新型可降解树枝状大分子及抗肿瘤前药的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物的控制释放和在人体内的靶向性给药研究是当今化学、医学和药学领域中的一项热点。如何使药物快速准确的到达病灶部位和使药物在安全疗效范围内长效释放是当今给药技术的一个重要课题。大分子前药是以大分子化合物为载体的一种新的药物传输体系。其结构主要包括:大分子载体、小分子活性药物、连接基和定位基。生物可降解高分子,由于它们在体内可以降解,降解产物可以被机体吸收或代谢,不存在积累在体内的危险,因此成为药物释放体系的载体的首选材料。作为药物载体的材料应包括以下几个优点:良好的生物相容性,结构精确可控,分子量分布较窄,低的毒性和免疫性,可生物降解性和有高效的药物装载能力。
     树枝状大分子高支化度、球形外状、表面的多官能化和尺寸的精确可控性等都为其作为药物载体提供了得天独厚的条件。树枝状大分子是一类新型高效的非生物载体,在医药领域有着极为广阔的应用前景,通过化学合成可以使树枝状大分子具有精确的结构和形态,可以明显提高单分子药物载体的载药量,使得给药过程在纳米尺度上得到实现。但是,目前的树枝状大分子作为药物载体,存在着生物相容性较差,毒性大,不可降解等问题,限制了其应用。
     我们设计了一种由丙三醇和羟基乙酸齐聚物等生物毒性低的材料组成的树枝状大分子,由于其中间以酯键相连接,具有良好的可降解性。将树枝状大分子键接上具有良好生物形容性和水溶性的PEG后,可以形成一种具有良好生物相容性、低的生物毒性、分子量分布较宰的和具有可降解性的药物载体。通过合成不同长度的羟基乙酸齐聚物,可以控制其药代动力学行为,期望其能作为一种优秀的药物载体。
     本文设计制备了以丙三醇及羟基乙酸齐聚物为模版的哑铃型树枝状聚合物,及以聚乙二醇-树枝状大分子为载体的聚合物胶束给药系统。本论文对树枝状大分子、两亲性树枝状大分子聚合物的合成、表征,以及载药胶束的形态尺寸等都进行了研究。具体内容摘要如下:
     1、采用基团保护的方法成功合成了结构精确可控的羟基乙酸齐聚物,其中以叔丁基作为羧基保护基团。以丙三醇和羟基乙酸齐聚物为模版,采用收敛法合成了不同代数的树枝状大分子。最后,以癸二酸为核,采用收敛法合成了三代的哑铃型树枝状大分子并采用质子核磁共振(1H NMR)对其结构进行了表征。
     2、MPEG的端羟基与丁二酸酐在4,4'-二甲基氨基吡啶存在下反应,便得到端羧基的MPEG。以二环己基碳二亚胺(DCC)为缩合剂、4,4'-二甲基氨基吡啶(DMAP)作催化剂,制得了端基为羧基的聚乙二醇单甲醚-三代树枝状大分子两嵌段共聚物。进一步将嵌段聚合物接上紫杉醇,制备出结构精确的抗肿瘤前药。并采用质子核磁共振(1H NMR)以及凝胶色谱仪(GPC)对其进行了表征。
     3、采用荧光探针法测定了聚合物前药的临界胶束浓度(CMC),考察了其胶束化行为。
Controlled drug release is one of the most important tasks in pharmaceutics. Great progress has been made in this field, and many materials and systems have been developed to satisfy the requirements for controlled delivery of a variety of drugs. Prodrug is a new drug delivery system (DDS) based on polymer compounds. Its structure includes polymer carrier, active drug, spacer and targeting moiety. With the development of biodegradable polymers which are degradable, resorbable and metabolizable in human body without danger of accumulation, they have become the preferred candidates for DDS carriers. The candidates as carriers for drug delivery systems should include these advantages: excellent biocompatibility, the precise and well-defined structure, the low polydispersity.
     The unique properties of dendrimers, such as their high degree of branching, globular architecture, multivalency, and well-defined molecular weight, make them promising new scaffolds for drug delivery. Dendrimers are a new class of high-efficiency nonbiological vectors with very broad application prospects in the pharmaceutical field. By the stepwise synthesis of dendrimers affords molecules with a highly regular stucture and a well-defined morphology, drug loading with a significant increase and the administration process with reflections in nano-scale. But because of the bad biocompatibility, toxicity and undegradability, the application of dendriemrs for drug delivery has been limited.
     So a low toxicity and degradabable dendrimer from glycerol and glycolic acid oligomer was prepared, and it was well biodegradble because of the ester between the repit units.The conjugation of the well-defined MPEG to the dendrimer was to improve its biocompatibility, so a low toxicity, well-defined architecture, degradabable and excellent biocompatable drug carrier was prepared. The pharmacokinetics behavior could be controlled and changed by synthesis of the precise oligmers of glycolic acids with different repeat units; it is expected to be an excellent drug carrier candidate.
     The dumbbell-shape dendrimers composed of glycerol and oligomers of glycolic acid and the polymeric micelle formed with amphiphilic MPEG-dendrimer as carrier were prepared. The preparation and characterization of dendrimers and amphiphilic block copolymers, the morphology and size of drug-loaded micelles were studied. The research was mainly concerned with the following aspects:
     1.The precise oligomers of glycolic acid were synthesized by group protection methods. The protection was accomplished with tert-butyl- as the carboxyl protecting group.By using glycerol and oligomers of glycolic acid as templates, dendrimers with different generations were synthesized via a convergent method.At last,the third generation dumbbell-shape dendrimer based on sebacic acid as core and the convergent method was synthesized, and the structure was confirmed by 1H NMR.
     2.The hydroxyl group of MPEG was converted into a carboxyl group by reacting with the diglycolic anhydride in the presence of dimethylaminopyridine (DMAP).The carboxyl-terminated MPEG-dendrimer was prepared by esterification using coupling agent dicyclohexyl carbodiimide (DCC) and the catalyst DMAP.Then the carboxyl-terminated MPEG-dendrimer was reacted with paclitaxel to prepare prodrugs. The products were confirmed by 1H NMR and GPC.
     3.The micellization behavior of the MPEG-G3-paclitaxel prodrug was examined by using fluorescent probe technique to determinate critical micelle concentration (CMC).
引文
[1] Yamakawa I., et al. Preparation of neurotensin analog-containing poly (D, L-lactic acid) microspheres formed by oil-in-water solvent evaporation. [J]. J Pharm Sci. 1992, 81(9):899-903.[2] Hsieh D. S. T. Controlled Release Systems [M]. Fabrication Technology. Vol.Ⅰ, 1988a, Boca Raton, Florida: CRC Press.
    [3] Hsieh D. S. T. Controlled Release Systems [M]. Fabrication Technology. Vol.Ⅱ, 1988b, Boca Raton, Florida: CRC Press.
    [4] Roseman T. J., Mansdorf S. Z. [M]. Controlled Release Delivery Systems 1983, New York, Marcel Dekker, Inc.
    [5] Kathryn E. U., Scott M. C., Robert S. L., Kevin M. S. Polymeric systems for Controlled Drug Release. [J]. Chemical Review 1999, 99, 3181.
    [6] Craig, D. Q. M. The Mechanisms of Drug Release from Solid Dispersions in Water Soluble Polymers [J]. International Journal of Pharmaceutics 2002, 231: 131-144.
    [7] Chirila T. V., Hong Y., Alton, P. D. et al. The Use of Hydrophilic Polymer as Artificial Vitreous. [J]. Prog Polym Sci 1998, 23: 475-508.
    [8] Atobe I., Takataf T., Endo T. Synthesis of polymers with pyrrolidone-containing side chains and the spacer effect on their interaction with phenols [J]. Macromolecules 1994, 27(1): 193-196.
    [9] Garth W. H, Paul D. CEC Press Inc. Polymeric Inserts and Implants for the Controlled Release of drugs. [J]. Macromolecular Biomaterial 1984, 183.
    [10] Gil E. S, Hudson, S. M. Stimuli-reponsive polymers and their bioconjugates. [J] Prog. Polym. Sci. 2004, 29(12): 1173-1222.
    [11] Folkman, J. and Long, D.M., The use of silicone rubber as a carrier for prolonged drug therapy. [J]. Surg. Res. 1964, 4, 139-142.
    [12] Langer, R. and Folkman, Polymers for the sustained release of proteins and other macromolecules. [J]. Nature 1976,263, 797-800.
    [13] Jeyanthi R, Panduranga RK. Controlled release of anticancer drugs from collagen-polyhema hydrogen matrices [J]. J Controlled Release, 1990, 13: 91-98. [l4] Kou JH, Fleisher D, Amidon GL. Modeling drug release from dynamically swelling poly (hydroxyethyl methacrylate-co-methacrylicacid) hydrogels [J]. J Controlled Release, 1990, 12: 241-250.
    [15] Florence A. T. The oral absorption of micro- and nanosparticulates: neither exceptional nor unusual [J]. Pharmaceutical Res. 1997, 14, 259. [l6] Klok H. A., Hwang J. J., et al. Self-assembling biomaterials: L-lysine-dendron-substituted cholesteryl-(L-lactic acid) [J].. Macromolecules 2002; 35: 6101-6111. [l7] Leo E, Cameroni R, Forni F. Dynamic dialysis for the drug release evaluation from doxorubicin-gelatinn anoparticlesc onjugates. [J].Int J Pharm, 1999, 180(3): 23 -32.
    [l8]赵晶,王立新,明胶微球乙肝疫苗动物免疫效果研究[J].中华微生物学和免疫学杂志,2000, 2(3): 236- 240. [l9]秦建民,李荫太,顺铂可降解淀粉微球兔胃动脉栓塞的实验研究[J].中华普通外科杂志,2000, 15(2): 91- 95.
    [20] Schacht E. Industrial Polysaccharides: Genetic Engineering, Structure/Property Relation and Application. [J]. Amsterdam: Elsevier Science, 1987, 311-335.
    [21] Chandy T, Sharma C P. Chitosan-As a Biomaterial. [J]. Art Cells Art Org, 1990, 18(1): 1-3.
    [22] Kiffune K, Yamaguchi, Kishimiro S. Wound Healing Effect of Chitin Surgical Dressing [J]. Trans Soc Biomat, 1988, 11: 216-218.
    [23] Ouchi T, Banba T. Fixation of 5-Fluorouracil to Chitosan and its Antitumor Activity [J]. Trans Soc Biomat, 1988, 11: 232-235.
    [24] Aubert N, Mauzac M, Jozefonvicz J. Anticoagulant Hydrogels Derived from Crosslinked Dextran. Part 1: Synthesis Characterization and Antithrombic Activity [J]. Biomaterials, 1987, 8: 24-26.
    [25] Mayamoto T, Takahashi S, Ito H, et al. Tissue Biocompatibility of Cellouse and Its Derviatives [J]. J Biomed Mater Res, 1989, 23: 125-127.
    [26] Devi K S, Sinha T J M, Vasudevan P. Biosoluble Surgical Material from 2, 3-Dialdehyde Cellulose [J]. Biomaterials, 1986, 7: 193-195.
    [27] Ito H, Mayamoto H, Inagaki Y, et al. In vitro and in Vivo Blood Compatibility of Polyelectrolyte Complexes Formed between Cellulose Derivatives [J]. J Appli Polym Sci, 1986, 32: 3413-3415.
    [28] Grainger D A, Meyer W R, Decherney A H, et al. The Use of Hyaluronic Acid Polymers to Reduce Postoperative adhesions [J].J Gynecol Surg, 1991, 7(2): 97-99.
    [29] Yerushalmi Noge, et al. Molecular and cellular studies of hyaluronic acid-modified as bioadhesive carriers for topical drug delivery in wound healing [J] Arch Biochem Biophys, 1994, 313(2): 267-273.
    [30] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue [J]. Adv Drug Rev, 2003, 55: 329-347.
    [31] Kawashima Y. Nanoparticulate systems for improved drug delivery [J]. Adv Drug Rev, 2001, 47: 1.
    [32] Chen L, Li X, Li L, et al Enzyme-resistant starch for oral colon-targeting drug delivery system [J]. Key Materials Engineering, 2005, 288-289: 129-132.
    [33] Xue J M, Shi M. H. PLGA/mesoporous silica hybrid structure for controlled drug release [J]. J Controlled Release, 2004, 98(2): 209-217.
    [34] Jani P., Halbert GW,Langridge J. Florence A. T. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. [J]. J. Pharm. Pharmacol. 1990, 42(12): 821-826.
    [35] Allan S. H. Hydrogels for biomedical applications [J]. Adv. Drug. Deliv . Rev. 2002, 54(1):3-12
    [36] Yong Q., Kinam P., Environment-sensitive hydroges for drug delivery. [J]. Adv. Drug Deliv. Rev. 2001, 53(3), 321-339.
    [37] Byeongmocn J. , Sung W. K., You H B. Thermosensitive sol-gel reversible hydroges [J]. Adv. Drug. Deliv. Rev. 2002, 54, 37-51.
    [38] Sabbatini P, Brown J, Aghajanian C, Hensley ML, Pezzulli S, O' Flaherty C, et al. A phase I/II study of PG–paclitaxel (CT-2103) inpatients (pts) withrecurrentovarian, fallopian tube, or peritoneal cancer [J]. Proc Am Soc Clin Oncol.2002, 871.
    [39] Kudelka AP, Verschraegen CF, Loyer E, Wallace S, Gershenson DM, Han J, et al. Preliminary report of a phase I study of escalating dose PG–paclitaxel (CT-2103) and fixed dose cisplatin in patients with solid tumors [J]. Proc Am Soc Clin Oncol .2002, 2146.
    [40] Langer CJ, Obyrne K, and Ross H, et al. Xyotax/carboplatin vs. paclitaxel/carboplatin for the treatment of PS2 patients with chemotherapy na?ve advanced non small cell lung cancer (NSCLC): the STELLAR 2 phase III study. Lung Cancer [J]. Proc Am Soc Clin Oncol 2005, 49(Suppl 2): S36.
    [41] SchreiberS, RutgeertsP, FedorakRN, Khaliq-KareemiM, Kamm MA, Boivin M, et al.A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn's disease. [J]. Gastroenterology 2005, 129: 807-818.
    [42] O'Brien M, Sandler A, Popovish A, et al. XYOTAX (TM)vs gemcitabine or vinorelbine for the treatment of performance status (PS) 2 patients [J]. Lung Cancer at ASCO 2005; 49(Suppl 2):S37.
    [43] De Vries P, Bhatt R, Stone I, Klein P, Singer J. Poly-( L)-glutamic acid–paclitaxel (CT-2103)[XYOTAXt], a biodegradable polymeric drug conjugate [M]. 2002, Miami Beach, FL.
    [44] Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A. Drug delivery systems: water soluble taxol 2′-poly (ethylene glycol) ester prodrugs-design and in vivo effectiveness [J]. J Med Chem. 1996, 39: 424-431.
    [45] Angadjivand S A, Schwartz M G, Eitzman P D, Jones M E. Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid [P]. U.S patent. 2002, 6375886.
    [46] Gibson P W, Schreuder-Gibson H L, Riven D. Electrospun fiber mats; Transport properties [J] AIChE J, 1999, 45:190-195.
    [47] Ikada Y. Basics and application of biodegradable polymers [J].Llsevier. Tokyo:1999.39: 424-431
    [48] Ringsdorf, H. Structure and properties of pharmacologically active polymers. [J].J. Polym. Sci. Symp. 1975, 51, 135-153.
    [49]Gabizon A.A. Liposome circulation time and tumor targeting: implications for cancer chemotherapy [J]. Adv. Drug Delivery Rev. 1995, 16: 285-294.
    [50] Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review [J] J. Contr. Rel. 2000, 65: 271-284.
    [51] Lasic D, Martin F. (Eds.) Stealth Liposomes [J]. CRC Press Boca Raton, FL, 1995.
    [52] Klibanov A. L., Maruyama K., Torchilin V. P,Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes [J]. FEBS Let.1990, 268: 35-38.
    [53] Torchilin V. P., Omelyanenko V. G., Papisov M. I., Bogdanov Jr A. A.,Trubetskoy V. S., Herron J. N., Gentry C. A. Poly (ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity [J].Biochim. Biophys.Acta 1994, 1195: 11-20.
    [54] Torchilin V. P., Shtilman M. I., Trubetskoy V. S., Whiteman K., Milstein A. M Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo [J]. Biochims Biophys. Acta 1994, 1195: 181-184.
    [55] Turro N. J., Chung C. J. Photoluminescent probes for water soluble polymers.Pressure and temperature effect on a polyol surfactant [J]. Macromolecules 1984, 17:2123-2126.
    [56] Astafieva I., Zhong X., Eisenberg A. Critical micellization phenomena in block polyelectrolyte solution [J]. Macromolecules 1993, 26: 7339-7352.
    [57] Jones M. C., Leroux J. C. Polymeric micelles-a new generation of colloidal drug carriers [J]. Eur. J. Pharm. Biopharm. 1999, 48: 101-111.
    [58] Singla A.K.,Garg A.,Aggarwal D.,Paclitaxel and its formulations [J].Int.J.pharm 2002,235:179-192.
    [59] WaughW N., Trissel L. A., Stella V J. Stability, compatibility, and plasticizer extraction of taxol (NSC-125973) injection diluted in infusion solutions and stored in various containers [J].Am. J. Hosp. Pharm. 1991,48 (7): 150-152.
    [60] Xu Q. A., Trissel L. A., Zhang Y Paclitaxel compatibility with the IV Express filter unit [J]. Int. J. Pharm. 1998, Compounding 2: 243-245.
    [61] Weiss R. B,Donehower R. C., Wiernik P. H., et al. Hypersensitivity reactions from Taxol [J]. J. Clin. Oncol. 1990, 8(7):123-126.
    [62] Wall, M.E, Wani M.C., Cook C.E., Palmer K.H., Mcphail.A.T. Antitumor agentⅠ.The isolation andstructure of camptothecin,a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminate [J].J.Am..Chem. 1966, 88, 3888-3890.
    [63] Wani.M.C., Wall M.E. Plant antitumor agents 2.The structure of two new alkaloids from Camptotheca acuminata [J].J.Org.Chem.1969, 34:1364-1372.
    [64] Wani M.C., Ronman P.E, Lindley J.T Plant antitumor agents.Synthesis and biological activity of camptothecin analogues. [J].J.Med.Chem.1980, 23: 554.
    [65] Lewis DH., Controlled release of bioactive agents from lactide/glycolide polymers. In: Chasin M, Langer R, editors.Biodegradable polymers as drug delivery systems [J].Marcel Dekker; 1990. 1-2.
    [66] Maeda H, Konno T. In: Maeda H, Edo K, Ishida N, editors. Neocarzinostatin: the past, present, and future of an anticancer drug. [J] Berlin. Springer. 1997, 227-267.
    [67] Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF. Structural and biological characterisa- tion of pegylated recombinant interferon a-2b and its therapeutic implications [J].Adv Drug Deliv Rev 2002, 54: 547-570.
    [68] Bukowski R, Ernstoff MS, Gore ME, Nemunaitis JJ, Amato R, Gupta SK, et al. PEGylated interferonα2b treatment for patient with solid tumors: a phase I/II study [J].J Clin Oncol 2002, 20: 3841-3849.
    [69] Kinstler O, Moulinex G, Treheit M, Ladd D, Gegg C. Mono-N-terminal poly(ethylene glycol)–protein conjugates [J]. Adv Drug Deliv Rev 2002, 54: 477-485.
    [70] Duncan R, Coatsworth JK, Burtles S. Preclinical toxicology of novel polymeric antitumour agent: HPMA copolymer–doxorubicin (PK1) [J]. Hum Exp Toxicol 1998, 17: 93-104.
    [71] Vasey P, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, et al. Phase I clinical and pharmacokinetic study of PK1 (N-(2-hydroxypropyl)methacrylamide copolymers doxorubicin): first member of a new class of chemotherapeutic agents–drug–polymer conjugates [J].Clin Cancer Res 1999, 5: 83-94.
    [72] Seymour LW, Ferry DR, Anderson D, Heslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin [J]. J Clin Oncol 2002, 20: 1668-1676.
    [73] Schoemaker NE, van Kesteren C, Rosing H, Jansen S, Swart M, Lieverst J, et al. A phase I and pharmacokinetic study of MAG–CPT, a water soluble polymer conjugate of camptothecin [J]. Br J Cancer 2002, 87: 608-614.
    [74] Meerum Terwogt JM, et al. Phase I clinical and pharma-cokinetic study of PNU166945, a novel water soluble polymer-conjugated prodrug of paclitaxel [J]. Anticancer Drugs 2001, 12: 315-323.
    [75] Gianasi E, Buckley RG, Latigo J, Wasil M, Duncan R. HPMA copolymers platinates containing dicarboxylato ligands.Preparation, characterisation and in vitro and in vivo evaluation [J]. J Drug Target 2002, 10: 549-556.
    [76] Langer CJ. CT-2103: a novel macromolecular taxane with potential advantages compared with conventional taxanes [J].Clin Lung Cancer 2004, 6: S85-88.
    [77] Uhrich K E, Cannizzaro S M, Langer R S, et al. Polymeric systems for controlled drug release [J]. Chem Rev, 1999, 99: 3181-3198.
    [78] Gres R, Minamitake Y, Peracchia M T, et al. Biodegradable long-circulating polymeric nanospheres [J]. Science, 1994, 263: 1600-1603.
    [79] Yoo H S, Park T G Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer [J]. J Control Rel, 2001, 70: 63-70.
    [80] Shin I G, Kim S Y, Lee Y M, et al. Methoxy poly (ethylene glycol)/-caprolactone amphiphilic block copolymeric micelle containing indomethacin.I.Preparation and characterization [J]. J controlled release, 1998, 51: 1-11.
    [81] Ramaswamy M., Zhang X., Burt H. M., Wasan K. M. Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers [J] J. Pharm. Sci. 1997, 86: 460-464.
    [82] Zhang X., Burt H. M., Mangold G., Dexter D. Von Hoff D., Mayer L., Hunter W. L. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel [J]. Anticancer Drugs 1997, 8: 696-701.
    [83] Leavy M Y, Benita S. Drug release from submicron O/W emulsion: A new in vitro kinetic evaluation model. [J] Int J Pharm. 1990, 66: 29-37.
    [84] Jiang M, Qiu X. Intermacromolecular complexation due to specific interactions. [J] Macromolecules 1995, 28: 730-736.
    [85] Dorr R. T. Pharmacology and toxicology of Cremophor BL diluent [J]. Ann. Phannacother. 1994, 28: S11-S14.
    [86] Waugh W N., Trissel L. A., Stella V J. Stability, compatibility, and plasticizer extraction of taxol (NSC-125973) injection diluted in infusion solutions and stored in various containers [J]. Am. J. Hosp. Pharm. 1991, 48(7): 150-152.
    [87] Winslow R.M., Vandegriff K.D., Intaglieta M. EdsJ Blood substitutes: new challenges [J].Birkh?user, Boston, MA, 1996.
    [88]Jiang M, Wu C. Laser-light-scattering studies on the complexation between poly (styrene-co-4-vinylphenol) and isorefractive poly(methyl methacrylate) in toluene. [J].Macromolecules. 1997, 30(7): 2035-2041.
    [89] Inoue T, et al. Temperature sensitivity of a hydrogel network containing diferent LCST oligomers grafted to the hydrogel backbone. [J] Polym Gels Netw 1997, 5: 561-575.
    [90] Malmsten M, Lindman B. Self-assembly in aqueous block copolymer solution. [J] Macromolecules 1992, 25: 5446-5450.
    [91] Alejandro Sosnik, Daniel Cohn. Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. [J] Biomaterials.2004, 25 (14): 2851-2858.
    [92] Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. [J]. Nature. 1997,388.860-862.
    [93] Tonge SR, Tighe BJ. Responsive hydrophobically associating polymers: a review of structure and properties. [J]. Adv Drug Deliv Rev. 2001, 53: 109-122.
    [94] Kopecek, J., Smart and genetically engineered biomaterials and drug delivery systems. [J] J Pharm Sci., 2003, 20(1):1-16.
    [95]Fresta M, Puglisi G, Giammona G, et al. Pefloxacin mesilate- and ofloxacin-loaded polyethylcyanoacrylate nanoparticles; characterization of the colloidal drug carrier formulation [J]. J Pharm Sci, 1995, 84: 895-901.
    [96] Tang, W. T.; Hadziioannou, G.; Smith, B. A.; Frank, C. Facile method for labelling polystyrene with various fluorescent dyes [J]. Polymer, 1988, 29:313.
    [97] Wilhelm, M.; Zhao, C. L.; Wang, Y. C.; Xu, R. L.; Winnik M. A. Poly (styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. [J] Macromolecules 1991, 24, 1003-1040.
    [98] E. C. Wiener, H. Brothers, R. L. Magin, O. A. Gansow, D. A. Tomalia, P. C. Lauterbur. Dendrimer-based metalc helates: a new class of magnetic resonance imaging contrast agents [J]. Magn. Reson. Med., 1994, 31:1-8.
    [99] C. A. Moreno, R. RodriguezV. Ferreira, R. S.Nussenzweig, J. M. Calvo-Calle, E. Nardin. Preclinical evaluation of a synthetic plasmodium falciparum MAP malaria vaccine in aotus monkeys and mice [J]. Vaccine, 1999, 18:89-99.
    [100] E. H. Nardin, J. M. Calvo-Calle, R. S. Nussenzweig, M. Schneider, J. M. Ti rcy, L. Loutan, D. Hochstrasser, K. Rose. A totally synthetic polyoxime malaria vaccine containing plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types [J]. J. Immunol., 2001, 166:481-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700