained rise of portal pressure after sclerotherapy, but not band ligation, in acutevariceal bleeding in cirrhosis. Hepatology,2004,39(6):1623-1630.
    [105]Garcia-Pagan JC, Bosch J. Endoscopic band ligation in the treatment of portalhypertension. Nat Clin Pract Gastroenterol Hepatol,2005,2(11):526-535.
    [106]Singh P, Pooran N, Indaram A, Bank S. Combined ligation and sclerotherapyversus ligation alone for secondary prophylaxis of esophageal variceal bleeding: ameta-analysis. Am J Gastroenterol,2002,97(3):623–629.
    [107]Cipolletta L, Bianco MA, Rotondano G, Marmo R, Meucci C, Piscopo R. Argonplasma coagulation prevents variceal recurrence after band ligation of esophagealvarices: preliminary results of a prospective randomized trial. Gastrointest Endosc,2002,56(4):467-471.
    [108]Meirelles-Santos JO, Montes CG, Guerrazzi F.Treatment of esophageal varicesusing band ligation followed by microwave coagulation. Gastrointest Endosc,2001,53(1):AB120.
    [109]Hubmann R, Bodlaj G, Czompo M, Benk L, Pichler P, Al-Kathib S, Kiblb ck P,Shamyieh A, Biesenbach G. The use of self-expanding metal stents to treat acuteesophageal variceal bleeding. Endoscopy,2006,38(9):896-901.
    [110]Sengtaken RW, Blakemore AH. Balloon tamponage for the control of hemorrhagefrom esophageal varices. Ann Surg,1950,131(5):781-789.
    [111]Yoshida H, Mamada Y, Taniai N, Yoshioka M,Hirakata A,Kawano Y,MizuguchiY, Shimizu T, Ueda J, Uchida E. Treatment modalities for bleedingesophagogastric varices. J Nippon Med Sch,2012,79(1):19-30.
    [112]Lin CT, Huang TW, Lee SC, Kuo SM, Hsu KF, Hsu PS, Huang HK, Chang H.Sengstaken-Blakemore tube related esophageal rupture. Rev Esp Enferm Dig.2010,102(6):395-396.
    [113]Chong CF. Esophageal rupture due to Sengstaken-Blakemore tube misplacement.World J Gastroenterol,2005,11(41):6563-56565.
    [114]Pinto-Marques P, Rom ozinho JM, Ferreira M, Amaro P, Freitas D. Esophagealperforation--associated risk with balloon tamponade after endoscopic therapy.Myth or reality? Hepatogastroenterology,2006,53(70):536-539.
    [115]Garcia-Tsao G, Bosch J, Groszmann RJ. Portal hypertension and varicealbleeding-unresolved issues. Summary of an American Association for the study ofliver diseases and European Association for the study of the liver single-topicconference. Hepatology,2008,47(5):1764-1772.
    [116]Punamiya SJ, Amarapurkar DN. Role of TIPS in Improving Survival of Patientswith Decompensated Liver Disease. Int J Hepatol,2011,2011:398291.
    [117]R¨ossle M, Gerbes AL. TIPS for the treatment of refractory ascites, hepatorenalsyndrome and hepatic hydrothorax: a critical update. Gut,2010,59(7):988-1000.
    [118]Garcia-Pagán JC, Di Pascoli M, Caca K, Laleman W, Bureau C, Appenrodt B,Luca A, Zipprich A, Abraldes JG, Nevens F, Vinel JP, Sauerbruch T, Bosch J.Early use of TIPS in patients with cirrhosis and variceal bleeding. N Engl J Med,2010,362(25):2370-2379.
    [119]Boyer TD, Haskal ZJ. American association for the study of liver diseases practiceguidelines: the role of transjugular intrahepatic portosystemic shunt creation in themanagement of portal hypertension. J Vasc Interv Radiol,2005,16(5):615-629.
    [120]Cura M, Cura A, Suri R, El-Merhi F, Lopera J, Kroma G. Causes of TIPSdysfunction. AJR Am J Roentgenol,2008,191(6):1751–1757.
    [121]Maleux G, Nevens F, Wilmer A, Heye S, Verslype C, Thijs M, Wilms G. Earlyand longterm clinical and radiological follow-up results ofexpandedpolytetrafluoroethylene-covered stent-grafts for transjugular intrahepaticportosystemic shunt procedures. Eur Radiol,2004,14(10):1842–1850.
    [122]Charon JP, Alaeddin FH, Pimpalwar SA, Fay DM, Olliff SP, JacksonRW, Edwards RD, Robertson IR, Rose JD, Moss JG. Results of a retrospectivemulticenter trial of the Viatorr expanded polytetrafluoroethylene-coveredstent-graft for transjugular intrahepatic portosystemic shunt creation. J Vasc IntervRadiol,2004,15(11):1219-1230.
    [123]Angermayr B, Cejna M, Koenig F, Karnel F, Hackl F, GanglA, Peck-Radosavljevic M. Survival in patients undergoing transjugularintrahepatic portosystemic shunt: ePTFE-covered stentgrafts versus bare stents.Hepatology,2003,38(4):1043-1050.
    [124]Yang Z, Han G, Wu Q, Ye X, Jin Z, Yin Z, Qi X, Bai M, Wu K, Fan D. Patencyand clinical outcomes of transjugular intrahepatic portosystemic shunt withpolytetrafluoroethylene-covered stents versus bare stents: a meta-analysis. JGastroenterol Hepatol,2010,25(11):1718-1725.
    [125]Rajan DK, Haskal ZJ, Clark TWI. Serum bilirubin and early mortality aftertransjugular intrahepatic portosystemic shunts: results of a multivariate analysis. JVasc Interv Radiol,2002,13(2):155-161.
    [126]Ferral H, Gamboa P, Postoak DW, Albernaz VS, Young CR, SpeegKV, McMahan CA. Survival after elective transjugular intrahepatic portosystemicshunt creation: prediction with model for end-stage liver disease score. Radiology,2004,231(1):231-236.
    [127]Schepke M, Roth F, Fimmers R, Brensing KA, Sudhop T, Schild HH, SauerbruchT. Comparison of MELD, child-pugh, and emory model for the prediction ofsurvival in patients undergoing transjugular intrahepatic portosystemic shunting.Am J Gastroenterol,2003,98(5):1167-1174.
    [128]Plauth M, Schütz T, Buckendahl DP, Kreymann G, Pirlich M, GrüngreiffS, Romaniuk P, Ertl S, Weiss ML, Lochs H. Weight gain after transjugularintrahepatic portosystemic shunt is associated with improvement in bodycomposition in malnourished patients with cirrhosis and hypermetabolism. JHepatol,2004,40(2):228–233.
    [129]Chung HH, Razavi MK, Sze DY, Frisoli JK, Kee ST, Dake MD, HellingerJC, Kang BC. Portosystemic pressure gradient during transjugular intrahepaticportosystemic shunt with Viatorr stent graft: what is the critical low threshold toavoid medically uncontrolled low pressure gradient related complications? JGastroenterol Hepatol,2008,23(1):95-101.
    [130]Riggio O, Ridola L, Angeloni S, Cerini F, Pasquale C, Attili AF, Fanelli F, MerliM, Salvatori FM. Clinical efficacy of transjugular intrahepatic portosystemicshunt created with covered stents with different diameters: results of a randomizedcontrolled trial. J Hepatol,2010,53(2):267-272.
    [131]Qi X, Yang M, Fan D, Han G. Transjugular intrahepatic portosystemic shunt inthe treatment of Budd-Chiari syndrome: a critical review of literatures. Scand JGastroenterol,2013, Mar19.[Epub ahead of print].
    [132]Yoshida H, Mamada Y, Taniai N, Tajiri T. New trends in surgical treatment forportal hypertension. Hepatol Res,2009,39(10):1044-1051.
    [133]Yoshida H, Mamada Y, Taniai N, Yoshioka M, Hirakata A, Kawano Y,Mizuguchi Y, Shimizu T, Ueda J, Uchida E. Treatment modalities for bleedingesophagogastric varices. J Nippon Med Sch,2012,79(1):19-30.
    [134]Orloff MJ, Isenberg JI, Wheeler HO, Haynes KS, Jinich-Brook H, Rapier R,Vaida F, Hye RJ. Randomized trial of emergency endoscopic sclerotherapyversus emergency portacaval shunt for acutely bleeding esophageal varices incirrhosis. J Am Coll Surg,2009,209(1):25–40.
    [135]Prasad AS, Gupta S, Kohli V, Pande GK, Sahni P, Nundy S. Proximal splenorenalshunts for extrahepatic portal venous obstruction in children. Ann Surg,1994,219(2):193–196.
    [136]Mitra SK, Rao KL, Narasimhan KL, Dilawari JB, Batra YK, Chawla Y, ThapaBR, Nagi B, Walia BN. Side-to-side lienorenal shunt without splenectomy innoncirrhotic portal hypertension in children. J Pediatr Surg,1993,28(3):398-401.
    [137]Collins JC, Rypins EB, Sarfeh IJ. Narrow-diameter portacaval shunts formanagement of variceal bleeding. World J Sur,1994,18(2):211-215.
    [138]Pal S. Current role of surgery in portal hypertension. Indian J Surg,2012,74(1):55-66.
    [139]Inokuchi K, Beppu K, Koyanagi N, Nagamine K, Hashizume M, Iwanaga T,Sugimachi K. Fifteen years’ experience with left gastric venous caval shunt foresophageal varices. World J Surg,1984,8(5):716–721.
    [140]Wang Y, Ji Y, Zhu Y, Xie Z, Zhan X. Laparoscopic splenectomy and azygoportaldisconnection with intraoperative splenic blood salvage. Surg Endosc,2012,26(8):2195-201.
    [141]Jiang XZ, Zhao SY, Luo H, Huang B, Wang CS, Chen L, Tao YJ. Laparoscopicand open splenectomy and azygoportal disconnection for portal hypertension.World J Gastroenterol,2009,15(27):3421-3425.
    [142]Hassab MA. Gastro-esophageal decongestion and splenectomy GEDS (Hassab), inthe management of bleeding varices. Review of literature. Int Surg,1998,83(1):38-41.
    [143]Mathur SK, Shah SR, Nagral SS, Soonawala ZF. Transabdominal extensiveesophagogastric devascularization with gastroesophageal stapling for managementof noncirrhotic portal hypertension: long-term results. World J Surg,1999,23(11):1168-1174.
    [144]Wang Y. Surgical treatment of portal hypertension. Hepatobiliary Pancreat Dis Int,2002,1(2):211-214.
    [145]Hase R, Hirano S, Kondo S, Okushiba S, Morikawa T, Katoh H. Long-termefficacy of distal splenorenal shunt with splenopancreatic and gastricdisconnection for esophagogastric varices in patients with idiopathic portalhypertension. World J Surg,2005,29(8):1034-1036.
    [146]Bhavsar MS, Vora HB, Khiria LS, Giriyappa VH. Portal hypertension: effect ofearly splenic artery ligation on platelets count during splenectomy. Saudi JGastroenterol,2012,18(6):380-383.
    [147]Andraus W, Pinheiro RS, Haddad LB, Herman P. D'Albuquerque LA. The bestapproach for splenectomy in portal hypertension. Surgery,2011,149(6):853.
    [148]Hillert C, Fischer L, Broering DC, Rogiers X. Liver transplantation in patientswith liver cirrhosis and esophageal bleeding. Langenbecks Arch Surg,2003,388(3):150-154.
    [149]Godat S, Antonino AT, Dehlavi MA, Moradpour D, Doerig C. Management ofascites due to portal hypertension. Rev Med Suisse,2012,8(352):1665-1668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700