自制SAR协同HIFU杀灭细粒棘球蚴的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     细粒棘球绦虫,又称包生绦虫,其续绦期幼虫(棘球蚴)寄生于人和多种食草家畜引起严重的人兽共患病,称棘球蚴病或包虫病(cystic echinococcosis, CE)。目前该病的治疗方法主要以外科手术手术为主、介入性治疗、药物治疗等也同时在开展,但各治疗方法仍然存在不少问题需要解决,外科手术虽然疗效较好,但对多发性包虫与转移者难以达到理想疗效;阿苯哒唑为WH0推荐使用的有效治疗包虫病的药物,但其在体内分布广泛,无法集中于靶组织,而且由于包虫囊壁较厚角质层的阻隔作用,使药物难以进入棘球蚴囊造成局部不能达到有效的药物浓度,加之包虫囊内囊液对药物的稀释导致治疗剂量增大,从而造成转氨酶升高、黄疸、蛋白尿等药物毒性反应,甚至引起致死性的全血细胞减少。其次,我们的前期研究证明了HIFU治疗对棘球蚴有杀伤效果,发现在HIFU作用后棘球蚴囊壁生发层和角质层断裂、脱落甚至缺损,生发层细胞肿胀且有空泡形成甚至生发细胞层缺损,囊壁的通透性增加,失去其对寄生虫的屏障保护作用,而对囊内原头蚴有一定杀灭作用,但效果不尽如人意。由于囊液聚焦性差,同时液体散热又比较快,使得高强度聚焦超声波作用后囊液温度明显不如囊壁实体组织升得高且快。
     本研究的目的在于探索能增强高强度聚焦超声杀伤棘球蚴的有效材料和方法。通过制备出具有高强度、较快吸水速度和较好保水能力的复合高吸水性树脂吸收棘球蚴囊液水分、改变囊内液体为凝胶状态,使其成为“实体”结构,达到增强超声能量沉积效果,从而完全彻底杀死棘球蚴。
     材料和方法:
     1.采用水溶液法,以丙烯酸(AA),淀粉等为原料,通过过硫酸铵引发玉米淀粉接枝丙烯酸及加入交联剂合成复合高吸水性树脂(SAR),研究了单体组成比(淀粉/丙烯酸)以及聚合方法对树脂性能的影响。并通过光镜观察吸水前后的凝胶结构,红外光谱表征SAR颗粒结构组成。
     2.采用过滤法,分别测定高吸水性树脂在不同环境温度(37℃、25℃、20℃)、不同粒径对去离子水、0.9%生理盐水、无水酒精和棘球蚴囊液吸水倍率,并测定了不同粒径高吸水性树脂吸水后凝胶的保水性能。
     3.观察高吸水性树脂对离体囊液和体外培养原头节的影响。将不同剂量高吸水性树脂加入离体新鲜囊液中,观察囊液性状改变和主要生化指标;并将原头节悬液(液体为生理盐水)置于37℃温箱中培养,观察原头节的存活力。
     4.观察高吸水性树脂增强高强度聚焦超声杀伤体外原头蚴效应。将分离的原头节分为4组,对照组(超声假照组)、单纯HIFU照射组、SAR(半饱和量)+HIFU照射组、SAR(饱和量)+HIFU照射组,功率100w,作用时间分别为5s、10s、20s、30s、40s、50s、60s。光镜下观察原头节形态变化及计算死亡率,并检测了原头节内细胞琥珀酸脱氢酶和葡萄糖-6-磷酸酶的活性改变。
     5.观察SAR增强高强度聚焦超声杀伤肝包虫囊的效应。
     将选择的棘球蚴随机分为4组,分别作如下处理:,对照组(超声假照组)、单纯HIFU照射组、SAR(半饱和量)+HIFU照射组、SAR(饱和量)+HIFU照射组,功率200w,按计划治疗完一个囊即为作用时间。观察了经处理后各组原头节死亡率、原头节和生发层形态在光镜和电镜下的改变,并用Hoechst33258染色、荧光显微镜检测了原头节体细胞的凋亡情况。同时也检测了半饱和组照射后囊液的化学性质变化。用热敏温度计测量HIFU照射后包虫病肝各点温度。
     结果:
     1.结果表明,用微波法合成的高吸水性树脂(SAR)操作过程简单、后处理容易,其吸水性能与氮气保护合成的复合高吸水性树脂(SAR)具有相等的吸水性能。红外光谱证实淀粉与丙烯酸接枝成功形成高分子聚合物。
     2.自制的淀粉类高吸水性树脂在蒸馏水中瞬时吸水倍率在700倍以上,在棘球蚴囊液中为200~300倍,生理盐水中为25倍左右,在无水乙醇中树脂颗粒几无吸水能力。160~180目大小的颗粒其对去离子水的最大吸水倍率可达到700倍,在4~8min内即可达到吸水高峰;80~120目大小的颗粒吸水倍率亦可达700倍,但在吸水后16min时才达到吸水高峰。160~180目大小的颗粒常压室温(25℃)放置2天保水率为55%,0.5×0.5×0.5mm颗粒常压室温(25℃)放置5天保水率为58%。20℃,25℃,37℃时同样大小的树脂颗粒其吸水倍率接近。
     3.高吸水性树脂对在37℃、生理盐水中的原头蚴短期内(8小时)不会引起其明显的死亡;对囊液的化学成分影响不确定。
     4.HIFU单纯照射后前40S内内原头蚴悬液温度上升较慢,原头节死亡率为73.7%;而加入了SAR的原头蚴悬液在同样的时间内温度上升较快,40s原头蚴死亡率可达100%。死亡虫体表现为台盼兰蓝染,虫体外形尚完整无活动,或者蓝染呈皱缩,甚至虫体呈碎片状。琥珀酸脱氢酶和葡萄糖-6-磷酸酶活性明显较正常对照组和HIFU单纯照射组弱。
     5.各实验组棘球蚴内原头节平均死亡率依次(从Ⅰ组至Ⅳ组)为:22.94%、55.28%、63.4%、72.4%,原头节不活动、皱缩或呈碎片状。荧光显微镜观察到原头蚴内有大量折光性强的蓝白色颗粒,加入SAR后的棘球蚴内原头节经作用后折光性颗粒较单纯照射组多。透射电镜观察到加入SAR组的原头蚴体细胞内糖原颗粒减少、出现黑色凋亡小体、胞核碎裂边聚。光镜和电镜均观察到生发层细胞层变薄、生发层中断、与角皮层分离、角皮层出现空泡和同心圆条纹。囊液主要成分中蛋白质浓度依次(从Ⅰ组至Ⅲ组)为:1g/100ml、2g/100ml、2g/100ml.囊液平均温度21.3℃、31.1℃、38.9℃、44.6℃;囊壁温度(从Ⅰ组至Ⅳ组)分别为:21.3℃、38.9℃、49℃、55℃;距囊5mm处肝组织温度(从Ⅰ组至Ⅳ组)分别为:21.3℃、32.28℃、34.5℃、37.88℃。
     结论:
     1.成功制备各种粒径的高吸水性树脂颗粒,其吸水倍率可达700倍;树脂颗粒越小,其吸水速度越快,但保水效果较差;颗粒越大,吸水速度越慢,但保水效果好。温度变化对吸水速率影响不大。溶液性质,尤其是溶液含水量对树脂颗粒吸水率影响较大,因此树脂颗粒在去离子水中吸水倍率最高,其次棘球蚴囊液,生理盐水,对无水酒精几乎无吸水能力。
     2.高吸水性树脂在短期内(8小时)对体外生理盐水中原头节活力无明显影响。但对囊液化学成分的影响作用不确切。
     3.事先加入SAR再行HIFU照射,可较单纯HIFU照射明显提高囊液温度,增强HIFU对离体原头节的杀伤效果,抑制原头节SDH和G-6-P的活性。
     4.事先加入SAR再行HIFU照射,可较单纯HIFU照射提高棘球蚴内囊液温度,增强HIFU对离体原头节的杀伤效果,促进原头蚴体细胞凋亡。
Background and objective
     Echinococcus granulosus, the etiologic agent of cystic echinococcosis (CE) in humans and other animal hosts, is distributed worldwide. Echino-coccosis is an increasing public health and socioeconomic concern.. But there is currently no agreement about the ideal therapy for hydatidosis. The accepted surgical approaches for hydatidosis are all invasive and pose a risk of recurrence and postoperative complications due to rupture of cysts and/or spillage ofthe contents. Albendazole is the drug of choice for chemotherapy. However,its concentrations in the target organ are not optimal, and are much lower than in plasma because of thick cyst wall. Increases in dose may increase side-effects such as diarrhea, nausea, vomiting, aminotransferase elevation, leucopenia and may even result in death. HIFU, in which the ultrasound is focused to a focal zone, can deposit ultrasound mechanical energy and produce clinically relevant bio-effects in the targeted tissue, and has been widely applied to treat some tumors as a non-invasive therapeutic option. In HIFU therapy, absorption of ultrasonic energy at the focus leads to local heating that can result in apoptosis and thermal necrosis when the local temperature rises above60℃. However, success of this therapeutic modality depends critically on the ability to focus HIFU energy accurately at the diseased site. Our group has previously found that HIFU could damage protoscolices in vitro, but the death rate was limited by cyst fluid with characters of less focus HIFU energy and fast loss of heat. In this study, we prospectively suggest that a kind of special particle with superabsorbent ability was added into the cyst fluid of Echinococcus granulosus and would strongly focus HIFU energy. Starch based superabsorbent polymer (SAR) of poly (sodium acry late) was prepared by reverse phase suspension polymerization. They are solid, granular or powder cross linked polymers that rapidly absorb and retain large volumes of aqueous solutions. The absorptive properties of SAR are ideally suited for the absorption and solidification of various types of liquids like water, sludge, blood etc. which has caused an increased use of this substance in the production of hygiene products and agriculture.
     In this study, we prospectively suggest that a kind of special particle with superabsorbent ability was added into the cyst fluid of Echinococcus granulosus and would strongly focus HIFU energy. By the present work evaluated whether or not a superabsorbent polymer (SAR) could enhance the damage efficacy of high intensity focused ultrasound (HIFU) on the viability of E. granulosus protoscolices in vitro.
     Materials and Methods
     1. A super absorbent resin was synthesized with grafting acrylic acid and corn starch as elementary materials by solution polymerization in the presence of N, N-Methylene bisacrylamide as cross-linker and potassium per-sulfate as initiator. The products synthesizing were observed through infrared spectrum and light microscope.
     2. The instantaneous water absorption ratios of this resin were measured when it, of which are different particle sizes, mixed with the different liquids such as demineralized water, physiological saline, anhydrous alcohol and hydatid cyst fluid at different temperatures of20℃,25℃, and37℃respectively. The water preserving capabilities of the resin of several different particle sizes were measured.
     3.The protoscolices were cultivated in the physiological saline with superabsorbent resin at37℃. and the major chemical constituent in the hydatid fluid with superabsorbent resin were measured.
     4. HIFU of100W acoustic power, and some dose of superabsorbent resin, were used to treat5000protoscolices in2milliliter protoscolices suspension. The temperature of protoscolices suspension was investigated at different HIFU exposure time (5,10,20,30,40,50,60seconds) respectively, the structures of protoscolices were observed by light microscopy. To better understand the biological mechanisms responsible for the regulation of protoscolices death, we examined the activity of succinate dehydrogenase (SDH) and Glucose-6-phosphatase of the protoscolices treated with HIFU.
     5. HIFU of200W acoustic power, and some dose of superabsorbent resin, were used to treat hydatid of E. granulosus. All the experimental hydatid of E. granulosus were randomly assigned into four groups by intervention study as follows:A)with no exposure to HIFU was considered as the blank group; B)with exposure to HIFU was considered as the test control group (200power); C)with exposure to HIFU combined with lg SAR in the hydatid liquid and D) with exposure to HIFU combined with2g SAR werconsidered as the test group (the parameter same as the forward). The changes of structure of procolices and cyst ball of hydatid were by light microscope, scanning and transmission electric microscope, and detected the apoptosis of protolices by Hochest assay. The temperature of monitoring points in the hydatid liver were measured by temperature sensitive thermometer.
     Results
     1. A transparent graticule ultrastructures was observed in the water-absorbing resin under light microscope and through infrared spectrum.
     2. The absorption ratio of the resin to deionized water, and hydatid cyst fluid, physiological saline were the maximum, being of700g/g and200-300g/g respectively. It's ratio to physiological saline, however, was only25times of its mass, and less absorptive to anhydrous alcohol. Of which160-180mesh size particles, to deionized water could reach to700times, and a peak of water absorption was observed within4to8minutes. Although a same maximum absorption ratio was observed in the resin with a particle size of80-120mesh, but it took16minutes for the water absorption peak. At room temperature of25℃, the water-preserving rate of the resin with a particle size of160-180mesh was55%in2days, but it was58%in5days for the resin of which size was0.5×0.5×0.5mm. The water-absorbing rate was almost same for a resin with a particular size mixed the above mentioned liquids at different temperature of20℃,25℃, and37℃respectively.
     3. The lively ability of protoscolices in the physiological saline at37℃had not been reflected by Super Absorbent Resin (SAR) within the8minutes. The major chemical constituent had not preonunced changes by Super Absorbent Resin (SAR).
     4. The rising effect of temperature of protoscolices suspension treated with HIFU was slow, and the death rate of protoscolices was73.7%in the group of HIFU treatment time of40seconds; In the group of HIFU treatment time of40seconds, the rising effect was quick, and the death rate of protoscolices was100%in the group of HIFU combined with SAR. The best protoscolicidal effect (100%) of HIFU of100W acoustic power combined with SAR was obtained after40,50, and60seconds respectively. The live protoscolices in the blank control group showed distinct inner structure. The membrane of dead protoscolices were stained to blue exposed by the100W acoustic power of HIFU, showed shrunken and black calcareous corpuscles, disorder and decreasing hooks though of intact membrane; some protoscolices lost hooks and teared open on membrane were observed. In the group of HIFU combined with SAR, it was found that the superabsorbent polymer around the spoiled protoscolices and the destruction of much stronger than in the group of HIFU. The dead protoscolices exhibited the reduction or absence of SDH and G-6-P staining intensity in the parenchymal cell and calcareous corpuscles undergoing HIFU irradiation, where a large number of apoptotic, necrotic cell were evident; but was markedly preserved in the blank group.
     5. The average death rates of procolices in the Ⅰ、Ⅱ、Ⅲ、Ⅳgroup were22.94%、55.28%、63.4%、72.4%。The dead pritoscolices such as lost-alively and crimple and teard into piece were observed by light microscope, the blue and reflected light particles of the proscolices observed by fluorescence microscope exposured by the HIFU combined with SAR were more than the simple HIFU group. The decreasing glycogenosome and appeared to black body and karyorrhexis of the proscolices were observed by transmission electron microscope, it showed germinal layer growed thinner and interruption, separated from the cuticulae layer, wherein appeared to vacuoles and concentric circles. The protein concentration of major component in the hydatid fluid ofⅠ、Ⅱ、 Ⅲgroup were lg/100ml、2g/100ml、2g/100ml。The average temperatures of hydatid fluid were21.3℃、31.1℃、38.9℃、44.6℃;were21.3℃、38.9℃、49℃、55℃in the cystwall;21.3℃、32.28℃、34.5℃、37.8℃in the which was5mm between liver and hydatid cyst。
     Conclusions
     1. Super Absorbent Resin (SAR) is very unique water-absorbing and water-holding materials. They can absorb up to700times of their own weight of pure water and even under pressure resist release of the absorbed water. The temperature change has little effect on the rate of water-absorbing. Solution properties, especially the water content of solution greatly impact the water-absorbing. Therefore, the water absorbency of the particles is the highest in the deionized water, followed by hydatid cyst fluid, normal saline, anhydrous alcohol for almost no water absorption.
     2. The lively ability of protoscolices in the physiological saline had not been reflected by Super Absorbent Resin (SAR) within the8minutes.
     3. These results suggest that HIFU induced damage and loss of viability of protoscolices and hydatid, and Super Absorbent Resin (SAR) enhanced the HIFU energy and caused more severe destruction efficacy of HIFU irradiation on protoscolices and hydatid, and that mitochondrial energetic function is involved in the regulation of cell death pathways in the pathogenesis of protoscolices.
引文
[1](2006—2015年全国重点寄生虫病防治规划》[R].中华人民共和国卫部.2005.
    [2]艾尔肯,吕林,袁德安.肝包虫囊肿完整摘除体会[J].肝胆胰外科杂志,2004,16(3):221.
    [3]杨金煜,吴新民,廖泉,等.肝包虫外囊完整剥除术在肝包虫病手术治疗中的价值[J].中华外科学杂志,2006,44(23):1624-1625.
    [4]Grigorov N, Golemanov B, Mitova R, et al. Percutaneous puncture treatment of hepatic cystic echinococcosis under ultrasound guidance[J]. Khirurgiia (Sofiia) 2000;56(5-6):28-31.
    [5]Krige JE, Millar AJ, Rode H, et al. hypernatraemia after hypertonic saline irrigation of hepatic hydatid cysts. Pediatr Surg Int 2002 Jan; 18(1):64-5.
    [6]Bosanac ZB, Lisanin L. Percutaneous drainage of hydatid cyst in the liver as a primary treatment:review of 52 consecutive cases with long-term follow-up[J]. Clin Radiol.2001,56(12):1003-1004.
    [7]Ramachandran CS, Goel D, Arora V. Laparoscopic surgery in hepatic hydatid cysts: a technical improvement [J]. Surg Laparosc Endosc Percutan Tech,2001,11(1):14-18.
    [8]WHO Informal Working Group on Echinococcosis. Guidelines for Treatment of Cystic and Alceolar Echinococcosis in Humans[J]. Bull WHO,1996,74(3):231-242.
    [9]温浩,姚秉礼,邹培范,等.高效液相色谱法测定人体血液、胆汁和包虫囊液中的丙硫咪唑及代谢产物的含量[J].地方病通报,1989,4(4):52-53.
    [10]Opatrny L, Prichard R, Snell L, et al. Death related to albendazole-induced pancytopenia:case report and review[J]. Am J Trop Med Hyg,2005,72(3):291-1-294.
    [11]柴君杰,肖树华,高芳华,等.囊型包虫病药物治疗研究[J].医学研究杂志,2006,35(4):29-30.
    [12]刘章锁,杨文光,温浩,等.阿苯哒唑脂质体治疗小鼠继发性肝、腹腔泡状棘球蚴病的动物实验研究[J].新疆医科大学学报,2000,23(3):259-260.
    [13]张金辉,温浩,王建华,等.阿苯哒唑新剂型的药代动力学研究[J].中国寄生虫病防治杂志,2004,17(5):272-275.
    [14]冀敏,赵洪,滑炎卿.聚焦超声波治疗肿瘤的物理机制及有关问题探讨[J].上海医学影像,2005,(4):310-312.
    [15]王俊安,邹晓毅,叶彬,等.高强度聚焦超声波辐照细粒棘球绦虫棘球蚴的热效应[J].中国人兽共患病学报,2007,23(6):576-579.
    [16]王俊安,邹晓毅,叶彬,等.高强度聚焦超声辐照后细粒棘球蚴囊壁的病理变化[J].中国寄生虫学与寄生虫病杂志,2007,25(6)462-465.
    [17]张静,叶彬,邹晓毅,等.高强度聚焦超声波杀伤小鼠体内细粒棘球绦虫棘球蚴的声像变化[J].中国超声医学杂志,2007,23(7):484-486.
    [18]张静,叶彬,邹晓毅,等.高强度聚焦超声辐照小鼠体内棘球蚴的形态变化.中国人兽共患病学报[J],2007,23(12):1187-1190.
    [19]Xiaoyi Zou, Junan Wang, Hailong Zhao, et al. Echinococcus granulosus: Protoscolicidal effect of high intensity focused ultrasound. Experimental Parasitology,2009,121:311-2-316.
    [20]邹晓毅,叶彬,王俊安,等.高强度聚焦超声波对细粒棘球绦虫原头节酶活性的影响[J].中国人兽共患病学报,2007,23(11):1097-1100.
    [21]邹晓毅,叶彬,王俊安,等.高强度聚焦超声波的两种辐照模式对棘球蚴杀伤效果的比较研究[J].中国超声医学杂志,2007,23(8):574-577.
    [22]王琨,刘鲁明,孟志强,等.HIFU治疗肝脏恶性肿瘤的临床观察[J].肿瘤.2008,28(10):885-888.
    [23]赵永斌,胡卫列,杨槐,等.高强度聚焦超声系统治疗局限性前列腺癌:附26例报告[J].中国男科学杂志.2008,22(11):28-30
    [24]张成祥,蔡茂怀,柏会明,等.HIFU联合放疗同步治疗腹膜后淋巴结转移癌26例疗效观察.临床肿瘤学杂志[J].2008,13(12):1127-1129.
    [25]侯茹,吴超群,相高林.高强度聚焦超声治疗子宫肌瘤疗效观察[J].中华中西医学杂志.2008;6(11):49-50.
    [26]林泳,李瑜元,聂玉强,林泳,李瑜元,聂玉强,等.高强度聚焦超声治疗中晚期肝癌疗效分析[J].中华生物医学工程杂志.2008,14(3):232-235.
    [27]Cheng-Wen Zhou, Fa-QiLi, Yan Qin, et al. Non-thermal ablation of rabbit liver VX2 tumor by pulsed high intensity focused ultrasound with ultraSound contrast agent:Pathological characteristics[J]. World Journal of Gastroenterology.2008, 14(43):6743-6747.
    [28]许晓秋,刘廷栋主编.高吸水性树脂的工艺与配方[M].北京:化学工业出版社,2006:1-1-339.
    [1]ATHAWATE A D, LELE V. Recent trends in hydrogels based on starch-graft-acrylic acid:a review[J]. Starch Starke,2001,53(1):7-13.
    [2]许晓秋,刘廷栋.高吸水性树脂的工艺与配方[M].北京:化学工业出版社,2006:1-339.
    [3]王漓江,刘治梅等.淀粉基可降解性高吸水性树脂的制备[J].辽东学院学报(自然科学版),2009,16(4):287-289.
    [4]K. Nakanishi et al. Intrarced Absorption Spectroscopy.2nd Ed Holden-,Day,1997.
    [5]乌兰,柳明珠.玉米淀粉接枝丙烯酸制备高吸水性树脂[J].高分子材料科学与工程,2006,22(1):250-253.
    [6]姜绍通,伍亚华,赵妍嫣.淀粉基高吸水性树脂的制备新方法[J].合肥工业大学(自然科学版),2006,29(3):260-263.
    [7]颜力楷,兰亚乾,苏忠民,等.淀粉接枝共聚高级水性树脂的合成及其性质研究.[J].东北师大学报(自然科学版),2002,34(3):53-59.
    [9]曹爱丽,王强,王苹等.吸水吸油双功能高聚物的研制[J].天津理工学院学报,2002,12(9):37-39.
    [10]王文志,荣家成,余万能.高吸水性树脂的开发与应用[J].湖北化工,2000(4):30-31.
    [11]杨新革,刘兴武.微波法合成淀粉丙烯酸高吸水性树脂的研究[J].临沂师范学院学报.2008,Vol 30(3):66-70.
    [12]李淑琴.朱书全.有氧状态下聚丙烯酸钠高吸水性树脂的合成.现代化工,2003(23):151-153.
    [1]ATHAWATE A D, LELE V. Recent trends in hydrogels based on starch-graft-acrylic acid:areview[J]. Starch Starke,2001,53(1):7-13.
    [2]许晓秋,刘廷栋.高吸水性树脂的工艺与配方[M].北京:化学工业出版社,2006:1-339.
    [3]刘晓洪,曾莹.淀粉接枝类高吸水性树脂的生物降解性与毒性研究[J].精细石油化工,2003,20(6):25-26.
    [4]王漓江,刘治梅等.淀粉基可降解性高吸水性树脂的制备[J].辽东学院学报(自然科学版),2009,16(4):287-289.
    [5]李瑞.高吸水性树脂的研究与开发[D].兰州:兰州大学,2007.
    [6]KIATKAMJORNWONG S, CHOMSAKSAKUL W, SONSUKM. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide[J]. Radiation Physics and Chemistry,2000,59(4):413-427.
    [7]Vilas D Athawale. Recent Trends in Hydrogels Based on Srarch-graft-Acry Acid:A Review[J]. Starch/Starke,2001,53:7-13.
    [8]汪娟,任嗥.淀粉接枝丙烯酸/丙烯酰胺影响因素的研究[J].山东化工,2009(38):19-22.
    [9]党婧,王汝敏,王小建,等.玉米淀粉接枝丙烯酸高吸水性树脂的制备及性能研究[J].中国胶粘剂,2009,18(4):45-48.
    [10]吴观陵.人体寄生虫学[M].第3版北京:人民卫生出版社,2004:543-544.
    [11]许隆琪.中国人体寄生虫分布与危害[M].北京:人民卫生出版社,2000:230-241.
    [1]叶尔江·苏里唐,江莉.我国棘球蚴病防治研究进展[J].中国寄生虫学与寄生虫病杂志,2000,18(13):179-181.
    [2]陆家海,郭中敏,余新炳,等.细粒棘球蚴细胞系培育及其免疫研究[J].中山医科大学报,2001,22(2):81-84.
    [3]李雍龙,管晓虹.人体寄生虫学[M].第6版.北京:人民卫生出版社,2004.158.
    [4]刘金明,顾惠明,王爱华,等.细粒棘球蚴生发层细胞系的建立[J].中国寄生虫学与寄生虫病杂志,1998,16(5):353-356.
    [5]Richard MD, Williams JF. Hydatidosis cysticercosis:immune mechanisms and immunization against infection. Adv Parasitol,1982,21:229-296.
    [6]Bresson HS, Dominic VA. Eehinocoecoais. Bey Prat,2001,51(19):2091-1-2098.
    [7]Rigano R, Butteri B, Profumo F, et al. Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response. Infectlmmun,2007,75(4):1667-1678.
    [8]周俊英,姚树坤,甄真,等.酒精性肝病大鼠肝组织Toll样受体4及血清细胞因子的变化[J].中华微生物学和免疫学杂志,2006,26(7):641-642.
    [9]黄燕,徐显曾.新疆绵羊和黄牛棘球蚴囊液几项生化指标的比较[J].中国人兽共患病杂志,1994,10(5):37-39.
    [10]陈文彬,等.《诊断学》(第七版)[M].北京:人民卫生出版社,1979.
    [11]王虎.青海高原不同宿主体内原头节的透射电镜观察[J].地方病通报,1994,9(3):19-20.
    [12]单骄宇,康金凤,伊滕亮.细粒棘球蚴原头蚴体细胞的分离及其细胞形态特点[J].新疆医科大学学报2005,28(4):360-363.
    [1]温浩,徐明谦.实用包虫病学:科学出版社;2007.
    [2]邹晓毅,王俊安,周潜涛等高强度聚焦超声波对细粒棘球绦虫原头节的杀伤效应[J].中国地方病学杂志.2008,27(002):154-157.
    [3]王俊安,邹晓毅,叶彬等高强度聚焦超声辐照后细粒棘球蚴囊壁的病理变化[J].中国寄生虫学与寄生虫病杂志.2008,25(6):461-2-465.
    [4]许隆琪主编.中国人体寄生虫分布与危害[M].北京:人民卫生出版社,2000:230-241.
    [5]许晓秋,刘延栋主编.高吸水性树脂的工艺与配方[M].北京:化学工业出版社,2006:1,1,339.
    [6]Galindo M, Schadebrodt G Galanti N. Echinococcus granulosus:cellular territories and morphological regions in mature protoscoleces[J]. Experimental Parasitology.2008,119(4):524-533.
    [7]吴观陵主编.《人体寄生虫学》(第3版)[M].北京:人民卫生出版社,2005,2:p542.
    [8]单骄宇,康金凤。,伊滕亮.细粒棘球蚴原头蚴体细胞的分离及其细胞形态特点.2005,28(4):360-363.
    [9]焦伟,棘球绦虫生发细胞体外培养的研究现状[J].地方病译丛,1993,14(4):1-3.
    [10]陆家海,程维兴,郭中敏,等.细粒棘球蚴生发层细胞体外培养的实验观察[J].中国寄生虫学与寄生虫病杂志,1997,15(6);392-394.
    [11]Bao G S. In vitro observation on albendazole sulfoxide and its enantiomers against Echinococcus granulosus protoscolex明. Chinese Journal of Parasitology and Parasitic Diseases.2008,26(6):459-461
    [12]康金风,胡汉华,白山别克,等.过氧化氢体外诱导细粒棘球蚴原头节细胞凋亡的实验观察[J].中国寄生虫学与寄生虫病杂志.2008,26(5):332.337
    [13]吴兴军,崔林,刘建军,等.TACE, PVE联合HIFU治疗原发性肝癌的临床观察[J].现代肿瘤医,2010,18(09):1780-1783.
    [14]夏正勇,熊正爱,张潇潇等.高强度聚焦超声辐照兔肌肉组织后B超灰度值与坏死体积的相关性研究[J].中国超声医学杂志,2006,8(4):200-203.
    [15]王文见.超声治疗肿瘤与免疫[J].国外医学肿瘤学分册.1998,12:347.
    [16]曹友得,陈文直,伍烽.高强度聚焦超声治疗对乳腺癌细胞生物学行为的影响[J].中国超声医学杂,2002,18(4):285-288.
    [17]何申戍,熊六林,王国民.高强度聚焦超声治疗869例腹腔、盆腔实性癌瘤和组织增生症临床初步报告[J].中国超声医学杂志,2002,18(3):180-183.
    [18]Poissonnier L, Chapelon JY, Rouviere O, et al. Control of Prostate Cancer by Transrectal HIFU in 227 Patients[J]. Eur Urol,2006 May 2.
    [19]冀敏,赵洪,滑炎卿.聚焦超声波治疗肿瘤的物理机制及有关问题探讨[J].上海医学影像,2005,(4):310-312.
    [20]王俊安,邹晓毅,叶彬,等.高强度聚焦超声辐照后细粒棘球蚴囊壁的病理变化[J].中国寄生虫学与寄生虫病杂志,2007,25(6)462-465.
    [21]邹晓毅,叶彬,王俊安,等.高强度聚焦超声波的两种辐照模式对棘球蚴杀伤效果的比较研究[J].中国超声医学杂志,2007,23(8):574-577.
    [22]王俊安,邹晓毅,叶彬,等.高强度聚焦超声波辐照细粒棘球绦虫棘球蚴的热效应[J].中国人兽共患病学报,2007,23(6):576-579.
    [23]Fredelius L, Viberg A, Canlon B. Succinic dehydrogenase histochemistry as an early marker for hair cell pathology. ORL J Otorhinolaryngol Relat Spec 2001; 63: 12-18.
    [24]刘能保,王西明主编。现代实用组织学与组织化学技术,武汉:湖北科学技术出版社,2003.3:104-105.
    [25]Chen GD, McWilliams ML, Fechter LD. Succinate dehydrogenase (SDH) activity in hair cells:a correlate for permanent threshold elevations. Hear Res 2000; 145: 91-100.
    [26]Gim6nez-Pardo C, Ros Moreno RM, De Armas-Serra C, et al. Presence of cholinesterases in Echinococcus granulosus protoscolices[J]. Parasitology.2000, 7(1):47-50.
    [27]邹晓毅,叶彬,王俊安,等.高强度聚焦超声波对细粒棘球绦虫原头节酶活性的影响[J].中国人兽共患病学报,2007,23(11):1097--100.
    [1]许隆琪主编.中国人体寄生虫分布与危害[M].北京:人民卫生出版社,2000:230-241.
    [2]艾尔肯,吕林,袁德安.肝包虫囊肿完整摘除体会[J].肝胆胰外科杂志,2004,16(3):221.
    [3]Grigorov N, Golemanov B, Mitova R, et al. Percutaneous puncture treatment of hepatic cystic echinococcosis under ultrasound guidance[J]. Khirurgiia (Sofiia). 2000,56(5-6):28-31.
    [4]Krige JE, Millar AJ, Rode H, et al. hypernatraemia after hypertonic saline irrigation of hepatic hydatid cysts. Pediatr Surg Int 2002 Jan; 18(1):64-5.
    [5]WHO Informal Working Group on Echinococcosis. Guidelines for Treatment of Cystic and Alceolar Echinococcosis in Humans[J]. Bull WHO,1996,74(3):231-242.
    [6]冀敏,赵洪,滑炎卿.聚焦超声波治疗肿瘤的物理机制及有关问题探讨[J].上海医学影像,2005,(4):310-312.
    [7]许晓秋,刘廷栋主编.高吸水性树脂的工艺与配方[M].北京:化学工业出版社,2006:1-339.
    [8]Casadol N, Rodfignez-Caabeirol F, Hemandezl S. In Vitro Survival of Echinococcus granulosus Protoscolices in Several Media, at+4℃ and +37℃ [J]. Parasitology Rsearch,1986,72(2):273-278.
    [9]Galindo M, Schadebrodt G Galanti N. Echinococcus granulosus:cellular territories and morphological regions in mature protoscoleces[J]. Experimental Parasitology. 2008,119(4):524-33
    [10]胡兴龙,杨晓,袁孝兵,等.高强度聚焦超声治疗原发性肝癌的近期疗效[J].实用肿瘤学杂志,2005,19(3):203-204
    [11]Kunaratilake L. M.et al. Jnt. J.Parasitol.1988,14:467.
    [12]Raush. R. L.The Biology of Echinococcus and Hydatid Disease, edited by Thompson.R.C.A.1986.
    [13]Rigano R, Butted B, Profumo E, et al. Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polariges immature dendritic cell maturat-ion towards a Tk2-cell[J]l. Infect Immun,2007,75(4):1667-1678.
    [14]黄燕,徐显曾.新疆绵羊和黄牛棘球蚴囊液几项生化指标的比较.中国人兽共患病杂志,1994,10(5):37-38.
    [15]郝永存,郝方.棘球蚴囊液外溢引起过敏性休克病例报告.中国寄生虫学与寄生虫病杂志,2001.19(5):264.
    [16]吴向东,彭心宇,张示杰,等.肝脾棘球蚴囊周围纤维性囊壁形成机制的差异及临床意义.中国寄生虫学与寄生虫病杂志,2004,22(1):1-5.
    [17]Casadol N, Rodfignez-Caabeirol F, Hemandezl S. In Vitro Survival of Echinococcus granulosus Protoscolices in Several Media, at+4℃ and +37℃ [J]. Parasitology Rsearch,1986,72(2):273-278.
    [18]吴兴军,崔林,刘建军,等.TACE, PVE联合HIFU治疗原发性肝癌的临床观察[J].现代肿瘤医学,2010,18(09):1780-1783.
    [19]夏正勇,熊正爱,张潇潇等.高强度聚焦超声辐照兔肌肉组织后B超灰度值与坏死体积的相关性研究[J].中国超声医学杂志,2006,8(4):200-203.
    [20]王文见.超声治疗肿瘤与免疫[J].国外医学肿瘤学分册.1998,12:347.
    [21]Chanssy CG, ThuroffS. High-intensity focused ultrasound in localized prostate cancer[J]. J Endourol,2000,14(3):293-299.
    [22]何申戍,熊六林,王国民.高强度聚焦超声治疗869例腹腔、盆腔实性癌瘤和组织增生症临床初步报告[J].中国超声医学杂志,2002,18(3):180-183.
    [23]Poissonnier L, Chapelon JY, Rouviere O, et al. Control of Prostate Cancer by Transrectal HIFU in 227 Patients[J]. Eur Urol,2006 May 2.
    [24]冀敏,赵洪,滑炎卿.聚焦超声波治疗肿瘤的物理机制及有关问题探讨[J].上海医学影像,2005,(4):310-312.
    [25]王俊安,邹晓毅,叶彬,等.高强度聚焦超声辐照后细粒棘球蚴囊壁的病理变化[J].中国寄生虫学与寄生虫病杂志,2007,25(6)462-465.
    [26]王俊安,邹晓毅,叶彬,等.高强度聚焦超声波辐照细粒棘球绦虫棘球蚴的热效应[J].中国人兽共患病学报,2007,23(6):576-579.
    [27]张静,叶彬,邹晓毅,等.高强度聚焦超声辐照小鼠体内棘球蚴的形态变化.中国人兽共患病学报[J],2007,23(12):1187-1190.
    [28]张静,叶彬,邹晓毅,等.高强度聚焦超声波杀伤小鼠体内细粒棘球绦虫棘球蚴的声像变化[J].中国超声医学杂志,2007,23(7):484-486.
    [29]邹晓毅,叶彬,王俊安,等.高强度聚焦超声波的两种辐照模式对棘球蚴杀伤效果的比较研究[J].中国超声医学杂志,2007,23(8):574-577.
    [30]Xiaoyi Zou, Junan Wang, Hailong Zhao, et al. Echinococcus granulosus: Protoscolicidal effect of high intensity focused ultrasound. Experimental Parasitology,2009,121:312-316.
    [31]邹晓毅,叶彬,王俊安,等.高强度聚焦超声波对细粒棘球绦虫原头节酶活性的影响[J].中国人兽共患病学报,2007,23(11):1097--100.
    [32]刘廷栋,刘京.高吸水性树脂在日用化学工艺中的应用[J].日用化学工业,1995,22:22-24.
    [33]Thompson.R.C.A. et al:Advence in parasitology.1988,27:210.
    [34]焦伟,柴君杰.棘球绦虫生发细胞体外培养的现状[J].地方病译从,1993,14(4):1-4.
    [35]Zhang S, Wang J, Song N, Xie J, Jiang H.Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells.Neurobiol Aging.2009;30(9):1466-76. Epub 2008 Jan 8.
    [36]Deng XQ, Cheng JL, Zhang YP, Li NX, Chen LL.Effects of caloric restriction on SIRT1 expression and apoptosis of islet beta cells in type 2 diabetic rats.Springer Verlag.2009.43.
    [37]Chen Z, Liu S, Sumida T, Sun S, Wei Y, Liu M, Dong Z, Zhang F, Hamakawa H, Wei F.Silencing Id-1 with RNA Interference Inhibits Adenoid Cystic Carcinoma in Mice. J Surg Res.2010.
    [38]Bao XQ, Liu GT.Bicyclol protects HepG2 cells against D-galactosamine-induced apoptosis through inducing heat shock protein 27 and mitochondria associated pathway. Acta Pharmacol Sin.2010;31(2):219-26.
    [39]Wang X, Xu J, Ju S, Ni H, Zhu J, Wang H.Livin gene plays a role in drug resistance of colon cancer cells.Clin Biochem.2010; 43(7-8):655-60. Epub 2010 Feb 18.
    [40]王虎.青海高原不同宿主体内原头节的透射电镜观察[J].地方病通报,1994,9(3):19-20.
    [41]张丽娟.细胞凋亡的检测方法及其在药物流产中的应用[J].医学综述,2008,14(11):1660-1664.
    [42]胡汉华,康金凤,陈蓉,等.过氧化氢体外诱导细粒棘球蚴原头节细胞Caspase-3表达及超微结构改变的影响[J].中国人兽共患病学报,2009,25(4):318-321.
    [1]土田英俊.化学装置(日)1987.20(2):02.
    [2]G. Fanta et al U.S.P,955,828.
    [3]徐兆瑜.高吸水性树脂的生产和应用进展[J].宁夏石油化工,2002,21(2):4-8.
    [4]赵吉寿,等.模板固相合成磷酸铝及其表征[J].无机化学学报,1999,5:800-804.
    [5]张燕萍.变性淀粉制造应用[M].北京:化学工业出版社,2001.24-71,164-169,307.
    [6]黄美玉.高吸水性树脂[J].高分子通报,1988,1:34-38.
    [7]路建美,朱秀林;高吸水性树脂的合成及性能研究[J];高分子材料科学与工程[J].1992,1:42-45.
    [8]朱秀林,路建美.内交联型高吸水性树脂的合成及性能研究[J].高分子材料科学与工程,1993,9(4):19-22.
    [9]党婧,王汝敏,王小建,程雷.玉米淀粉接枝丙烯酸高吸水性树脂的制备及性能研究[J].中国胶粘剂,2009,18(4):45-48.
    [10]邹新禧.超强吸水剂[M].北京:化学工业出版社(第二版),2002.13.21,164.212,40.
    [11]黄明德,阎学伟.淀粉接枝丙烯腈共聚物的微波皂化[J].高分子材料科学与工程,1998,14(2):127,128,134.
    [12]CHEN J, PARK K. Synthesis and characterization of superabsorbent hydrogel composites[J] J. Control Release,2000,65(1-1-2):73-82.
    [13]乌兰,柳明珠.玉米淀粉接枝丙烯酸制备高吸水性树脂[J].高分子材料科学与工程,2006,22(1):250-253.
    [14]W.F. Lee, R J. Wu. Superabsorbent polymeric material swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyanisole methacrylate)in aqueous salt solution[J]. J.Appl Polym.Sci.1996(62):1099-1114.
    [15]KIATKAMJORN WONG S, CHOMSAKSAKUL W, SONSUK M. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide [J]. Radiation Physics and Chemistry,2000,59(4):413-427.
    [16]BHUNIYASP, RAHMANMS, SATYANANDAJ, etal. Novel route to synthesis of acrylic starch and biodegradable hydrogel by copolymerizing acrylic modified starch with methacrylate acid and acrylamide[J]. Journal of Polymer Science:Part A: Polymer Chemistry,2003,41(11):1650-1658.
    [17]张乐平,吴岳英,夏春娟.淀粉-丙烯酸接枝共聚物的生物降解性研究,上海大学学报,2002,8(3):261-263.
    [18]SANNINO A, NICOLAIS L. Concurrent-effect of microporosity and chemical struc ture on the equilibrium sorption properties of cellulose-based hydrogels[J].Polymer, 2005,46(13):4676-4685.
    [19]朱秀林,顾梅,倪新元.丙烯酸-丙烯酰胺共聚物和高岭土交联的吸水树脂的合成及性能研究,石油化工,1994,23(7):431-435.
    [20]MOHAN Y M, MURTHY P S K, RAJU K M.Preparation and swelling behavior of macroporous poly (acrylamide-co-sodiummethacrylate) superabsorbent hydrogels[J ]. J. Appl. Polym. Sci.,2006,101(5):3201-2-3214.
    [21]Xin Q, Richard F T, Colin E S, et al. Molecular basis of the gelatinisation and swelling characteristics of waxy barley starches grown in the same location during the same season. Part Ⅱ. crystallinity and gelatinisation characteristics[J]. Journal of Cereal Science,2004,39(1):57-66.
    [22]姜发堂.CN 02147733超强吸水剂及其制备方法.
    [23]Li E Preparation and Water Absorbent Behavior of Superabsorbent Poly aspartic Acid Resin[J]. Journal of polymer Research,2006, (13):145-152.
    [24]Ruttscheid A, Borchard W. Synthesis and characterization of glass-containing superabsorbent polymers[J]. European Polymer,2005,41(8):1927-1932.
    [25]程定超.高吸水性树脂在医疗与卫生方面的开发应用[J].精细化工信息,1990,(11):8-11.
    [26]KATO N, TAKAHASHI F. Acceleration of deswelling of poly(N-isopropylacrylami de) hydrogel by the treatment of a freeze-dry and hydration process[J]. Bul. Chem. Soc.Jpn,1997,70(6):1289-1295.
    [27]Keigo Osuga, Shinichi Hori, Kumiko Hiraishi, et al. Bland Embolization of Hepatocellular Carcinoma Using Superabsorbent Polymer Microspheres[J]. Cardiovasc Intervent Radiol (2008) 31:1108-1116
    [28]尹国强,崔英德,廖列文,等.抗菌型高吸水性树脂的合成及性能研究[J].功能材料,2004,35(3):368-370.
    [29]李开扬,任天瑞.高吸水性树脂在农业中的应用[J].辽宁工程学报,2002,2(1):91-95.
    [30]李仲谨,李小燕,郭焱.农用高吸水性树脂及其研究进展[J].高分子材料科学与工程,2006,22(3):16-20.
    [31]杨本宏.超强高分子吸水材料的研究进展与应用[J].合肥联合大学学报,2002,12(3):88-93.
    [31]童旭卿,张小红.生物降解高吸水性树脂的研究进展[J].广东化工,2005(5):1-3.
    [32]YAN Q, HOFFMAN A S. Synthesis of macroporous hydrogels with rapid swelling and deswelling properties for delivery of macromolecules[J]. Polymer,1995,36(4): 887-889.
    [33]崔英德,郭建维,易国斌等.可生物降解超强吸水剂及其制备技术进展[J].化工进展,2003,22(8):845-849.
    [34]戴长华.世界高吸水性树脂发展现状[J].化工商品科技情报,1996,19(4):49-50.
    [35]刘福顺,杨晓荣,庞会媛,等.高吸水性树脂生产、市场和发展综述[J].化工科技市场,2004,27(1):18-20.
    [36]李建颖.高吸水与高吸油性树脂[M].北京:化学工业出版社,2005:12,227-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700