载紫杉醇聚乳酸类纳微球的制备及体外药效学比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫杉醇(Paclitaxel,PTX)是一种天然广谱抗癌新药,广泛应用于临床,是多种肿瘤的一线化疗药物,但其难溶性给临床给药带来了巨大挑战。为了增加其溶解性,紫杉醇传统临床制剂中加入的助溶剂聚氧乙烯蓖麻油容易引起过敏、肾毒性及神经毒性等毒副作用。为避免相关毒副作用并增加紫杉醇的溶解性,以微球制剂作为紫杉醇递送系统具有极广阔的应用前景。
     本论文首先采用快速膜乳化技术结合溶剂挥发法制备了粒径均一的载紫杉醇聚乳酸(Polylactic acid,PLA)、聚乳酸-羟基乙酸共聚物[Poly(lactic-co-glycolic acid),PLGA]和聚(乳酸-聚乙二醇)二嵌段共聚物[(Monomethoxypoly(ethylene glycol)-b-poly-DL-lactic acid),PELA]微球,并对三种载药微球的表面形貌、粒径分布进行表征,以及系统考察材料析出速率、亲疏水性对药物在微球内分布、载药率、包埋率、体外释放行为以及体外药效的影响,以希望筛选出合适的载紫杉醇聚乳酸材料,并对其进行了表面改性修饰以及不同粒径微球的制备、各种表征以及体外药效学比较研究。研究所得结果主要如下:
     采用快速膜乳化技术结合溶剂挥发法成功制备了载紫杉醇PLA、PLGA和PELA微球,其粒径大小均在900 nm左右,且粒径分布均一,分散性良好;PLA和PLGA微球表面比较圆整光滑而PELA微球表面则呈现褶皱;PTX、PLA、PLGA和PELA材料在微球固化过程中,随着二氯甲烷的发挥,其不同的析出速率导致了药物在微球内的不同分布,透射电镜图片显示PLA、PLGA微球内药物分布较为均一,PELA微球则有片状结构。由于PLA、PLGA和PELA三种材料亲疏水性的不同导致了微球载药率、包埋率及体外释放行为的不同,综合比较实验结果,亲水性适中的PLGA微球的载药率和包埋率(5.15%,70.46%)最高,并具有较快的体外释放行为。
     PLA、PLGA和PELA三种载药微球的细胞杀伤效果的定性定量结果均表明,PLA、PLGA及PELA三种空白微球均无明显的细胞毒性,表明三种材料都具有良好的生物相容性和安全性;与Taxol?相比,PLA,PLGA和PELA三种载药微球均表现出较强的细胞杀伤效果;三种载药微球相比较,PLGA载药微球表现出最为显著的细胞杀伤效果;三种微球的细胞内吞结果表明,PLGA微球的细胞内吞量最多,其次是PELA和PLA微球。综合上述实验结果,较PLA和PELA,PLGA材料是最为合适的紫杉醇载体材料。
     快速膜乳化技术结合溶剂挥发法制备了载紫杉醇PLGA微球,并用壳聚糖衍生物(HTCC)对PLGA微球表面进行镀层修饰,比较了修饰前后载药微球的形貌、粒径、电位、载药率、释药行为和细胞杀伤效果。结果表明,修饰后微球表面圆整光滑,平均粒径为882 nm,载药率可达5.15%,包埋率达70.46%、体外释药22天累积释药率为70.17%,与修饰前没有显著性差异;但修饰后微球表面电荷由修饰前的?14.8 mV翻转为+36.7 mV,肿瘤细胞对PLGA和HTCC-PLGA载药微球的内吞量分别是Taxol?的5.6倍和9.7倍,且HTCC-PLGA载药微球的细胞杀伤效果显著,是一种有潜力的难溶性药物递送系统。
     快速膜乳化技术结合溶剂扩散法制备不同粒径的载紫杉醇PLGA微球,通过将乳液依次通过不同膜孔径的SPG膜制备了198.2 nm和864.9 nm的载紫杉醇PLGA微球。研究结果表明,两种微球的表面较圆整光滑,粒径均一,且分散性良好;198.2 nm载药PLGA微球的载药率、包埋率以及释放速率均低于864.9 nm载药PLGA微球;但其细胞杀伤效果显著优于864.9 nm载药PLGA微球,主要是由于小粒径微球更利于细胞对其摄取和内吞。
Paclitaxel(PTX) has been widely used as a potent anti-drug for the treatment of various types of tumors, but its poor water-solubility has been a huge challenge for clinical application. Cremephor EL as the solvents of paclitaxel in clinical setting has caused serious side effects such as hypersentivity, nephrotoxicity, neurotoxicity and so on. In order to avoid these problems and improve solubility, microspheres as the drug delivery systems has extremely attractive and broad prospects.
     In this paper, uniform-sized poly (DL-lactic acid) (PLA), poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol-co-lactide acid) (PELA) microspheres containing PTX were prepared by premix membrane emulsification technique integrated with solvent evaporation method, and then the shape and surface morphology of PLA, PLGA and PELA microspheres were observed by scanning electron microscope. In order to choose the most suitbale carrier polymers of PTX, different precipitation rates of the polymers were throughly analyzed, and its corresponding effects on the distribution and crystallization of
     PTX in microspheres, loading and encapsulation efficiency, the release profile and antitumor activity in vitro were systematically investigated. The PTX-loaded microspheres prepared by the most suitable polymers were modified on the surface and varied in size, the effects on the surface morphology, loading efficiency, encapsulation efficiency, release profile and antitumor activity in vitro were observed, the research results were as follows: PTX-loaded PLA, PLGA and PELA microspheres were prepared by premix membrane emulsification technique combined with solvent evaporation method. The result of size distribution suggested that the average diameters of three microspheres were about 900 nm, and the corresponding size distribution were narrow; PLA and PLGA microspheres were spherical with a smooth surface, while PELA microspheres was spherical with a porous and rough surface; In the process of microspheres formation, the precipitation rate of PTX and polymers PLA, PLGA and PELA during the evaporation of DCM resulted in the different distributions and crystallization of PTX in microspheres. It was found that PTX was uniformly distributed in PLA microspheres, and PTX aggregation existed in PLGA microspheres, while the flake of PTX was formed in PELA microspheres. The different hydrophobicity of polymers further led to different loading and encapsulation efficiency, release profile in vitro and cytotoxcity. The PLGA microspheres showed the highest loading and encapsulation efficiency of PTX (5.15%, 70.46%) and the fastest drug release in vitro.
     The antitumor activity in vitro of PTX-loaded PLA, PLGA and PELA microspheres was evaluated and the results suggested that PLA, PLGA and PELA polymers had no cytotoxicity and demonstrated excellent biocompatibility and safety; PTX-loaded PLA, PLGA and PELA microspheres showed excellent antitumor activity in vitro compared with Taxol?, and PTX-PLGA microspheres showed the most excellent antitumor activity compared with PLA and PELA microspheres; And the internalization amounts of PLGA microspheres were the highest, followed by PELA microspheres, and the amounts of PLA microspheres uptaken by cells were the lowest. Therefore, PLGA microspheres have great potential as delivery carriers for PTX.
     PTX-loaded PLGA microspheres and surface modified PTX-PLGA microspheres with HTCC were prepared by premix membrane emulsification technique combined with solvent evaporation method. Then the corresponding effects on surface morphology, loading efficiency and encapsulation efficiency, release profile and antitumor activity in vitro were systematically investigated. The results showed the mean diameter of PTX-loaded HTCC-PLGA microspheres was 882 nm, the loading and encapsulation efficiency were 5.15% and 70.46%, and the cumulative release rate in vitro for 22 days was 70.17%, which had little difference with PTX-loaded PLGA microspheres. However, PTX-loaded HTCC-PLGA microspheres showed positive surface charge at +36.7 mV while PLGA was ?14.8 mV. The intracellular PTX incubated with PTX-loaded PLGA and PLGA-HTCC microspheres was 5.6 and 9.7 times as much as that of Taxol?, and HTCC-PLGA microspheres showed lower cell viability than PLGA microspheres. Therefore, PTX-loaded HTCC-PLGA microspheres were identified as the potential delivery system for insoluble drug PTX.
     PTX-loaded PLGA microspheres of 198.2 nm and 864.9 nm were prepared by premix membrane emulsification technique combined with solvent diffusion method. In the process, the emulsion solution was pressured successively through different SPG membrane with different membrane aperture. The study result exhibited that these microspheres were spherical with a smooth surface and the corresponding size distribution were narrow; The loading efficiency and encapsulation efficiency of PTX-loaded PLGA microspheres of 198.2 nm were lower than those of 864.9 nm; However, PTX-loaded PLGA microspheres of 198.2 nm showed lower cell viability than those of 864.9 nm due to advantage of smaller sized microspheres in cellular uptake.
引文
[1] Lorigan P C, Crosby T, Coleman R E. Current drug treatment guidelines for epithelial ovarian cancer[J]. Drugs, 1996, 51(4): 571-584.
    [2] Zambaux M F, Bonneaux F, Gref R, et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method[J]. Journal of Controlled Release, 1998, 50(1-3): 31-40.
    [3]孙燕.内科肿瘤学[J].人民卫生出版社, 2001: 431-433.
    [4] Schiff P B, Fant J, Horwitz S B. Promotion of microtubule assembly in vitro by taxol[J]. Nature, 1979, 277(5698): 665-667.
    [5] Liang H F, Chen C T, Chen S C, et al. Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer[J]. Biomaterials, 2006, 27(9): 2051-2059.
    [6] Safavy A, Bonner J A, Waksal H W, et al. Synthesis and biological evaluation of paclitaxel-C225 conjugate as a model for targeted drug delivery[J]. Bioconjugate Chem, 2003, 14(2): 302-310.
    [7]唐朝晖,钟德玝.紫杉醇抗肿瘤的分子机制[J].中国临床康复, 2006, 10(7): 125-127.
    [8] Janssen-Heininger Y M W, Poynter M E, Baeuerle P A. Recent advances torwards understanding redox mechanisms in the activation of nuclear factor [kappa] b[J]. Free Radical Biology and Medicine, 2000, 28(9): 1317-1327.
    [9] Tije A J, Verweij J, Loos W J, et al. Pharmacological effects of formulation vehicles: implications for cancer chemotherapy[J]. Clinical pharmacokinetics, 2003, 42(7): 665-685.
    [10] Gelderblom H, Verweij J, Nooter K, et al. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation[J]. Eur J Cancer, 2001, 37(13): 1590-1598.
    [11]黄义昆.脂质体作为药物载体研究进展[J].中国药师, 2005, 8(7): 549-550.
    [12]王星星,朱维培.卵巢癌患者术后力朴素与顺铂联合静脉化疗的疗效观察[J].中国现代医药杂志, 2012, 13(11): 23-25.
    [13] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance[J]. Advanced drug delivery reviews, 2001, 47(1): 113-131.
    [14] Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review[J]. Journal of controlled release : official journal of the Controlled Release Society, 2000, 65(1-2): 271-284.
    [15] Kim S C, Kim D W, Shim Y H, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy[J]. Journal of controlled release : official journal of the Controlled Release Society, 2001, 72(1-3): 191-202.
    [16]余巧,潘仕荣,杜卓.紫杉醇自组装核壳型纳米胶束的制备与性能[J].药学学报, 2008, 43(4): 408-414.
    [17] Macro Falciani. United States Paten, Patent No:US 6,652 ,884B2. Method for the treatment of solidtumors by albumin microparticles incorporating paclitaxel[J]. 2003.
    [18] Jackson J K, Hung T, Letchford K, et al. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers[J]. Int J Pharm, 2007, 342(1-2): 6-17.
    [19] Lv P P, Wei W, Yue H, et al. Porous Quaternized Chitosan Nanoparticles Containing Paclitaxel Nanocrystals Improved Therapeutic Efficacy in Non-Small-Cell Lung Cancer after Oral Administration[J]. Biomacromolecules, 2011, 12(12): 4230-4239.
    [20]龚金兰等.肿瘤靶向性药物载体叶酸-壳聚糖微球的制备及其性能研究[J].南方医科大学学报, 2008, 28(12): 2183-2186.
    [21] Patil Y, Sadhukha T, Ma L N, et al. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance[J]. Journal of Controlled Release, 2009, 136(1): 21-29.
    [22] Malcolmson C, Lawrence M J. A comparison of the incorporation of model steroids into non-ionic micellar and microemulsion systems[J]. The Journal of pharmacy and pharmacology, 1993, 45(2): 141-143.
    [23] He L, Wang G L, Zhang Q. An alternative paclitaxel microemulsion formulation: hypersensitivity evaluation and pharmacokinetic profile[J]. Int J Pharm, 2003, 250(1): 45-50.
    [24] Lee S, Seo D H, Kim H W, et al. Investigation of inclusion complexation of paclitaxel by cyclohenicosakis-(1→2)-(beta-D-glucopyranosyl), by cyclic-(1→2)-beta-D-glucans (cyclosophoraoses), and by cyclomaltoheptaoses (beta-cyclodextrins)[J]. Carbohydrate research, 2001, 334(2): 119-126.
    [25]殷殿书,葛志强,刘昌孝,等.紫杉醇透明质酸冻干制剂的制备和药动学研究[J].中草药, 2005, 36(2): 192-195.
    [26] Jackson J K, Zhang X C, Llewellen S, et al. The characterization of novel polymeric paste formulations for intratumoral delivery[J]. Int J Pharm, 2004, 270(1-2): 185-198.
    [27] Dhanikula A B, Panchagnula R. Localized paclitaxel delivery[J]. Int J Pharm, 1999, 183(2): 85-100.
    [28] Farb A, Heller P F, Shroff S, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent[J]. Circulation, 2001, 104(4): 473-479.
    [29] Chen H M, Langer R. Oral particulate delivery: status and future trends[J]. Advanced drug delivery reviews, 1998, 34(2-3): 339-350.
    [30] Langer R. Biomaterials in drug delivery and tissue engineering: One laboratory's experience[J]. Accounts Chem Res, 2000, 33(2): 94-101.
    [31]盛文博,朱晓斐,苏佳灿.药物纳米微囊系统材料的选择及制备[J].中国组织工程研究与临床康复, 2010, 14(025): 4709-4712.
    [32] Soppimath K S, Aminabhavi T M, Kulkarni A R, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. Journal of Controlled Release, 2001, 70(1-2): 1-20.
    [33] Jalil R, Nixon J R. Biodegradable Poly(Lactic Acid) and Poly(Lactide-Co-Glycolide) Microcapsules - Problems Associated with Preparative Techniques and Release Properties[J]. J Microencapsul, 1990, 7(3): 297-325.
    [34] Abeylath S C, Ganta S, Iyer A K, et al. Combinatorial-Designed Multifunctional PolymericNanosystems for Tumor-Targeted Therapeutic Delivery[J]. Accounts Chem Res, 2011, 44(10): 1009-1017.
    [35] Guo J W, Gao X L, Su L N, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery[J]. Biomaterials, 2011, 32(31): 8010-8020.
    [36] Liu R, Huang S S, Wan Y H, et al. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro[J]. Colloid Surface B, 2006, 51(1): 30-38.
    [37] Li X H, Zhang Y H, Yan R H, et al. Influence of process parameters on the protein stability encapsulated in poly-DL-lactide-poly(ethylene glycol) microspheres[J]. Journal of Controlled Release, 2000, 68(1): 41-52.
    [38] Zhou S B, Liao X Y, Li X H, et al. Poly-D,L-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems[J]. Journal of Controlled Release, 2003, 86(2-3): 195-205.
    [39] Meng F T, Ma G H, Qiu W, et al. W/O/W double emulsion technique using ethyl acetate as organic solvent: effects of its diffusion rate on the characteristics of microparticles[J]. Journal of Controlled Release, 2003, 91(3): 407-416.
    [40] Jain R A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices[J]. Biomaterials, 2000, 21(23): 2475-2490.
    [41]包文超,周加祥,罗九甫,等.蛋白质/多肽类药物的可降解缓释微球制备方法和应用相关问题[J].化学世界, 2005, 46(1): 50-53.
    [42] Maruyama A, Ohmori H. Fluorescent labeling of rat auditory brainstem circuits for synaptic and electrophysiological studies[J]. J Neurosci Meth, 2006, 152(1-2): 163-172.
    [43] Song E Y, VanDunk C, Kuddo T, et al. Measurement of Vasoactive Intestinal Peptide using a Competitive Fluorescent Microsphere Immunoassay or ELISA in human blood samples[J]. J Immunol Methods, 2005, 300(1-2): 63-73.
    [44] Wang D Q, Li H, Hu J, et al. Synthesis of micron-size functional polystyrene fluorescent microspheres and their adsorbability to human serum albumin[J]. Chinese Chem Lett, 2004, 15(5): 571-574.
    [45] Pavanetto F, Conti B, Genta I, et al. Solvent Evaporation, Solvent-Extraction and Spray Drying for Polylactide Microsphere Preparation[J]. Int J Pharm, 1992, 84(2): 151-159.
    [46] Hincal A A, Kas H S. Microencapsulation technology: Interfacial polymerization method. In: Wise D L, ed. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker, 2000: 271-286.
    [47] Vrancken M N, Clays D A. Method for encapsulating water and compounds in aqueous phase by extraction. United States Patent Office, 1970, 3,526,906.
    [48] Kitajima M, Kondo A. Fermentation without multiplication of cells using microparticles that contain zymase complex and muscle enzyme extract. Bull. Chem. Soc. Jpn., 1971, 44: 3201–3202.
    [49] Ogawa Y, Yamamoto M, Takada S, et al. Controlled-release of leuprolide acetate from polylactic acid or copoly(lactic/glycolic) acid microcapsules: influence of molecular weight and copolymer ratio of polymer[J]. Chemical & pharmaceutical bulletin, 1988, 36(4): 1502-1507.
    [50]陈庆华,张强.药物微囊化新技术及应用M,人民卫生出版社, 2008, 27-28.
    [51] T. Nakashima, M. Shimizu, M. Kukizaki. Membrane emulsification by microporous glass. Key Eng Matr., 1991, 61/62: 513~516.
    [52] Wang L Y, Ma G H, Su Z G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug[J]. Journal of Controlled Release, 2005, 106(1-2): 62-75.
    [53] Wei W, Wang L Y, Yuan L, et al. Preparation and application of novel microspheres possessing autofluorescent properties[J]. Adv Funct Mater, 2007, 17(16): 3153-3158.
    [54] Katoh R, Asano Y, Furuya A, et al. Preparation of food emulsions using a membrane emulsification system[J]. J Membrane Sci, 1996, 113(1): 131-135.
    [55] Ma G H, Nagai M, Omi S. Effect of lauryl alcohol on morphology of uniform polystyrene-poly(methyl methacrylate) composite microspheres prepared by porous glass membrane emulsification technique[J]. Journal of colloid and interface science, 1999, 219(1): 110-128.
    [56] Ma G H, Nagai M, Omi S. Study on preparation and morphology of uniform artificial polystyrene-poly(methyl methacrylate) composite microspheres by employing the SPG (Shirasu Porous Glass) membrane emulsification technique[J]. Journal of colloid and interface science, 1999, 214(2): 264-282.
    [57] Ma G H, Su Z G, Omi S, et al. Microencapsulation of oil with poly(styrene-N,N-dimethylaminoethyl methacrylate) by SPG emulsification technique: Effects of conversion and composition of oil phase[J]. Journal of colloid and interface science, 2003, 266(2): 282-294.
    [58] Liu R, Ma G H, Wan Y H, et al. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method[J]. Colloid Surface B, 2005, 45(3-4): 144-153.
    [59] Hincal A A, Kas H S. Microencapsulation technology: Interfacial polymerization method. In: Wise D L, ed. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker, 2000: 271-286.
    [60] Mine Y, Shimizu M, Nakashima T. Preparation and stabilization of simple and multiple emulsions using a microporous glass membrane[J]. Colloids and Surfaces B: Biointerfaces, 1996, 6(4-5): 261-268.
    [61] Kandori K, Kishi K, Ishikawa T. Preparation of monodispersed W/O emulsions by Shirasu-porous-glass filter emulsification technique[J]. Colloids and surfaces, 1991, 55: 73-78.
    [62] Anneke Gijsbertsen-Abrahamse. Membrane emulsification: process principles. Thesis Wageningen University, The Netherlands, 2003.
    [63] Marilyn Rayner, Gun tragardh. Membrane emulsification modeling: how can we get from characterisation to desigh[J]. Desalination., 2002, 145: 165-172.
    [64] Schr?der V, Behrend O, Schubert H. Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes[J]. Journal of colloid and interface science, 1998, 202(2): 334-340.
    [65] Williams R, Peng S, Wheeler D, et al. Controlled Production of Emulsions Using a Crossflow Membrane: Part II: Industrial Scale Manufacture[J]. Chemical Engineering Research and Design, 1998, 76(8): 902-910.
    [66] Xu J, Luo G, Chen G, et al. Experimental and theoretical approaches on droplet formation from a micrometer screen hole[J]. J Membrane Sci, 2005, 266(1): 121-131.
    [67] Omi S. Preparation of monodisperse microspheres using the Shirasu porous glass emulsificationtechnique[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 109: 97-107.
    [68] Yasuno M, Nakajima M, Iwamoto S, et al. Visualization and characterization of SPG membrane emulsification[J]. J Membrane Sci, 2002, 210(1): 29-37.
    [69] SUZUKI K, SHUTO I, HAGURA Y. Characteristics of the membrane emulsification method combined with preliminary emulsification for preparing corn oil-in-water emulsions[J]. Food Science and Technology International, Tokyo, 1996, 2(1): 43-47.
    [70] Lv P P, Wei W, Gong F L, et al. Preparation of uniformly sized chitosan nanospheres by a premix membrane emulsification technique[J]. Ind Eng Chem Res, 2009, 48(19): 8819-8828.
    [71]殷德政,熊卓,张人佶,等.相分离法制备PLGA微米-纳米多孔结构研究[J].材料导报, 2006, 20(F11): 393-396.
    [72] Takashima Y, Saito R, Nakajima A, et al. Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres[J]. Int J Pharm, 2007, 343(1-2): 262-269.
    [73]庄秋虹,张正国,方晓明.微/纳米胶囊相变材料的制备及应用进展[J].化工进展, 2006, 25(4): 388-391.
    [74]曾烨婧,王连艳,马光辉,等.快速膜乳化法制备载紫杉醇聚乳酸类微球[J].过程工程学报, 2010, 10(3):568-575.
    [75] Yue Z G, Wei W, Lv P P, et al. Surface Charge Affects Cellular Uptake and Intracellular Trafficking of Chitosan-Based Nanoparticles[J]. Biomacromolecules, 2011, 12(7): 2440-2446.
    [76] Panagi Z, Beletsi A, Evangelatos G, et al. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles[J]. Int J Pharm, 2001, 221(1): 143-152.
    [77] Weissenb?ck A, Wirth M, Gabor F. WGA-grafted PLGA-nanospheres: preparation and association with Caco-2 single cells[J]. Journal of Controlled Release, 2004, 99(3): 383-392.
    [78] Yin Win K, Feng S S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs[J]. Biomaterials, 2005, 26(15): 2713-2722.
    [79] Wu J, Wei W, Wang L Y, et al. A thermosensitive hydrogel based on quaternized chitosan and poly (ethylene glycol) for nasal drug delivery system[J]. Biomaterials, 2007, 28(13): 2220-2232.
    [80] Chakravarthi S S, Robinson D H. Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles[J]. Int J Pharm, 2011, 409(1-2): 111-120.
    [81]阎晓霏,陈劲春.壳聚糖修饰的Lysozyme-PLGA阳离子纳米药物的制备与表征[J].北京化工大学学报(自然科学版), 2010, 37(2):39-43.
    [82] Ebel J P. A Method for Quantifying Particle Absorption from the Small-Intestine of the Mouse[J]. Pharmaceutical research, 1990, 7(8): 848-851.
    [83] Yue H, Wei W, Yue Z G, et al. Particle size affects the cellular response in macrophages[J]. European Journal of Pharmaceutical Sciences, 2010, 41(5): 650-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700