受限高分子单链动力学的格子蒙特卡罗模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子链的动力学问题是高分子物理学中的核心问题之一。近来由于受限空间中蛋白质和DNA研究的升温,与之息息相关的受限高分子链也成为了当前研究的热点。尽管受限链物理模型简单,但是理论处理却极为复杂,存在着大量的数学近似;在实验上,纳米空间尺度的受限结构难于制备,而且受限链的特征动力学时间发生于纳秒时间尺度,也限制了大多数实验测试工具的应用。计算机模拟能够有效的反映受限空间中高分子链的动力学过程,已成为该领域的重要研究手段。
     本文基于键长涨落格子模型的蒙特卡罗模拟,系统地研究了自由链、半维数限制的接枝链、一维受限的狭缝链、二维受限的管道链及三维受限的立方微腔链的特征动力学行为。其主要创新性工作可以分为以下几个部分:
     (一)系统地研究了自由链和接枝链的末端环化和链内环化的平均初次接触时间的标度行为。运用已知动力学理论,我们对自由链的末端环化和链内环化行为进行了解释。而对于接枝链,我们发现由于硬墙的存在,末端环化的特征时间标度行为发生了改变,而且由于链两端的对称性遭到了破坏,接枝端基和自由端基参与的链内环化过程出现了截然不同的标度行为。
     (二)系统比较了一维、二维、三维受限空间中高分子链的三种动力学特征时间的标度关系。探讨了狭缝、管道以及立方微腔中受限高分子链的三个典型动力学过程的特征时间:环化时间、旋转松弛时间和扩散时间,得到了强受限条件下一系列的标度行为,特别地,在管道强受限下,我们发现了环化时间和旋转松弛时间的指数标度行为。通过比较不同受限维数下的环化时间,我们发现三种受限情形都导致了更快的环化行为,该现象同以前球形微腔中更快的链内环化、分子伴侣笼和球形微腔中蛋白质折叠更快的现象一致;而且,随着受限维数的增加,环化时间减小,反映了更快的链内环化,从侧面应证了受限导致更快的动力学这一结论。
     (三)考察了高分子链在图案化表面的吸附行为。模拟了一维周期性势能表面上自避行走链吸附的热力学行为,着重研究了链从三维空间向周期性势能平面吸附和链从横跨多个吸附条带到局域化在单个吸附条带上这两个过程。前一个过程对应着比热峰和链尺寸等热力学参量的突变,然而并非一级相变过程;而后者是个非常平缓的过程,所考察的几个参量表明该过程不存在相变行为。
     在博士论文的最后阶段,本人主动要求从事实验工作以得到更全面的训练,并得到了导师的支持,从事了一种旨在作为蛋白质药物缓释载体的水凝胶微粒的研究。在实验方面的主要贡献为:(1)改进了微凝胶的制备技术。可注射性是关系到缓释体系是否为医生和病人接受的重要性质,通过改进传统的微球制备方法和后处理工艺,我们得到了粒径符合注射性的微球。此外,针对微球再分散问题,我们合成了具有不同长度的嵌段丙交酯的大单体,对其所制备得到的微球再分散性能进行了考察,找到了适合制备可注射微凝胶的大单体。(2)改进了药物包裹和体外释放的操作。我们探索了长期困扰课题组的蛋白质后包裹失活问题,考察了各种潜在因素,最终找到了失活根源。这些工作为今后该化学凝胶微球缓释体系在蛋白质药物载体方面更多的体外实验打下了基础,使得组内开发的温敏型化学凝胶朝向应用接近了一步。
Polymer dynamics is one of the core problems in polymer physics. Due to recent studies of proteins and DNAs in the confining space, the dynamics of a confined polymer chain has become a hot topic. Though the physical model of a confined polymer chain is relatively simple, the theoretical treatment is extremely complicated and the mathematical approximations must be applied in the calculations. On the other hand, the confinement structure with the nanometer spatial scale is hard to fabricate experimentally. The typical dynamical times are in the magnitude of nanosecond and thus few measurement tools can be applied in the system. As an alternative, computer simulation can effectively and has been an important and useful method in this field.
     Based on lattice Monte Carlo simulations with the bond-fluctuation algorithm, we have systematically explored the characteristic dynamic behaviors of a free chain, a wall-grafted chain, and a confined chain in slit, square tube, and cubic pore confinements respectively. The main achievements and original contributions of this thesis can be summarized as follows:
     (1) The scaling behavior of the mean first-passage times of the end-to-end looping associated with two reactive terminal ends and the intrachain looping associated with a terminal end and an interior monomer for a free chain and a wall-grafted chain has been studied. The end-to-end looping time and the kinetic relaxation time of the end-to-end vector for a free self-avoiding chain are in full agreement with the Rouse dynamic behavior. The simulation results of the intrachain looping collapse into a universal scaling behavior and display a maximum for different chain lengths. By testing the phantom chain, we found that the peak was not caused by the excluded-volume effect. Following the derivation of the normal modes for a Gaussian chain, we calculated the relaxation time of the end-to-interior vector, which displayed a weak maximum at nearly the same location as the looping time. Therefore, it is the internal short-time dynamic modes complicating the situation and leading to the maximum. For the wall-grafted chain, due to the confinement of the grafting point and the depletion effect of the hard wall, the characteristic time of the end-to-end looping deviated from Rouse dynamic behavior. Furthermore, just because of that, the symmetry of the two terminal ends of a polymer chain was destroyed, and thus the looping processes for the grafting terminal end and the free terminal end displayed distinct scaling behavior. For the former, the maximum caused by the complicated internal dynamic modes still existed and the numerical value was one order magnitude larger than that of a free chain. While the peak disappeared for the latter and the looping time displayed a monotonic increase.
     (2) We have further observed the typical dynamic processes associated with three characteristic times: rotation time, diffusion time and the looping time of a self-avoiding polymer in three types of confinement: slit, square tube and cubic pore, and have discussed these three time scales in light of scaling theories. Special attention has been paid to the parameter regime where the characteristic confinement dimension is smaller than the radius of gyration of the unconfined polymer. We got a series of the scaling behavior of these three times, and in particular, for the strong tube confinement, the looping time and the rotation time displayed an exponential scaling law. Comparing the looping times under three different confinement dimensions, we found that the proper confinement lead to the faster looping dynamics, which was in agreement with the previous observations: a faster intrachain looping in the sphere pore and a faster protein folding in chaperonin and sphere. What's more, the looping time decreased with the confinement dimensions, which reflected a faster looping dynamics and proved the conclusion in another way that confinement lead to faster dynamics.
     (3) We also examined the thermodynamics of the polymer adsorption on a periodic potential surface and a periodic channel-structured surface. Two processes were detected: the polymer adsorption from the free space to the periodic potential surface and the localization from two adsorbing strips to one. The former corresponds to the sharp transitions of some thermodynamic parameters such as specific heat and the chain dimensions, yet it is not a first-order phase transition. From the simulation results, however, no phase transition behavior has been observed for the localization process.
     Upon basically finishing the simulations of this thesis, the author also tried to be trained experimentally and thus performed preparation of a sustained release carrier. The two contributions in the experiments are summarized as follows. (1) Microgel preparation conditions have been improved. Injectability is one of the key properties which determine whether the novel controlled release system could be accepted by the patients and the doctors. By the improvement of the traditional fabrication and post-fabrication techniques, we got the injectable microgel with small size. In addition, as to the redispersion problem of the vacuum-dried microgel, we synthesized a series of macromers with different block lengths of the lactide acid and studied the redispersion property of the microparticles fabricated from these macromers to get the most suitable one. (2) We have experimentally explored the activity loss of the released proteins from the microgel developed in our group. The potential factors have been studied and the real reason has been found finally. These investigations have laid a solid foundation for the further in-vitro and in-vivo experiments of this novel controlled release system.
引文
1.de Gennes,P.G.,Scaling Concepts in Polymer Physics[M].1993,Ithaca,NY:Connell University Press.
    2.Flory,P.J.,Principles of Polymer Chemistry[M].1971,Ithaca:Cornell University Press.
    3.何曼君,陈维孝,and董西侠,高分子物理[M].1990,上海:复旦大学出版社.
    4.Flory,P.J.,Statistical Mechanics of Chain Molecules[M].1969,New York:Interscience Publishers.
    5.Freed,K.F.,Renormalization Group Theory of Macromolecules[M].1987,New York:John Wiley & Sons.
    6.吴大诚and徐晓林,高分子的标度和蛇形理论[M].1989,成都:四川教育出版社.
    7.Flory,P.J.,The Configuration of Real Polymer Chains[J].Journal of Chemical Physics,1949.17(3):303-310.
    8.Flory,P.J.,The Configuration of Real Polymer Chains[J].Journal of Chemical Physics,1951.19(10):1315-1316.
    9.Doi,M.and Edwards,S.F.,The Theory of Polymer Dynamics[M].1986,New York:Oxford University Press.
    10.de Gennes,P.G.,Introduction to Polymer Dynamics[M].1990,New York:Cambridge University Press.
    11.Rouse,P.E.,A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers[J].Journal of Chemical Physics,1953.21(7):1272-1280.
    12.Zimm,B.H.,Dynamics of Polymer Molecules in Dilute Solution - Viscoelasticity,Flow Birefringence and Dielectric Loss[J].Journal of Chemical Physics,1956.24(2):269-278.
    13.de Gennes,P.G.,Dynamics of Entangled Polymer Solutions.I.The Rouse Model [J].Macromolecules,1976.9(4):587-593.
    14. Frick, B., Koza, M., and Zorn, R., Dynamics in confinement [J]. European Physical Journal E, 2003.12(1): 3-4.
    15. McKenna, GB., Status of our understanding of dynamics in confinement: Perspectives from Confit 2003 [J]. European Physical Journal E, 2003. 12(1): 191-194.
    16. Ellis, R.J. and Minton, A.P., Cell biology - Join the crowd [J]. Nature, 2003. 425(6953): 27-28.
    17. Ellis, R.J., Macromolecular crowding: obvious but underappreciated [J]. Trends In Biochemical Sciences, 2001. 26(10): 597-604.
    18. Minton, A.P., Implications of macromolecular crow ding for protein assembly [J]. Current Opinion in Structural Biology, 2000.10(1): 34-39.
    19. Ellis, R.J., Macromolecular crowding: an important but neglected aspect of the intracellular environment [J]. Current Opinion in Structural Biology, 2001. 11(1): 114-119.
    20. Xu, Z.H. and Sigler, P.B., GroEL/GroES: Structure and function of a two-stroke folding machine [J]. Journal of Structural Biology, 1998.124(2-3): 129-141.
    21. Ramakrishnan, V. and Moore, P.B., Atomic structures at last: the ribosome in 2000 [J]. Current Opinion in Structural Biology, 2001.11(2): 144-154.
    22. Eggers, D.K. and Valentine, J.S., Molecular confinement influences protein structure and enhances thermal protein stability [J]. Protein Science, 2001.10(2):250-261.
    23. Cheung, M.S., Klimov, D., and Thirumalai, D., Molecular crowding enhances native state stability and refolding rates of globular proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): 4753-4758.
    24. Klimov, D.K., Newfield, D., and Thirumalai, D., Simulations of beta-hairpin folding confined to spherical pores using distributed computing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002.99(12): 8019-8024.
    25. Takagi, F., Koga, N., and Takada, S., How protein thermodynamics and folding mechanisms are altered by the chaperonin cage:Molecular simulations[J].Proceedings of the National Academy of Sciences of the United States of America,2003.100(20):11367-11372.
    26.Zhou,H.X.and Dill,K.A.,Stabilization of proteins in confined spaces[J].Biochemistry,2001.40(38):11289-11293.
    27.纪仕辰,链状分子软物质的蒙特卡罗模拟和部分实验研究.2006,复旦大学博士学位论文,上海.
    28.Hahn,T.D.and Kovac,J.,Computer-Simulation of the Dynamics of a Polymer-Chain Terminally Attached to a Rigid Flat Surface[J].Macromolecules,1990.23(24):5153-5154.
    29.Cifra,P.and Bleha,T.,Anisotropy in the dimensional and elastic parameters of confined macromolecules[J].Macromolecular Theory and Simulations,1999.8(6):603-610.
    30.Dimitrov,D.I.,Milchev,A.,Binder,K.,Klushin,L.I.,and Skvortsov,A.M.,Universal properties of a single polymer chain in slit:scaling versus molecular dynamics simulations[J].Journal of Chemical Physics,2008.128(23):234902.
    31.Milchev,A.and Binder,K.,A polymer chain trapped between two parallel repulsive walls:A Monte-Carlo test of scaling behavior[J].European Physical Journal B,1998.3(4):477-484.
    32.Sheng,Y.J.and Wang,M.C.,Statics and dynamics of a single polymer chain confined in a tube[J].Journal of Chemical Physics,2001.114(10):4724-4729.
    33.van Vliet,J.H.,Luyten,M.C.,and ten Brinke,G.,Scaling Behavior of Dilute Polymer-Solutions Confined between Parallel Plates[J].Macromolecules,1992.25(14):3802-3806.
    34.Maury-Evertsz,J.R.,Estevez,L.A.,and Lopez,G.E.,Equilibrium properties of confined single-chain homopolymers[J].Journal of Chemical Physics,2003.119(18):9925-9932.
    35.Hsu,H.P.and Grassberger,P.,Polymers confined between two parallel plane walls[J].Journal of Chemical Physics,2004.120(4):2034-2041.
    36.Chen,S.B.,Monte Carlo simulations of conformations of chain molecules in a cylindrical pore[J].Journal of Chemical Physics,2005.123(7):074702.
    37.Livadaru,L.and Kreuzer,H.J.,Confinement of a polymer chain in a tube[J].New Journal of Physics,2003.5:95.
    38.Brochard,F.and de Gennes,P.G.,Dynamics of confined polymer chains[J].Journal of Chemical Physics,1977.67(1):52-56.
    39.Milchev,A.and Binder,K.,Dynamics of polymer chains confined in slit-like pores[J].Journal De Physique Ⅱ,1996.6(1):21-31.
    40.Hagita,K.,Koseki,S.,and Takano,H.,Relaxation of a polymer chain confined in a slit[J].Journal of the Physical Society of Japan,1999.68(6):2144-2145.
    41.Hagita,K.and Takano,H.,Relaxation of a polymer chain confined in a tube or a slit[J].Journal De Physique Ⅳ,2000.10(7):305-308.
    42.Avramova,K.and Milchev,A.,Polymer chains in a soft nanotube:A Monte Carlo Study[J].Journal of Chemical Physics,2006.124(2):024909.
    43.Cacciuto,A.and Luijten,E.,Self-avoiding flexible polymers under spherical confinement[J].Nano Letters,2006.6(5):901-905.
    44.Abrams,C.F.,Lee,N.K.,and Johner,A.,Diffusion/reaction in confined polymer chains[J].Macromolecules,2006.39(10):3655-3663.
    45.Lee,N.K.,Abrams,C.F.,and Johner,A.,Optimal confinement for internal polymer binding[J].Europhysics Letters,2005.72(6):922-928.
    1.杨玉良,张红东,高分子科学中的Monte Carlo方法[M].1993,上海:复旦大学出版社.
    2.Leach,A.R.,Molecular Modelling:Principles and Applications[M].2001,北京:世界图书出版公司.
    3.Binder,K.and Heermann,D.W.,Monte Carlo simulation in statistical physics:an introduction[M].2002,Berlin & New York:Springer.
    4.杨小震,分子模拟与高分子材料[M].2002,北京:科学出版社.
    5.Raabe,D.,Computational Materials Science[M].1998,Weinheim:Wiley-VCH.
    6.Metropolis,N.and Ulam,S.M.,The Monte Carlo Method[J].Journal of the American Statistical Association,1949.44(247):335-341.
    7.Wall,F.T.,Mean Dimensions of Rubber-Like Polymer Molecules[J].Journal of Chemical Physics,1953.21(11):1914-1919.
    8.Wall,F.T.,Hiller,L.A.,and Wheeler,D.J.,Statistical Computation of Mean Dimensions of Macromolecules.Ⅰ[J].Journal of Chemical Physics,1954.22(6):1036-1041.
    9.Wall,F.T.,Hiller,L.A.,and Atchison,W.F.,Statistical Computation of Mean Dimensions of Macromolecules.Ⅱ[J].Journal of Chemical Physics,1955.23(5):913-921.
    10.Wall,F.T.,Hiller,L.A.,and Wheeler,D.J.,Statistical Computation of Mean Dimensions of Macromolecules.Ⅲ[J].Journal of Chemical Physics,1955.23(12):2314-2321.
    11.Landau,D.P.and Binder,K.,A Guide to Monte Carlo Simulations in Statistical Physics[M].2000,Cambridge:Cambridge University.
    12.Newman,M.E.J.and Barkema,G.T.,Monte Carlo Methods in Statistical Physics [M].1999,New York:Oxford University Press.
    13.Metropolis,N.,Rosenbluth,A.W.,Rosenbluth,M.N.,Teller,A.H.,and Teller,E.,Equation of State Calculations by Fast Computing Machines[J].Journal of Chemical Physics,1953.21(6):1087-1092.
    14.Chen,Y.T.,Zhang,Q.,and Ding,J.D.,A coarse-grained model and associated lattice Monte Carlo simulation of the coil-helix transition of a homopolypeptide [J].Journal of Chemical Physics,2004.120(7):3467-3474.
    15.Chen,Y.T.,Zhang,Q.,and Ding,J.D.,A coarse-grained model for the formation of alpha helix with a noninteger period on simple cubic lattices[J].Journal of Chemical Physics,2006.124(18):184903.
    16.Carmesin,I.and Kremer,K.,The Bond Fluctuation Method - a New Effective Algorithm for the Dynamics of Polymers in All Spatial Dimensions[J].Macromolecules,1988.21(9):2819-2823.
    17.Deutsch,H.P.and Binder,K.,Interdiffusion and Self-Diffusion in Polymer Mixtures - a Monte-Carlo Study[J].Journal of Chemical Physics,1991.94(3):2294-2304.
    18.陈彦涛,蛋白质折叠的格子链Monte Carlo模拟.2006,复旦大学博士学位论文,上海.
    19.de Gennes,P.G.,Scaling Concepts in Polymer Physics[M].1993,Ithaca,NY:Connell University Press.
    20.Flory,P.J.,The Configuration of Real Polymer Chains[J].Journal of Chemical Physics,1949.17(3):303-310.
    21.Rouse,P.E.,A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers[J].Journal of Chemical Physics,1953.21(7):1272-1280.
    1.Flory,P.J.,Principles of Polymer Chemistry[M].1971,Ithaca:Cornell University Press.
    2.Winnik,M.A.,in Cyclic Polymers[M],ed.Semylen,J.A.1986,New York:Elsvier.
    3.Tinoco,I.and Bustamante,C.,How RNA folds[J].Journal of Molecular Biology,1999.293(2):271-281.
    4.Bonnet,G.,Krichevsky,O.,and Libchaber,A.,Kinetics of conformational fluctuations in DNA hairpin-loops[J].Proceedings of the National Academy of Sciences of the United States of America,1998.95(15):8602-8606.
    5.Kuznetsov,S.V.,Shen,Y.Q.,Benight,A.S.,and Ansari,A.,A semiflexible polymer model applied to loop formation in DNA hairpins[J].Biophysical Journal,2001.81(5):2864-2875.
    6.Lapidus,L.J.,Eaton,W.A.,and Hofrichter,J.,Measuring the rate of intramolecular contact formation in polypeptides[J].Proceedings of the National Academy of Sciences of the United States of America,2000.97(13):7220-7225.
    7.Volk,M.,Kholodenko,Y.,Lu,H.S.M.,Gooding,E.A.,DeGrado,W.F.,and Hochstrasser,R.M.,Peptide conformational dynamics and vibrational stark effects following photoinitiated disulfide cleavage[J].Journal of Physical Chemistry B,1997.101(42):8607-8616.
    8.Bieri,O.,Wirz,J.,Hellrung,B.,Schutkowski,M.,Drewello,M.,and Kiefhaber,T.,The speed limit for protein folding measured by triplet-triplet energy transfer [J].Proceedings of the National Academy of Sciences of the United States of America,1999.96(17):9597-9601.
    9.Bodenreider,C.and Kiefhaber,T.,Interpretation of protein folding psi values[J].Journal of Molecular Biology,2005.351(2):393-401.
    10.Chang,I.J.,Lee,J.C.,Winkler,J.R.,and Gray,H.B.,The protein-folding speed limit:Intrachain diffusion times set by electron-transfer rates in denatured Ru(NH3)(5)(His-33)-Zn-cytochrome c[J].Proceedings of the National Academy of Sciences of the United States of America,2003.100(7):3838-3840.
    11.Hagen,S.J.,Hofrichter,J.,and Eaton,W.A.,Rate of intrachain diffusion of unfolded cytochrome c[J].Journal of Physical Chemistry B,1997.101(13):2352-2365.
    12.Klimov,D.K.and Thirumalai,D.,Mechanisms and kinetics of beta-hairpin formation[J].Proceedings of the National Academy of Sciences of the United States of America,2000.97(6):2544-2549.
    13.Thirumalai,D.,Time scales for the formation of the most probable tertiary contacts in proteins with applications to cytochrome c[J].Journal of Physical Chemistry B,1999.103(4):608-610.
    14.Wilemski,G.and Fixman,M.,Diffusion-controlled intrachain reactions of polymers.Ⅰ Theory[J].Journal of Chemical Physics,1974.60(3):866-877.
    15.Wilemski,G.and Fixman,M.,Diffusion-controlled intrachain reactions of polymers.Ⅱ Results for a pair of terminal reactive groups[J].Journal of Chemical Physics,1974.60(3):878-890.
    16.Sokolov,I.M.,Cyclization of a polymer:First-passage problem for a non-Markovian process[J].Physical Review Letters,2003.90(8):080601.
    17.Debnath,P.and Cherayil,B.J.,Dynamics of chain closure:Approximate treatment of nonlocal interactions[J].Journal of Chemical Physics,2004.120(5):2482-2489.
    18.Battezzati,M.and Perico,A.,An exact model calculation of the diffusion controlled intramolecular rate constant[J].Journal of Chemical Physics,1981.74(8):4527-4532.
    19.Battezzati,M.and Perico,A.,A perturbation theory for diffusion controlled reactions[J].Journal of Chemical Physics,1981.75(2):886-891.
    20.Doi,M.,Diffusion-controlled reaction of polymers[J].Chemical Physics,1975.9:455-466.
    21.Jun,S.,Bechhoefer,J.,and Ha,B.Y.,Diffusion-limited loop formation of semiflexible polymers:Kramers theory and the intertwined time scales of chain relaxation and closing[J].Europhysics Letters,2003.64(3):420-426.
    22.Pastor,R.W.,Zwanzig,R.,and Szabo,A.,Diffusion limited first contact of the ends of a polymer:Comparison of theory with simulation[J].Journal of Chemical Physics,1996.105(9):3878-3882.
    23.Seki,K.,Barzykin,A.V.,and Tachiya,M.,Diffusion-assisted long-range reactions in confined systems:Projection operator approach[J].Journal of Chemical Physics,1999.110(16):7639-7649.
    24.Srinivas,G.,Sebastian,K.L.,and Bagchi,B.,Time-dependent survival probability in diffusion-controlled reactions in a polymer chain:Beyond the Wilemski-Fixman theory[J].Journal of Chemical Physics,2002.116(16):7276-7282.
    25.Szabo,A.,Schulten,K.,and Schulten,Z.,First passage time approach to diffusion controlled reactions[J].Journal of Chemical Physics,1980.72(8):4350-4357.
    26.Weiss,G.H.,A perturbation analysis of the Wilemski-Fixman approximation for diffusion-controlled reactions[J].Journal of Chemical Physics,1984.80(6):2880-2887.
    27.Chen,J.Z.Y.,Tsao,H.K.,and Sheng,Y.J.,Diffusion-controlled first contact of the ends of a polymer:Crossover between two scaling regimes[J].Physical Review E,2005.72(3):031804.
    28.Eun,C.,Kim,J.H.,Lee,J.,Bae,J.H.,Lim,Y.R.,Lee,S.,and Sung,J.,Mean first passage time for the contact between the ends of a chain polymer[J].Journal of Physical Chemistry B,2007.111(35):10468-10473.
    29.Friedman,B.and O'Shaughnessy,B.,Universal Behavior in Reacting Polymer Systems[J].Physical Review Letters,1988.60(1):64-67.
    30.Friedman,B.and O'Shaughnessy,B.,Theory of polymer cyclization[J].Physical Review A,1989.40(10):5950-5959.
    31.Yeung,C.and Friedman,B.,Cyclization of Rouse chains at long- and short-time scales[J].Journal of Chemical Physics,2005.122(21):214909.
    32.Yeung,C.and Friedman,B.A.,Relation between cyclization of polymers with different initial conditions[J].Europhysics Letters,2006.73(4):621-627.
    33.Sung,J.Y.,Lee,J.,and Lee,S.,Theory of intrapolymer excimer-formation kinetics[J].Journal of Chemical Physics,2003.118(1):414-424.
    34.Ortiz-Repiso,M.,Freire,J.J.,and Rey,A.,Intramolecular reaction rates of flexible polymers.1.Simulation results and the classical theory[J].Macromolecules,1998.31(23):8356-8362.
    35.Ortiz-Repiso,M.and Rey,A.,Intramolecular reaction rates of flexible polymers.2.Comparison with the renormalization group theory[J].Macromolecules,1998.31(23):8363-8369.
    36.Sheng,Y.J.,Hsu,P.H.,Chen,J.Z.Y.,and Tsao,H.K.,Loop formation of a flexible polymer with two random reactive sites[J].Macromolecules,2004.37(24):9257-9263.
    37.Friedman,B.and O'Shaughnessy,B.,Theory of Intramolecular Reactions in Polymeric Liquids[J].Macromolecules,1993.26(18):4888-4898.
    38.Boileau,S.,Mechin,F.,Martinho,J.M.G.,and Winnik,M.A.,Cyclization Dynamics of Polymers End-to-End Cyclization of a Pyrene End-Capped Poly(Bisphenol-a Diethylene Glycol Carbonate)[J].Macromolecules,1989.22(1):215-220.
    39.Martinho,J.M.G.and Winnik,M.A.,Cyclization Dynamics of Polymers.20.Excluded Volume Effects on the End-to-End Cyclization of Polystyrene in Mixed-Solvents[J].Macromolecules,1986.19(8):2281-2284.
    40.Slomkowski,S.and Winnik,M.A.,Fluorescence Quenching in Pyrene Benzil End-Labeled Poly(Tetramethylene Oxide) - Cyclization Dynamics in Polymers.19.[J].Macromolecules,1986.19(2):500-501.
    41.Winnik,M.A.,Li,X.B.,and Guillet,J.E.,Cyclization Dynamics of Polymers.13.Effects of Added Polymer on the Conformation and Dynamics of Polystyrene Containing Evenly Spaced Pyrene Groups[J].MacromOlecules,1984.17(4):699-702.
    42.Winnik,M.A.,Redpath,T.,and Richards,D.H.,The Dynamics of End-to-End Cyclization in Polystyrene Probed by Pyrene Excimer Formation[J]. Macromolecules,1980.13(2):328-335.
    43.Winnik,M.A.,Sinclair,A.M.,and Beinert,G.,Cyclization Dynamics of Polymers.17.Probe Effects on Detection of Polymer End-to-End Cyclization[J].Macromolecules,1985.18(7):1517-1518.
    44.Lee,S.and Winnik,M.A.,Cyclization rates for two points in the interior of a polymer chain[J].Macromolecules,1997.30(9):2633-2641.
    45.Lee,S.,Winnik,M.A.,Whittal,R.M.,and Li,L.,Synthesis of symmetric fluorescently labeled poly(ethylene glycols) using phosphoramidites of pyrenebutanol and their characterization by MALDI mass spectrometry[J].Macromolecules,1996.29(9):3060-3072.
    46.Klenin,K.V.and Langowski,J.,Modeling of intramolecular reactions of polymers:An efficient method based on Brownian dynamics simulations[J].Journal of Chemical Physics,2004.121(10):4951-4960.
    47.Podtelezhnikov,A.and Vologodskii,A.,Simulations of polymer cyclization by Brownian dynamics[J].Macromolecules,1997.30(21):6668-6673.
    48.Zhou,H.X.,Comparison of three Brownian-dynamics algorithms for calculating rate constants of diffusion-influenced reactions[J].Journal of Chemical Physics,1998.108(19):8139-8145.
    49.Chen,J.Z.Y.,Tsao,H.K.,and Sheng,Y.J.,First-passage time of cyclization dynamics of a wormlike polymer[J].Europhysics Letters,2004.65(3):407-413.
    50.Binder,K.,Monte Carlo Simulation in Statistical Physics[M].1988,New York:Springer-Verlag.
    51.Newman,M.E.J.and Barkema,G.T.,Monte Carlo Methods in Statistical Physics [M].1999,New York:Oxford University Press.
    52.Guillou,J.C.L.and Zinn-Justin,J.,Critical Exponents for the n-Vector Model in Three Dimensions from Field Theory[J].Physical Review Letters,1977.39(2):95-98.
    53.Doi,M.and Edwards,S.F.,The Theory of Polymer Dynamics[M].1986,New York:Oxford University Press.
    54.Hahn,T.D.and Kovac,J.,Computer-Simulation of the Dynamics of a Polymer-Chain Terminally Attached to a Rigid Flat Surface[J].Macromolecules,1990.23(24):5153-5154.
    55.Lai,P.Y.and Binder,K.,Structure and Dynamics of Grafted Polymer Layers - a Monte-Carlo Simulation[J].Journal of Chemical Physics,1991.95(12):9288-9299.
    1.Cifra,P.and Bleha,T.,Anisotropy in the dimensional and elastic parameters of confined macromolecules[J].Macromolecular Theory and Simulations,1999.8(6):603-610.
    2.Dimitrov,D.I.,Milchev,A.,Binder,K.,Klushin,L.I.,and Skvortsov,A.M.,Universal properties of a single polymer chain in slit:Scaling versus molecular dynamics simulations[J].Journal of Chemical Physics,2008.128(23):234902.
    3.Milchev,A.and Binder,K.,A polymer chain trapped between two parallel repulsive walls:A Monte-Carlo test of scaling behavior[J].European Physical Journal B,1998.3(4):477-484.
    4.Sheng,Y.J.and Wang,M.C.,Statics and dynamics of a single polymer chain confined in a tube[J].Journal of Chemical Physics,2001.114(10):4724-4729.
    5.van Vliet,-J.H.,Luyten,M.C.,and ten Brinke,G.,Scaling Behavior of Dilute Polymer:Solutions Confined between Parallel Plates[J].Macromolecules,1992.25(14):3802-3806.
    6.Maury-Evertsz,J.R.,Estevez,L.A.,and Lopez,G.E.,Equilibrium properties of confined single-chain homopolymers[J].Journal of Chemical Physics,2003.119(18):9925-9932.
    7.Hsu,H.P.and Grassberger,P.,Polymers confined between two parallel plane walls[J].Journal of Chemical Physics,2004.120(4):2034-2041.
    8.Chen,S.B.,Monte Carlo simulations of conformations of chain molecules in a cylindricalpore[J].Journal of Chemical Physics,2005.123(7):074702.
    9.Livadaru,L.and Kreuzer,H.J.,Confinement of a polymer chain in a tube[J].New Journal of Physics,2003.5:95.
    10.de Gennes,EG.,Scaling Concepts in Polymer Physics[M].1993,Ithaca,NY:Connell University Press.
    11.Zhou,H.X.and Dill,K.A.,Stabilization of proteins in confined spaces[J].Biochemistry,2001.40(38):11289-11293.
    12.Kiimov,D.K.,Newfield,D.,and Thirumalai,D.,Simulations of beta-hairpin folding confined to spherical pores using distributed computing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(12): 8019-8024.
    13. Takagi, F., Koga, N., and Takada, S., How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: Molecular simulations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003.100(20): 11367-11372.
    14. Cheung, M.S., Klimov, D., and Thirumalai, D., Molecular crowding enhances native state stability and refolding rates of globular proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005.102(13): 4753-4758.
    15. Reisner, W., Morton, K.J., Riehn, R., Wang, Y.M., Yu, Z.N., Rosen, M., Sturm, J.C., Chou, S.Y., Frey, E., and Austin, R.H., Statics and dynamics of single DNA molecules confined in nanochannels [J]. Physical Review Letters, 2005. 94(19):196101.
    16. Reccius, C.H., Mannion, J.T., Cross, J.D., and Craighead, H.G., Compression and free expansion of single DNA molecules in nanochannels [J]. Physical Review Letters, 2005. 95(26): 268101.
    17. Choi, M.C., Santangelo, C.D., Pelletier, O., Kim, J.H., Kwon, S.Y., Wen, Z., Li, Y., Pincus, P.A., Safinya, C.R., and Kim, M.W., Direct observation of biaxial confinement of a semiflexible filament in a channel [J]. Macromolecules, 2005.38(23): 9882-9884.
    18. Balducci, A., Mao, P., Han, J.Y, and Doyle, P.S., Double-stranded DNA diffusion in slitlike nanochannels [J]. Macromolecules, 2006. 39(18): 6273-6281.
    19. Hsieh, C.C., Balducci, A., and Doyle, P.S., An experimental study of DNA rotational relaxation time in nanoslits [J]. Macromolecules, 2007. 40(14): 5196-5205.
    20. Lin, P.K., Fu, C.C., Chen, Y.L., Chen, Y.R., Wei, P.K., Kuan, C.H., and Fann, W.S., Static conformation and dynamics of single DNA molecules confined in nanoslits [J]. Physical Review E, 2007. 76(1): 011806.
    21.Balducci,A.,Hsieh,C.C.,and Doyle,ES.,Relaxation of stretched DNA in slitlike confinement[J].Physical Review Letters,2007.99(23):238102.
    22.Hsieh,C.C.,Balducci,A.,and Doyle,P.S.,Ionic effects on the equilibrium dynamics of DNA confined in nanoslits[J].Nano Letters,2008.8(6):1683-1688.
    23.Balducci,A.G.,Tang,J.,and Doyle,P.S.,Electrophoretic Stretching of DNA Molecules in Cross-Slot Nanoslit Channels[J].Macromolecules,2008.41(24):9914-9918.
    24.Wang,J.Z.and Gao,H.J.,A generalized bead-rod model for Brownian dynamics simulations of wormlike chains under strong confinement[J].Journal of Chemical Physics,2005.123(8):084906.
    25.Jendrejack,R.M.,Schwartz,D.C.,Graham,M.D.,and de Pablo,J.J.,Effect of confinement on DNA dynamics in microfluidic devices[J].Journal of Chemical Physics,2003.119(2):1165-1173.
    26.Jendrejack,R.M.,Dimalanta,E.T.,Schwartz,D.C.,Graham,M.D.,and de Pablo,J.J.,DNA dynamics in a microchannel[J].Physical Review Letters,2003.91(3):038102.
    27.Chen,Y.L.,Ma,H.,Graham,M.D.,and de Pablo,J.J.,Modeling DNA in confinement:A comparison between the brownian dynamics and lattice boltzmann method[J].Macromolecules,2007.40(16):5978-5984.
    28.Spakowitz,A.J.and Wang,Z.G.,Semiflexible polymer confined to a spherical surface[J].Physical Review Letters,2003.91(16):166102.
    29.Yang,Y.Z.,Burkhardt,T.W.,and Gompper,G.,Free energy and extension of a semiflexible polymer in cylindrical confining geometries[J].Physical Review E,2007.76(1):011804.
    30.Brochard,F.and de Gennes,P.G.,Dynamics of confined polymer chains[J].Journal of Chemical Physics,1977.67(1):52-56.
    31.Milchev,A.and Binder,K.,Dynamics of polymer chains confined in slit-like pores[J].Journal De Physique Ⅱ,1996.6(1):21-31.
    32.Hagita,K.,Koseki,S.,and Takano,H.,Relaxation ofapolymer chain confined in a slit[J].Journal of the Physical Society of Japan,1999.68(6):2144-2145.
    33.Hagita,K.and Takano,H.,Relaxation of a polymer chain confined in a tube or a slit[J].Journal De Physique Ⅳ,2000.10(7):305-308.
    34.Arnold,A.,Bozorgui,B.,Frenkel,D.,Ha,B.Y.,and Jun,S.,Unexpected relaxation dynamics of a self-avoiding polymer in cylindrical confinement[J].Journal of Chemical Physics,2007.127(16):164903.
    35.Avramova,K.and Milchev,A.,Polymer chains in a soft nanotube:A Monte Carlo Study[J].Journal of Chemical Physics,2006.124(2):024909.
    36.Huang,L.and Makarov,D.E.,The rate constant of polymer reversal inside a pore[J].Journal of Chemical Physics,2008.128(11):114903.
    37.Wagner,F.,Lattanzi,G.,and Frey,E.,Conformations of confined biopolymers[J].Physical Review E,2007.75(5):050902.
    38.Cacciuto,A.and Luijten,E.,Self-avoiding flexible polymers under spherical confinement[J].Nano Letters,2006.6(5):901-905.
    39.Cacciuto,A.and Luijten,E.,Confinement-driven translocation of a flexible polymer[J].Physical Review Letters,2006.96(23):238104.
    40.Luijten,E.and Cacciuto,A.,Translocation of polymers out of confined geometries[J].Computer Physics Communications,2007.177(1-2):150-153.
    41.Abrams,C.F.,Lee,N.K.,and Johner,A.,Diffusion/reaction in confined polymer chains[J].Macromolecules,2006.39(10):3655-3663.
    42.Lee,N.K.,Abrams,C.F.,and Johner,A.,Optimal confinement for internal polymer binding[J].Europhysics Letters,2005.72(6):922-928.
    43.Carmesin,I.and Kremer,K.,The Bond Fluctuation Method-a New Effective Algorithm for the Dynamics of Polymers in All Spatial Dimensions[J].Macromolecules,1988.21(9):2819-2823.
    44.Deutsch,H.P.and Binder,K.,lnterdiffusion and Self-Diffusion in Polymer Mixtures-a Monte-Carlo Study[J].Journal of Chemical Physics,1991.94(3):2294-2304.
    45.Luo,K.,Ala-Nissila,T.,and Ying,S.C.,Polymer translocation through a nanopore:A two-dimensional Monte Carlo study[J].Journal of Chemical Physics,2006.124(3):034714.
    46.Luo,K.F.,Huopaniemi,I.,Ala-Nissila,T.,and Ying,S.C.,Polymer translocation through a nanopore under an applied external field[J].Journal of Chemical Physics,2006.124(11):114704.
    47.Xie,Y.J.,Yang,H.Y.,Yu,H.T.,Shi,Q.W.,Wang,X.P.,and Chen,J.,Excluded volume effect on confined polymer translocation through a short nanochannel[J].Journal of Chemical Physics,2006.124(17):174906.
    48.Cui,T.,Ding,J.D.,and Chen,J.Z.Y.,Mean first-passage times of looping of polymers with intrachain reactive monomers:Lattice Monte Carlo simulations [J].Macromolecules,2006.39(16):5540-5545.
    49.Kreitmeier,S.,Wittkop,M.,and Goritz,D.,Computer simulations on the cyclic deformation of a single polymer chain above and below the Theta temperature[J].Physical Review E,1999.59(2):1982-1988.
    50.Lai,P.Y.and Binder,K.,Structure and Dynamics of Grafted Polymer Layers-a Monte-Carlo Simulation[J].Journal of Chemical Physics,1991.95(12):9288-9299.
    51.Binder,K.,Monte Carlo Simulation in Statistical Physics[M].1988,New York:Springer-Verlag.
    52.Newman,M.E.J.and Barkema,G.T.,Monte Carlo Methods in Statistical Physics [M].1999,New York:Oxford University Press.
    53.Sheng,Y.J.,Hsu,P.H.,Chen,J.Z.Y.,and Tsao,H.K.,Loop formation of a flexible polymer with two random reactive sites[J].Macromolecules,2004.37(24):9257-9263.
    54.Guillou,J.C.L.and Zinn-Justin,J.,Critical Exponents for the n-Vector Model in Three Dimensions from Field Theory[J].Physical Review Letters,1977.39(2):95-98.
    55.Doi,M.and Edwards,S.F.,The Theory of Polymer Dynamics[M].1986,New York:Oxford University Press.
    56.Nienhuis,B.,Exact Critical-Point and Critical Exponents of O(N) Models in 2Dimensions[J].Physical Review Letters,1982.49(15):1062-1065.
    57.Burkhardt,T.W.and Guim,I.,Free energy of a long,flexible,self-avoiding polymer chain in a tube[J].Physical Review E,1999.59(5):5833-5838.
    58.Hagita,K.and Takano,H.,Relaxation of a polymer chain confined in a tube[J].Journal of the Physical Society of Japan,1999.68(2):401-407.
    1.Livne,S.and Meirovitch,H.,Computer-Simulation of Long Polymers Adsorbed on a Surface.1.Corrections to Scaling in an Ideal Chain[J].Journal of Chemical Physics,1988.88(7):4498-4506.
    2.Meirovitch,H.and Livne,S.,Computer-Simulation of Long Polymers Adsorbed on a Surface.2.Critical-Behavior of a Single Self-Avoiding Walk[J].Journal of Chemical Physics,1988.88(7):4507-4515.
    3.Fleer,G.J.,Cohen Stuart,M.A.,Scheutjens,J.M.H.M.,Cosgrove,T.,and Vincent,B.,Polymers at Interfaces[M].1993,London:Chapman and Hall.
    4.Eisenriegler,E.,Polymers near Surfaces[M].1994,Singapore:World Scientific.
    5.Lai,P.Y.,Statics and Dynamics of a Polymer-Chain Adsorbed on a Surface-Monte -Carlo Simulation Using the Bond-Fluctuation Model[J].Physical Review E,1994.49(6):5420-5430.
    6.Lai,P.Y.,Statics and Dynamics of Adsorbed Polymer-Chains-a Monte-Carlo Simulation[J].Journal of Chemical Physics,1995.103(13):5742-5755.
    7.Hammersley,J.M.,Torrie,G.M.,and Whittington,S.G.,Self-Avoiding Walks Interacting with a Surface[J].Journal of Physics A-Mathematical and General,1982.15(2):539-571.
    8.Bitsanis,I.A.and Pan,C.M.,The Origin of Glassy Dynamics at Solid Oligomer Interfaces[J].Journal of Chemical Physics,1993.99(7):5520-5527.
    9.Auvray,L.,Auroy,P.,and Cruz,M.,Structure of Polymer Layers Adsorbed from Concentrated-Solutions[J].Journal De Physique Ⅰ,1992.2(6):943-954.
    10.Auvray,L.,Cruz,M.,and Auroy,P.,Irreversible Adsorption from Concentrated Polymer-Solutions[J].Journal De Physique Ⅱ,1992.2(5):1133-1140.
    11.Frantz,P.and Granick,S.,Kinetics of Polymer Adsorption and Desorption[J].Physical Review Letters,1991.66(7):899-902.
    12.Montfort,J.P.and Hadziioannou,G.,Equilibrium and Dynamic Behavior of Thin-Films ofa Perfluorinated Polyether[J].Journal of Chemical Physics,1988.88(11):7187-7196.
    13. Kallrot, N. and Linse, P., Dynamic study of single-chain adsorption and desorption [J]. Macromolecules, 2007.40(13): 4669-4679.
    14. Debell, K. and Lookman, T., Surface Phase-Transitions in Polymer Systems [J]. Reviews of Modern Physics, 1993. 65(1): 87-113.
    15. Everett, D.H., Academic Industrial Interface in Colloid Science [J]. Chemistry & Industry, 1977(21): 849-858.
    16. Ikawa, T., Hoshino, F., Matsuyama, T., Takahashi, H., and Watanabe, O., Molecular-shape imprinting and immobilization of biomolecules on a polymer containing azo dye [J]. Langmuir, 2006. 22(6): 2747-2753.
    17. Brynda, E., Pachernik, J., Houska, M., Pientka, Z., and Dvorak, P., Surface immobilized protein multilayers for cell seeding [J]. Langmuir, 2005. 21(17): 7877-7883.
    18. Mrksich, M. and Whitesides, G.M., Patterning Self Assembled Monolayers Using Microcontact Printing - a New Technology for Biosensors [J]. Trends in Biotechnology, 1995.13(6): 228-235.
    19. Merritt, M., Mrksich, M., and Whitesides, G.M., Principles of Tissue Engineering [M]. 1997, Austin. TX.: Landes.
    20. Muthukumar, M., Pattern-Recognition by Poly electrolytes [J]. Journal of Chemical Physics, 1995.103(11): 4723-4731.
    21. Bratko, D., Chakraborty, A.K., and Shakhnovich, E.I., The structure of a random heteropolymer in a disordered medium: Ensemble growth simulation [J]. Journal of Chemical Physics, 1997.106(3): 1264-1279.
    22. Golumbfskie, A.J., Pande, V.S., and Chakraborty, A.K., Simulation of biomimetic recognition between polymers and surfaces [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(21):11707-11712.
    23. Kriksin, Y.A., Khalatur, P.G., and Khokhlov, A.R., Adsorption of multiblock copolymers onto a chemically heterogeneous surface: A model of pattern recognition [J]. Journal of Chemical Physics, 2005. 122(11): 114703.
    24. Issaevitch, T.A., Jasnow, D., and Balazs, A.C., Copolymer Adsorption onto Regular Surfaces [J]. Journal of Chemical Physics, 1993. 99(10): 8244-8253.
    25. Mears, S.J., Cosgrove, T., Thompson, L., and Howell, I., Solvent relaxation NMR measurements on polymer, particle, surfactant systems [J]. Langmuir, 1998.14(5): 997-1001.
    26. Sumithra, K. and Straube, E., Adsorption of diblock copolymers on stripe-patterned surfaces [J]. Journal of Chemical Physics, 2006. 125(15): 154701.
    27. Moghaddam, M.S. and Chan, H.S., Selective adsorption of block copolymers on patterned surfaces [J]. Journal of Chemical Physics, 2006.125(16): 164909.
    28. Vilgis, T.A. and Heinrich, G, Statics and Dynamics of Heterogeneous Polymer Networks [J]. Macromolecular Theory and Simulations, 1994.3(2): 271-293.
    29. van der Linden, C.C., van Lent, B., Leermakers, F.A.M., and Fleer, G.J., Adsorption of Polymers on Heterogeneous Surfaces [J]. Macromolecules, 1994.27(7): 1915-1921.
    30. Andelman, D. and Joanny, J.F., Polymer Adsorption on Surfactant Monolayers and Heterogeneous Solid-Surfaces [J]. Journal De Physique Ⅱ, 1993. 3(1): 121-138.
    31. Baumgartner, A. and Muthukumar, M., Effects of Surface-Roughness on Adsorbed Polymers [J]. Journal of Chemical Physics, 1991.94(5): 4062-4070.
    32. Blunt, M., Barford, W., and Ball, R., Polymer Adsorption and Electron-Binding on Rough and Fractal Surfaces [J]. Macromolecules, 1989. 22(3): 1458-1466.
    33. Douglas, J.F., How Does Surface-Roughness Affect Polymer Surface Interactions [J]. Macromolecules, 1989.22(9): 3707-3716.
    34. Hone, D., Ji, H., and Pincus, P.A., Polymer Adsorption on Rough Surfaces.1. Ideal Long-Chain [J]. Macromolecules, 1987.20(10): 2543-2549.
    35. Huber, G. and Vilgis, T.A., Polymer adsorption on heterogeneous surfaces [J]. European Physical Journal B, 1998. 3(2): 217-223.
    36. Mukherji, D., Bartels, G., and Muser, M.H., Scaling laws of single polymer dynamics near attractive surfaces [J]. Physical Review Letters, 2008. 100(6):068301.
    37. Sommer, J.U. and Blumen, A., Polymers in periodic and aperiodic potentials: Localization effects [J]. Journal of Chemical Physics, 1996.105(14): 6008-6017.
    38. Renz, W. and Warner, M., Layer Hopping by Chains in Polymeric Smectics [J]. Physical Review Letters, 1986.56(12): 1268-1271.
    39. Garel, T., Orland, H., and Shakhnovich, E.I., Random Heteropolymers in Layered Fluids [J]. Journal of Chemical Physics, 1990. 93(3): 2043-2047.
    40. Stepanow, S. and Fedorenko, A.A., Adsorption of a Gaussian polymer in a periodic surface potential [J]. Europhysics Letters, 2002. 58(3): 368-374.
    41. Fedorenko, A.A. and Stepanow, S., Localization of a Gaussian polymer in a weak periodic surface potential disturbed by a single defect [J]. European Physical Journal B, 2002. 28(2): 209-215.
    42. Hochrein, M.B., Leierseder, J.A., Golubovic, L., and Radler, J.O., DNA localization and stretching on periodically microstructured lipid membranes [J].Physical Review Letters, 2006. 96(3): 038103.
    43. Gottstein, W., Kreitmeier, S., Wittkop, ML, Goritz, D., and Gotsis, F., Monte Carlo simulations of the adsorption of a single polymer chain on rough surfaces [J]. Polymer, 1997.38(7): 1607-1613.
    44. Cui, T., Ding, J.D., and Chen, J.Z.Y., Mean first-passage times of looping of polymers with intrachain reactive monomers: Lattice Monte Carlo simulations [J]. Macromolecules, 2006.39(16): 5540-5545.
    45. Cui, T., Ding, J.D., and Chen, J.Z.Y., Dynamics of a self-avoiding polymer chain in slit, tube, and cube confinements [J]. Physical Review E, 2008. 78(6): 061802.
    46. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equation of State Calculations by Fast Computing Machines [J]. Journal of Chemical Physics, 1953.21(6): 1087-1092.
    47. Chen, Y.T., Zhang, Q., and Ding, J.D., A coarse-grained model and associated lattice Monte Carlo simulation of the coil-helix transition of a homopolypeptide [J]. Journal of Chemical Physics, 2004.120(7): 3467-3474.
    48. Chen, Y.T., Zhang, Q., and Ding, J.D., A coarse-grained model for the formation of alpha helix with a noninteger period on simple cubic lattices [J]. Journal of Chemical Physics,2006.124(18):184903.
    49.吴其晔,高分子凝聚态物理及其进展[M].2006,上海:华东理工大学出版社.
    50.Rudnick,J.and Gaspari,G.,The Asphericity of Random-Walks[J].Journal of Physics A-Mathematical and General,1986.19(4):L 191-L 193.
    51.Zifferer,G.and Olaj,O.F.,Shape Asymmetry of Random-Walks and Nonreversal Random-Walks[J].Journal of Chemical Physics,1994.100(1):636-639.
    1.Sinha,V.R.and Trehan,A.,Biodegradable microspheresfor protein delivery[J].Journal of Controlled Release,2003.90(3):261-280.
    2.Sola,R.J.and Griebenow,K.,Effects of Glycosylation on the Stability of Protein Pharmaceuticals[J].Journal of Pharmaceutical Sciences,2009.98(4):1223-1245.
    3.Wang,W.,Instability,stabilization,and formulation of liquid protein pharmaceuticals[J].International Journal of Pharmaceutics,1999.185(2):129-188.
    4.Volkin,D.B.,Mach,H.,and Middaugh,C.R.,Degradative covalent reactions important to protein stability[J].Molecular Biotechnology,1997.8(2):105-122.
    5.Xie,M.L.and Schowen,R.L.,Secondary structure andprotein deamidation[J].Journal of Pharmaceutical Sciences,1999.88(1):8-13.
    6.Arakawa,T.,Prestrelski,S.J.,Kenney,W.C.,and Carpenter,J.F.,Factors affecting short-term and long-term stabilities of proteins[J].Advanced Drug Delivery Reviews,2001.46(1-3):307-326.
    7.Wang,W.,Protein aggregation and its inhibition in biopharmaceutics[J].International Journal of Pharmaceutics,2005.289(1):1-30.
    8.Chi,E.Y.,Krishnan,S.,Kendrick,B.S.,Chang,B.S.,Carpenter,J.F.,and Randolph,T.W.,Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor[J].Protein Science,2003.12(5):903-913.
    9.Chi,E.Y.,Krishnan,S.,Randolph,T.W.,and Carpenter,J.F.,Physical stability of proteins in aqueous solution:Mechanism and driving forces in nonnative protein aggregation[J].Pharmaceutical Research,2003.20(9):1325-1336.
    10.Kueltzo,L.A.,Wang,W.,Randolph,T.W.,and Carpenter,J.F.,Effects of solution conditions,processing parameters,and container materials on aggregation of a monoclonal antibody during freeze-thawing[J].Journal of Pharmaceutical Sciences,2007.97(5):1801-1812.
    11.Uhrich,K.E.,Cannizzaro,S.M.,Langer,R.S.,and Shakesheff,K.M.,Polymeric systems for controlled drug release[J].Chemical Reviews,1999.99(11):3181-3198.
    12.Qiu,Y.and Park,K.,Environment-sensitive hydrogels for drug delivery[J].Advanced Drug Delivery Reviews,2001.53(3):321-339.
    13.Yu,L.and Ding,J.D.,Injectable hydrogels as unique biomedical materials[J].Chemical Society Reviews,2008.37(8):1473-1481.
    14.Silva,A.K.A.,Richard,C.,Bessodes,M.,Scherman,D.,and Merten,O.W.,Growth Factor Delivery Approaches in Hydrogels[J].Biomacromolecules,2009.10(1):9-18.
    15.Bittner,B.and Kissel,T.,Ultrasonic atomization for spray drying:a versatile technique for the preparation of protein loaded biodegradable microspheres[J].Journal of Microencapsulation,1999.16(3):325-341.
    16.Elvira,C.,Fanovich,A.,Fernandez,M.,Fraile,J.,San Roman,J.,and Domingo,C.,Evaluation of drug delivery characteristics of microspheres of PMMA-PCL-cholesterol obtained by supercritical-C02 impregnation and by dissolution-evaporation techniques[J].Journal of Controlled Release,2004.99(2):231-240.
    17.McNeil,S.,Rosenkrands,I.,Agger,E.M.,Andersen,P.,and Perrie,Y.,Liposomes as efficient protein carriers:Liposome formulation and the effect of lipid composition[J].Journal of Pharmacy and Pharmacology,2006.58:A11-A12.
    18.Kim,J.C.and Kim,J.D.,Release property of temperature-sensitive liposome containing poly(N-isopropylacrylamide)[J].Colloids and Surfaces B-Biointerfaces,2002.24(1):45-52.
    19.Kawakami,H.,Hiraka,K.,Tamai,M.,Horiuchi,A.,Ogata,A.,Hatsugai,T.,Yamaguchi,A.,Oyaizu,K.,and Yuasa,M.,pH-sensitive liposome retaining Fe-porphyrin as SOD mimic for novel anticancer drug delivery system[J].Polymers for Advanced Technologies,2007.18(1):82-87.
    20.Joshi,M.D.and Muller,R.H.,Lipid nanoparticles.for parenteral delivery of actives[J].European Journal of Pharmaceutics and Biopharmaceutics,2009.71(2):161-172.
    21.Torchilin,V.P.,Micellar nanocarriers:Pharmaceutical perspectives[J].Pharmaceutical Research,2007.24(1):1-16.
    22.Allemann,E.,Gurny,R.,and Doelker,E.,Drug-Loaded Nanoparticles-Preparation Methods and Drug Targeting Issues[J].European Journal of Pharmaceutics and Biopharmaceutics,1993.39(5):173-191.
    23.Kasuya,T.and Kuroda,S.,Nanoparticles for human liver-specific drug and gene delivery systems:in vitro and in vivo advances[J].Expert Opinion on Drug Delivery,2009.6(1):39-52.
    24.杨子刚.多尺度的司降解湿敏型水凝胶的制备以及基于微凝皎的蛋白质包裹工艺的研究.2008,复旦大学博士学位论文,上海.
    25.Peppas,N.A.,Hilt,J.Z.,Khademhosseini,A.,and Langer,R.,Hydrogels in biology and medicine:From molecular principles to bionanotechnology[J].Advanced Materials,2006.18(11):1345-1360.
    26.Hoffman,A.S.,Hydrogels for biomedical applications[J].Advanced Drug Delivery Reviews,2002.54(1):3-12.
    27.Tanaka,T.,Collapse of Gels and Critical Endpoint[J].Physical Review Letters,1978.40(12):820-823.
    28.俞麟,司注射性水凝胶的合成、物堙凝皎化及其甬于药物缓释载体的研究.2007,复旦大学博士学位论文,上海.
    29.张颖,新型蛋白质药物缓释裁载的研究.2005,复旦大学博士后出站报告,上海.
    30.Ruel-Gariepy,E.and Leroux,J.C.,In situ-forming hydrogels-review of temperature-sensitive systems[J].European Journal of Pharmaceutics and Biopharmaceutics,2004.58(2):409-426.
    31.Kabanov,A.V.,Batrakova,E.V.,and Alakhov,V.Y.,Pluronic((R)) block copolymers for overcoming drug resistance in cancer[J].Advanced Drug Delivery Reviews,2002.54(5):759-779.
    32.Kabanov,A.V.,Lemieux,P.,Vinogradov,S.,and Alakhov,V.,Pluronic((R)) block copolymers: novel functional molecules for gene therapy [J]. Advanced Drug Delivery Reviews, 2002. 54(2): 223-233.
    33. Chung, H.J., Lee, Y.H., and Park, T.G, Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery [J]. Journal of Controlled Release, 2008. 127(1): 22-30.
    34. Ma, W.D., Xu, H., Wang, C, Nie, S.F., and Pan, W.S., Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system [J]. International Journal of Pharmaceutics, 2008. 350(1-2):247-256.
    35. Shelke, N.B. and Aminabhavi, T.M., Synthesis and characterization of novel poly (sebacic anhydride-co-Pluronic F68/F127) biopolymeric microspheres for the controlled release of nifedipine [J]. International Journal Of Pharmaceutics, 2007. 345(1-2): 51-58.
    36. Yoon, J.J., Chung, H.J., and Park, T.G, Photo-crosslinkable and biodegradable pluronic/heparin hydrogels for local and sustained delivery of angiogenic growth factor [J]. Journal Of Biomedical Materials Research Part A, 2007. 83A:597-605.
    37. Lee, S.Y. and Tae, G, Formulation and in vitro characterization of an in situ gelable, photo-polymerizable Pluronic hydrogel suitable for injection [J]. Journal Of Controlled Release, 2007.119(3): 313-319.
    38. Liu, Y., Lu, W.L., Wang, H.C., Zhang, X., Zhang, H., Wang, X.Q., Zhou, T.Y., and Zhang, Q., Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic (R) F127 hydrogel for subcutaneous administration: In vitro and in vivo characterization [J]. Journal Of Controlled Release, 2007. 117(3): 387-395.
    39. Bromberg, L., Polymeric micelles in oral chemotherapy [J]. Journal Of Controlled Release, 2008. 128(2): 99-112.
    40. Nanjawade, B.K., Manvi, F.V., and Manjappa, A.S., In situ.-forming hydrogels for sustained ophthalmic drug delivery [J]. Journal Of Controlled Release, 2007. 122:119-134.
    41.Murdan,S.,Organogels in drug delivery[J].Expert Opin Drug Deliv,2005.2(3):489-505.
    42.Cleary,J.,Bromberg,L.F.,and Magnet,E.,Diffusion and release of solutes in pluronic-g-poly(acrylic acid) hydrogels[J].Langmuir,2003.19(22):9162-9172.
    43.Bromberg,L.,Temchenko,M.,and Hatton,T.A.,Smart microgel studies.Polyelectrolyte and drug-absorbing properties of microgels from polyether-modifiedpoly(acrylic[J].Langmuir,2003.19(21):8675-8684.
    44.Zhang,Y.,Zhu,W.,Wang,B.B.,and Ding,J.D.,A novel microgel and associated post-fabrication encapsulation technique of proteins[J].Journal of Controlled Release,2005.105(3):260-268.
    45.Wang,B.,Zhu,W.,Zhang,Y.,Yang,Z.G.,and Ding,J.D.,Synthesis of a chemically-crosslinked thermo-sensitive hydrogel film and in situ encapsulation of model protein drugs[J].Reactive & Functional Polymers,2006.66(5):509-518.
    46.Zhu,W.,Wang,B.B.,Zhang,Y.,and Ding,J.D.,Preparation of a thermosensitive and biodegradable microgel via polymerization of macromonomers based on diacrylated Pluronic/oligoester copolymers[J].European Polymer Journal,2005.41(9):2161-2170.
    47.汪家政and范明,蛋白质技术手册[M].2000,北京:科学出版社.
    48.潘祖仁,悬浮聚合[M].1997,北京:化学工业出版社.
    49.吕文琦、聚合反应及大单体凝胶化的动态蒙特卡罗模拟.2006,复旦大学博士学位沦为,上海.
    50.Yang,Z.G.and Ding,J.D.,A thermosensitive and biodegradable physical gel with chemically crosslinked nanogels as the building block[J].Macromolecular Rapid Communications.2008.29(9):751-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700