银杏酸(C17:1)的药物代谢和动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏作为公认的预防和治疗心脑血管疾病的药物,在世界范围内有着极为广泛的应用。银杏酸(Ginkgolic Acids,简称GAs)是存在于银杏叶、果和外种皮中的生物活性成分,以外种皮中的含量最高。银杏酸是一类水杨酸衍生物,苯环6位上的侧链碳原子数为13至19个,侧链双键数为0至3个。其中银杏酸(C15:1,GA2)和(C17:1,GA5)是主要的化学成分,其含量约占到银杏酸总量的80%。银杏酸被认为是引起银杏制剂不良反应的主要原因,可引起细胞毒性、致敏、致突变、致癌、肝毒性和肾毒性等。另一方面,随着研究的深入发现银杏酸也具有广泛的药理活性,包括抗菌、抗炎、抗过敏、杀虫等作用,体外和体内对多种肿瘤细胞显示不同程度的抑制生长作用,对HIV病毒也有很好的抑制效果。关于银杏酸的研究多集中在药理和毒理方面,药物代谢及其动力学(DM/PK)的研究报道甚少。本研究在先期GA(C15:1)工作的的基础上,从银杏酸总酸提取物中分离、制备GA(C15:1)和GA(C17:1),进而采用各种体内外模型对GA(C17:1)的吸收、转运、代谢、排泄与动力学的性质进行了较系统的研究。本文的研究结果可为银杏酸的进一步开发提供理论和实验依据。
     1.GA(C17:1)在大鼠肝微粒体中的代谢研究
     GA(C17:1)可由CYPs酶介导发生Ⅰ相氧化代谢,UGTs介导发生Ⅱ相代谢。化学抑制剂实验表明,大鼠肝微粒体的CYP1A1/2和CYP3A是介导GA(C17:1)I相代谢的主要酶亚型,UGT1A7和UGT1A9为介导GA(C17:1)Ⅱ相代谢的酶亚型。GA(C17:1)对CYP1A1/2、CYP2D1、CYP2E1和CYP3A2没有抑制作用,对CYP2C6有中等程度的抑制作用(Ki=5.26±1.07μmol/L)。使用LC/MS-MS初步分析了GA(C17:1)在大鼠肝微粒体中的代谢物,GA(C17:1)经大鼠肝药酶代谢可发生羟基化和葡萄糖醛酸结合反应,生成三种代谢物(两个羟基化代谢物和一个葡萄糖醛酸结合代谢物)。
     2.GA(C17:1)在人肝微粒体和人重组酶中的代谢研究
     通过人肝微粒体中代谢研究发现,GA(C17:1)与人肝微粒体的亲和力小于大鼠肝微粒体。在人肝微粒体和重组酶中,CYP3A4和CYP1A2是介导GA(C17:1)代谢的两种CYPs酶亚型,UGT1A6、UGT1A9和UGT2B15是介导GA(C17:1)葡萄糖醛酸结合的主要亚型。GA(C17:1)对CYP2C9有中等程度的抑制作用。报告基因法显示,10μmol/L的GA(C17:1)对CYP2B6和CYP3A4基本没有诱导作用(<30%利福平诱导能力),对UGT1A1基因诱导作用存在浓度依赖性。
     3.GA(C17:1)在HepG2、大鼠原代肝细胞和L02细胞上的代谢和毒性研究
     GA(C17:1)对不同类型的肝细胞HepG2、大鼠原代肝细胞和L02细胞均存在一定程度的毒性。CYP酶的化学诱导剂β-萘黄酮和利福平能够降低HepG2细胞和大鼠原代肝细胞的存活率;CYP酶的化学抑制剂α-萘黄酮和酮康唑能够增加原代肝细胞的存活率。与大鼠原代肝细胞和L02细胞相比,GA(C17:1)对HepG2有更大的细胞毒性作用,并且I相代谢酶CYP1A和CYP3A能够通过生物转化使GA(C17:1)的毒性增加。
     4.GA(C17:1)和GA(C15:1)在MDRl和BCRP转基因细胞模型上的转运研究
     采用MDCK-MDR1和LLC-PK1-BCRP转基因细胞模型,研究了GA(C17:1)和GA(C15:1)的转运机制以及对P-gp功能的影响。结果表明,GA(C17:1)和GA(C15:1)均为外排转运体P-gp和BCRP的底物,提示GA(C17:1)和GA(C15:1)的口服生物利用度有限,并难以透过血脑屏障进入脑部。GA(C17:1)和GA(C15:1)对P-gp的外排功能也有一定的抑制作用。
     5.GA(C17:1)在大鼠体内的药物动力学,组织分布和排泄研究
     建立了测定大鼠体内生物样品中GA(C17:1)的LC-MS/MS法,该方法具有操作简便、灵敏度高、稳定性、重复性好等优点。药物动力学研究表明:GA(C17:1)吸收较快,生物利用度为19.5%,GA(C17:1)在大鼠体内分布广泛,在肝脏和肾脏中浓度较高,并难以透过血脑屏障,粪便排泄是其主要的排泄途径。在粪便中鉴定了两个GA(C17:1)的代谢产物。
     6.银杏酸提取物在大鼠体内的药物动力学研究
     建立了同时测定血浆中GA(C17:1)和GA(C15:1)的快速、准确、高灵敏LC-MS/MS法,并将此方法成功应用于银杏酸提取物在大鼠体内的药物动力学研究。结果表明,与银杏酸单体给药相比,GA(C17:1)和GA(C15:1)的药动学参数有了一定程度的改变。大鼠静脉给予P-gp和BCRP抑制剂CsA可以显著提高GA(C17:1)和GA(C15:1)血药浓度水平。此外,CsA还可以通过抑制脑中P-gp,增加GA(C17:1)和GA(C15:1)在脑中的分布。
Ginkgo biloba was widely used in the world as a drug for the prevention and treatment of cerebrovascular disease. Ginkgolic acid is a mixture of structurally related n-alkyl phenolic acid compounds and widely exists in leaves, nuts and external seed coat of Ginkgo biloba L. The alkyl side chain in molecular structures varies from13to19carbons in length with0-3double bonds. GA (C15:1) and GA (C17:1) are the two main ingredients accounted for nearly80%of the total ginkgolic acid. Ginkgolic acid is considered to be the toxic components of ginkgo with cytotoxicity, sensitization, mutagenic and carcinogenic, hepatotoxcity and nephrotoxicity. However, it was also reported that ginkgo acid has shown a wide range of pharmacological activities, including anti-bacterial, anti-inflammatory, anti-allergic, insecticidal, inhibition of the growth of a variety of tumor cells in vitro and in vivo as well as HIV protease activity and HIV infection in vitro. Most of the research focused on the pharmacological and toxicological aspects of ginkgolic acid, the reports about drug metabolism and pharmacokinetics of GAs are still rare. In this study, GA(C17:1) and GA(C15:1) were isolated and purified from the ginkgolic acid extract and their absorption, transport, metabolism, excretion and pharmacokinetics profiles were investigated by using several in vitro and in vivo models. The results of this study could provide theoretical and experimental basis for the further research of ginkgolic acid.
     1. Metabolism of GA (C17:1) in rat liver microsomes
     GA (C17:1) could be metabolized by CYPs (Phase I metabolism), and UGTs (Phase II metabolism). The special chemical inhibitor experiments indicated that CYP1A1/2and CYP3A were involved in GA (C17:1) oxidative metabolism; UGT1A7and UGT1A9were involved in GA (C17:1) glucuronidation metabolism. Classical CYPs' substrates were used to investigate the inhibition effect of GA (C17:1) on the CYPs, with the results that GA (C17:1) has inhibition effect on CYP2C6and no effect on CYP3A, CYP1A1/2, CYP2E1, CYP2D1. Three metabolites of GA (C17:1) in rat liver microsomes (RLMs) were analyzedas (two mono-hydroxylation metabolites and a glucuronidation metabolite) by LC-MS/MS.
     2. Metabolism of GA (C17:1) in human liver microsomes, recombinant human CYPs and UGTs
     The affinity of GA (C17:1) to human liver microsomes (HLMs) was less than that to RLMs. It was found that CYP3A4and CYP1A2were the two CYP enzyme isoforms that mediated the oxidative metabolism of GA (C17:1), UGT1A6, UGT1A9and UGT2B15were involved in GA (C17:1) glucuronidation metabolism. GA (C17:1) showed certain inhibition effect on CYP2C9. GA (C17:1) at10μmol/L showed no gene induction of CYP2B6and CYP3A4(<30%of rifampicin induction ability), concentration-dependent inductionof UGT1A1tested by dual-luciferase reporter assay.
     3. The metabolism and toxicity of GA(C17:1) on HepG2, rat primary hepatocytes and L02cell
     GA (C17:1) showed the different levels of toxicity on HepG2, rat primary hepatocytes and L02cell. Pretreatment with selective CYP inducers β-naphthoflavone and rifampin, could increase the cytotoxicity of ginkgolic acid (C17:1) in HepG2cells and rat primary hepatocytes. Co-incubation with selective CYP inhibitors a-naphthoflavone and ketoconazole could decrease the cytotoxicity of ginkgolic acid in primary rat hepatocytes. The results indicated that GA (C17:1) showed greater cytotoxicity on HepG2cells comparing with primary rat hepatocytes and L02cell, and CYP1A and3A catalyzed GA (C17:1) to more toxic metabolite.
     4. Transport and uptake studies of GA (C17:1) and GA (C1S:1) in MDR1and BCRP transgenic cells
     MDCK-MDR1and LLC-PK1-BCRP cells were adopted as the in vitro model to predict the intestinal absorption and blood-brain barrier (BBB) permeability. The results showed that GA (C17:1) and GA (C15:1) are the substrates of efflux transporters, P-gp and BCRP. GA (C17:1) and GA (C15:1) may have not very good oral bioavailability and BBB permeability. GA (C17:1) and GA (C15:1) had significant inhibition effects on the P-gp-mediated transport of R123across the MDCK-MDR1cell monolayer.
     5. Plasma pharmacokinetics, tissue distribution, metabolism and excretion studies of ginkgolic acid (C17:1) in rats
     A rapid and sensitive method for the determination of ginkgolic acid (C17:1) in rat biological samples was developed using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). The pharmacokinetic investigation demonstrated that GA (C17:1) was rapidly absorbed with an absolute bioavailability being approximate19.5%. The tissue distribution indicated that liver and kidney were the major accumulation tissues for GA (C17:1) in rats. In addition, GA (C17:1) could hardly cross the blood-brain barrier. The excretion study suggested that feces was the main excretion pathway,while high proportion of GA (C17:1)(>35%) was excreted as the unchanged form. And two metabolites in feces were identified.
     6. Pharmacokinetics of ginkgolic acid (C15:1) and ginkgolic acid (C17:1) in extract of external seed coat of ginkgo biloba L. in rat
     A rapid and sensitive LC-MS/MS method for the simultaneous determination of ginkgolic aicd (C15:1) and ginkgolic aicd (C17:1) in rat plasma was developed and applied to investigate the pharmacokinetics of ginkgolic acid extract in rats. Compared with ginkgo acid monomers, the pharmacokinetic parameters of GA (C17:1) and GA (C15:1) has changed externally. Coadministrated intravenously P-gp and BCRP inhibitor CsA at20mg/kg can significantly improve GA (C17:1) and GA (C15:1) plasma concentration levels, CsA can also inhibit brain P-gp and BCRP, increased GA (C17:1) and GA (C15:1) distribution to the brain.
引文
[1]李庆虹,山丽梅,任永申.中药毒性研究进展.中华中医药杂志2007;22(5):300-302.
    [2]孙多善.李时珍对研究有毒中药的贡献.时珍国药研究1992;3(3):97-99.
    [3]曹俊岭,毛柳英,范秀荣,付鹏.2010年版《中国药典》中有毒中药饮片剂量规定的探讨.中国药房2012;23(11):1055-1056.
    [4]张须学,程晓卫.有毒中药的抗癌作用及合理应用.中草药2005;36(5):795-796.
    [5]张艳,刘西建.抗肿瘤的有毒中药现代研究进展.中国中医药现代远程教育2012;10(24):154-156.
    [6]李宁,廖映烨.浅谈有毒中药在类风湿性关节炎治疗中的应用.中医药导报2011;17(3):98-100.
    [7]Youns M, Hoheisel JD, Efferth T. Toxicogenomics for the Prediction of Toxicity Related to Herbs from Traditional Chinese Medicine. Planta Med 2010; 76 (17): 2019-2025.
    [8]Bensoussan A, Myers SP, Drew AK, Whyte IM, Dawson AH. Development of a Chinese herbal medicine toxicology database. Clin Toxic 2002; 40 (2):159-167.
    [9]Wang ZG, Ren J. Current status and future direction of Chinese herbal medicine. Trends Pharmaco Sci 2002; 23(8):347-348.
    [10]白晓菊,赵燕.对加强有毒中药研究的思考.中国药物警戒2010;7(11):660-663.
    [11]Zhang X, Yao Y, Lou Y, Jiang HD, Wang XW, Chai XJ, Zeng S. Metabolism of Ebracteolata Compound B Studied in Vitro with Human Liver Microsomes, HepG2 Cells and Recombinant Human Enzymes. Drug Metab Dispos 2010; 38 (12):2157-2165.
    [12]LouY, Hu HH, Liu Y, Yu QQ, Li L, Pin L, Yu LS, J HD, Zeng S.Determination of chamaechromone in rat plasma by liquid chromatography-tandem mass spectrometry:application to pharmacokinetics study. J Pharm Biomed Anal 2011; 55 (5):1163-1169.
    [13]Chan W, Luo HB, Zheng YF, Cheng YK, Cai ZW. Investigation of the metabolism and reductive activation of carcinogenic aristolochic acids in rats. Drug Metab Dispos 2007; 35 (6):866-874.
    [14]Li J, Zhang L, Jiang Z, Shu B, Li F, Bao Q, Zhang L. Toxicities of aristolochic acid I and aristololactam I in cultured renal epithelial cells. Toxicol In Vitro 2010; 24 (4):1092-1097.
    [15]Xue X, Xiao Y, Zhu H, Wang H, Liu Y, Xie T, Ren J. Induction of P450 1A by 3-methylcholanthrene protects mice from aristolochic acid-I-induced acute renal injury. Nephrol Dial Transplant 2008; 23(10):3074-3081.
    [16]Stiborova M, Frei E, Sopko B, Sopkova K, Markova V, Lankova M, Kumstyrova T, Wiessler M, Schmeiser HH. Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid:evidence for reductive activation by human NADPH:quinone oxidoreductase. Carcinogenesis 2003; 24 (10):1695-1703.
    [17]徐晓月,蔡宝昌,潘扬,王天山.马钱子生物碱在大鼠体内的药代动力学研究.药学学报2003;38(6):458-461.
    [18]蔡宝昌,徐晓月,潘扬,王天山,李彦超.马钱子生物碱在大鼠体内的组织分布.中国药理学通报2004;20(4):421-424.
    [19]Liu XQ, Lin G, Wang GJ, Qian ZY. Involvement of human CYP3A4 in the formation of hepatotoxic metabolites of clivorine. Zhongguo Yaolixue Yu Dulixue Zazhi 2002; 16 (1):15-20.
    [20]Gardner I, Wakazono H, Bergin P, deWaziers I, Beaune P, Kenna JG, CaldwellJ. Cytochrome P450 mediated bioactivation of methylglyoxal to 1'-hydroxymethyleugenol in Fischer 344 rat and human liver microsomes. Carcinogenesis 1997; 18 (9):1775-1783.
    [21]Johnson JD, Ryan MJ, Toft JD, Graves SW, Hejtmancik MR, Cunningham ML, Herbert R, Abdo KM. Two-year toxicity and carcinogenicity study of methyleugenol in F344/N rats and B6C3F(1) mice. J Agric Food Chem 2000;48 (8):3620-3632.
    [22]Yamano T, Tsujimoto Y, Noda T, Shimizu M, Ohmori M, Morita S, Yamada A. Hepatotoxicity of geniposide in rats. Food Chem Toxicol 1990; 28(7):515-519.
    [23]Ozaki A, Kitano M, Furusawa N, Yamaguchi H, Kuroda K, Endo G. Genotoxicity of gardenia yellow and its components. Food Chem Toxicol 2002; 40(11):1603-1610.
    [24]梅之南,杨祥良,徐辉碧.雷公藤内酯醇的药理研究.中国医院药学杂志2003;23(09):47-48.
    [25]Shao F, Wang GJ, Xie HT, Zhu XY, Sun JG, A JY. Pharmacokinetic study of triptolide, a constituent of immunosuppressive Chinese herb medicine, in rats. Biol. Pharm. Bull 2007; 30 (4):702-707.
    [26]Li W, Liu Y, He YQ, Zhang JW, Gao Y, Ge GB, Liu HX, Huo H, Liu HT, Wang LM, Sun J, Wang Q, Yang L. Characterization of triptolide hydroxylation by cytochrome P450 in human and rat liver microsomes. Xenobiotica 2008; 38 (12): 1551-1565.
    [27]Ye XC, Li WY, Yan Y, Mao CW, Cai RX, Xu HB, Yang XL. Effects of cytochrome P4503A inducer dexamethasone on the metabolism and toxicity of triptolide in rats. Toxicol Lett 2010; 192 (2):212-220.
    [28]Liu L, Jiang ZZ, Liu J, Huang X, Wang T, Liu J, Zhang Y, Zhou ZX, Guo JL, Yang LN, Chen Y, Zhang LY. Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats. Toxicology 2010; 271 (1-2):57-63.
    [29]周远鹏.附子及其主要成分的药理作用和毒性.药学学报1983;18(05):394-400
    [30]王彬辉,冯健,赵燕敏,魏颖慧,徐铭,李范珠.附子中乌头类生物碱在大鼠体内的药动学研究.中国药学杂志2009;44(18):1412-1415.
    [31]Tang L, Gong Y, Lv C, Ye L, Liu L, Liu ZQ. Pharmacokinetics of aconitine as the targeted marker of Fuzi (Aconitum carmichaeli) following single and multiple oral administrations of Fuzi extracts in rat by UPLC/MS/MS.2012; 141 (2):736-741.
    [32]Wang YG, Wang SQ, Liu YX, Yan LP, Dou GF, Gao Y. Characterization of metabolites and cytochrome P450 isoforms involved in the microsomal metabolism of aconitine. J Chromatogr B 2006; 844 (2):292-300.
    [33]王宇光,高月,柴彪新,陈鹏,谭洪玲,赵永红。人参、藜芦合用对大鼠肝P450酶活性及mRNA表达的调控作用.中国中药杂志2004;29(04):82-86.
    [34]周建明,王宇光,陈志武,高月.苦参、藜芦合用对大鼠肝P450酶活性及mRNA表达的调控作用.中国中药杂志2010;35(14):1845-1849.
    [35]杨明会,李绍旦,高月.从现代临床应用探析中药“十八反”.中华中医药杂志2011;26(01):12-15.
    [36]刘玲玲,于心若.银杏药用价值.中草药1994;25(04):219-221.
    [37]潘洪平.银杏叶制剂药理作用和临床应用研究进展.中国中药杂志2005;30(02):14-17.
    [38]van Beek TA. Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 2002; 967 (1):21-55.
    [39]陈维洲,张培智.银杏叶提取物的药理和临床研究进展(上).中国新药与临床杂志1999;18(05):315-317.
    [40]王琛,李昌煜.银杏叶提取物药理作用研究新进展.中国现代中药2009;11 (03):10-12.
    [41]仰榴青,吴向阳,吴静波,陈钧.银杏外种皮的化学成分和药理活性研究进展.中国中药杂志2004;29(02):20-24.
    [42]Jaggy H, Koch E. Chemistry and biology of alkylphenols from Ginkgo biloba L. Pharmazie 1997; 52 (10):735-738.
    [43]仰榴青,吴向阳,陈钧.HPLC法测定白果中银杏酸的含量.药物分析杂志2004;24(06):636-639.
    [44]杨小明,钱之玉,陈钧,朱伟,谢吉民.银杏外种皮中银杏酸的体外抗肿瘤活性研究.中药材2004;27(01):40-42.
    [45]Itokawa H, Totsuka N, Nakahara K, Takeya K, Lepoittevin JP, Asakawa Y. ANTITUMOR PRINCIPLES FROM GINKGO-BILOBA L. Chem Pharm Bull 1987; 35 (7):3016-3020.
    [46]Zhou CC, Li XY, Du W, Feng Y, Kong XL, Li Y, et al. Antitumor Effects of Ginkgolic Acid in Human Cancer Cell Occur via Cell Cycle Arrest and Decrease the Bcl-2/Bax Ratio to Induce Apoptosis. Chemotherapy 2010; 56 (5):393-402.
    [47]Oberpichler H, Beck T, Abdel-Rahman MM,Bielenberg GW, Krieglstein J.Effects ofGinkgo biloba constituents related to protectionagainst brain damage caused by hypoxia.Pharmacol Res Commun 1988; 20 (5):349-368.
    [48]Itokawa H, Totsuka N, Nakahara K, MaezuruM, Takeya K, Kondo M, Inamatsu M,Morita H. A quantitative structure-activityrelationship for antitumor activity of longchainphenols from Ginkgo biloba L. Chem Pharm Bull 1989; 37 (6): 1619-1631.
    [49]方静,谭卫红.来自银杏提取物的抗肿瘤化合物的研究进展.生物质化学工程2008;42(05):56-60.
    [50]Lu J, Yan S, Jamaluddin S, Weakley SM, Liang Z, Siwak EB, et al. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro. Medical Science Monitor 2012; 18 (8):BR293-BR298.
    [51]陆瑾,许忻,宗志敏,等.银杏制剂中烷基酚酸类成分研究进展.中草药2001;32(1):85-87.
    [52]Hiroshi M, Yutaka K, Hirosada S. Sterische struktur dergiftstofFe aus dem fruchtfleisch von Ginkgo biloba L. Chem Pharm Bull 1968; 16 (11).2282-2286.
    [53]赵成林.银杏外种皮中酸性成分的提取与药用探讨.中草药,1997;28(4):2502-2511.
    [54]许丽丽,张洪泉,程鹏,余壁钰,何凤来.银杏甲素的抗过敏药理作用.中药药理与临床1990;6(04):35-37.
    [55]金巧秀,许丽丽,夏叶玲,程鹏,张洪泉.银杏甲素对免疫功能的影响及其拮抗过敏介质的作用.中药药理与临床1995;8(03):33-35.
    [56]Nomura M, Tada T, Henmi A, Fujihara Y, Shimomura K. Synthesis of 6-(8Z,11Z)-8,11,14-pentadecatrienyl salicylic acid derivatives and their inhibition properties toward tyrosinase or hyaluronidase. Nippon Kagaku Kaishi 1995; (12):986-993.
    [57]许爱华,王玲,陈华圣,王茜,顾维戎,张洪泉.银杏外种皮多糖延缓小鼠衰老的实验研究.中药材1996;19(09):466-468.
    [58]庄江兴,邱凌,钟雪,柯红梅,彭思远,陈清西,王勤.银杏酸GAl对酪氨酸酶和黑色素瘤细胞的作用.厦门大学学报(自然科学版)2009;48(01):103-106.
    [59]何静仁. 银杏酸的变应原性及致过敏作用机制研究[D].武汉:华中农业大学2003.
    [60]Claude Benezra. Molecular recognition in allergic contact dermatitis to natural products. Pure & Appl.Chern.,1990; 7 (62):1251-1258.
    [61]Al-Yahya AA, Al-Majed AA, Al-Bekairi AM, Al-Shabanah OA, Qureshi S. Studies on the reproductive, cytological and biochemical toxicity of Ginkgo biloba in Swiss albino mice. J Ethnopharmacol 2006; 107 (2):222-228.
    [62]孙锴,潘小海,黄诗颖,叶一舟, 潘家祜. 银杏酸对大鼠肝脏线粒体的损伤作用. 中国药理通讯2009;26(2):56.
    [63]Ahlemeyer B, Krieglstein J. Pharmacological studies supporting the therapeutic use of Ginkgo biloba extract for Alzheimer's disease. Pharmacopsychiatry.2003; Suppl 1:S8-S14.
    [64]Hecker H, Johannisson R, Koch E, Siegers CP. In vitro evaluation of the cytotoxic potential of alkylphenols from Ginkgo biloba L. Toxicology 2002; 177 (2-3):167-177.
    [65]hlemeyer B, Selke D, Schaper C, Klumpp S, Krieglstein J. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C. EurJ Pharmacol 2001; 430 (1):1-7.
    [66]马景哲,银杏酸单体的纯化制备及分析方法的研究.2011,北京化工大学
    [67]尹秀莲,银杏外种皮中银杏酸的分离技术研究.2003,江苏大学.
    [68]中国药典2010版一部.
    [69]Ndjoko K, Wolfender JL, Hostettmann K. Determination of trace amounts of ginkgolic acids in Ginkgo biloba L. leaf extracts and phytopharmaceuticals by liquid chromatography-electrospray mass spectrometry. J Chromatogr B 2000; 744 (2):249-255.
    [70]Schotz K. Quantification of allergenic urushiols in extracts of Ginkgo biloba leaves, in simple one-step extracts and refined manufactured material (EGb 761). Phytochem Anal 2004; 15 (1):1-8.
    [71]薄层扫描法测定银杏外种皮中白果酸含量.理化检验-化学分册.2004,40(7):401-402.
    [72]Loungratana P, Tanaka H, Shoyama Y. Production of monoclonal antibody against ginkgolci acids in Ginkgo biloba Linn. Am J Chin Med.2004,32 (1): 33-48.
    [73]Choi YH, Choi HK, Peltenberg-Looman AMG, Lefeber AWM, Verpoorte R. Quantitative analysis of ginkgolic acids from Ginkgo leaves and products using 'H-NMR. Phytochem Anal.2004; 15 (5):325-330.
    [74]仰榴青,吴向阳,陈钧,袁新华,倪慧艳.银杏酸的分光光度法测定.分析化学.2004,32(5):661-664.
    [75]田亚平,尤文元,李或娜.荧光分析法测定银杏酚酸.分析化学.2006,34:S155-157.
    [76]Liu ZH, Chen J, Yu LS, Jiang HD, Yao TW, Zeng S. Structural elucidation of metabolites of ginkgolic acid in rat liver microsomes by ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry and hydrogen/deuterium exchange. Rapid Commun Mass Spectrom,2009,23 (13): 1899-1906.
    [77]Liu ZH, Zeng S. Cytotoxicity of ginkgolic acid in HepG2 cells and primary rat hepatocytes. Toxicol Lett,2009,187 (3):131-136.
    [78]Xia HJ, Wang XD, Li L, Wang SJ, Guo CC, Liu Y, Yu LS, Jiang HD, Zeng S. Development of high performance liquid chromatography/electrospray ionization mass spectrometry for assay of ginkgolic acid (15:1) in rat plasma and its application to pharmacokinetics study. J Chromatogra B 2010; 878 (28): 2701-2706.
    [79]王颖,盛龙生,楼凤昌,等.银杏总酸中有关成分的LC/D AD/API/MS分析.中国药科大学学报.2001,32(5):371-374.
    [80]曾苏.药物代谢学.杭州:浙江大学出版社,2008,28-94.
    [81]Huang S-M, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, et al. New era in drug interaction evaluation:US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J Clinic Pharmaco2008; 48 (6):662-670.
    [82]杨本坤,王素军,莫李立,曾洁.药物代谢体外模型的研究进展.广东药学院学报2011;27(06):649-652.
    [83]夏宗玲,BYZX体外吸收、代谢及药物相互作用研究.2007,浙江大学.
    [84]姚艳,磷酸化介导的UGT1A3代谢活性差异的初步研究.2011,浙江大学.
    [85]Hollenberg PF. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab Rev 2002; 34 (1-2):17-35.
    [86]Eagling VA, Tjia JF, Back DJ. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Brit J Clin Pharmaco 1998; 45 (2):107-114.
    [87]USFDA. Guidance for Industry:Bioanalytical Method Validation.2001 Available from: http://www.fda.gov/downloads/Drugs/.../Guidances/ucm070107.pdf.
    [88]Grancharov K, Naydenova Z, Lozeva S, Golovinsky E. Natural and synthetic inhibitors of UDP-glucuronosyltransferase. Pharmaco Therapeut 2001; 89 (2): 171-186.
    [89]Golovinsky E, Naydenova Z, Grancharov K. UDP-Glucuronosyltransferase inhibitors. Eur J Drug Metab Ph 1998; 23 (4):453-456.
    [90]Ritter JK. Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chemi-Biol Interact 2000; 129 (1-2): 171-193.
    [91]Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Met 2006; 2 (6):875-894.
    [92]Court MH. Acetaminophen UDP-glucuronosyltransferase in ferrets:species and gender differences, and sequence analysis of ferret UGT1A6. J Vet Pharmaco Ther 2001; 24 (6):415-422.
    [93]Shiratani H, Katoh M, Nakajima M, Yokoi T. Species differences in UDP-Glucuronosyltransferase activities in mice and rats. Drug Metab Dispos 2008; 36 (9):1745-1752.
    [94]Komura H, Iwaki M. In vitro and in vivo small intestinal metabolism of CYP3A and UGT substrates in preclinical animals species and humans:species differences. Drug Metab Rev 2011; 43 (4):476-498.
    [95]Sanoh S, Horiguchi A, Sugihara K, Kotake Y, Tayama Y, Ohshita H, Tateno C, Horie T, Kitamura S, Ohta S. Prediction of In Vivo Hepatic Clearance and Half-Life of Drug Candidates in Human Using Chimeric Mice with Humanized Liver. Drug Metab Dispos 2012; 40 (2):322-328.
    [96]Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 2001; 29 (10):1316-1324.
    [97]Iwatsubo T, Suzuki H, Shimada N, Chiba K, Ishizaki T, Green CE, et al. Prediction of in vivo hepatic metabolic clearance of YM796 from in vitro data by use of human liver microsomes and recombinant P450 isozymes. J Pharmaco Exp Ther 1997; 282 (2):909-919.
    [98]Yan Z, Caldwell GW. Metabolic assessment in liver microsomes by co-activating cytochrome P450s and UDP-glycosyltransferases. Eur J Drug Metab Ph 2003; 28 (3):223-232.
    [99]Plant N. Strategies for using in vitro screens in drug metabolism. Drug Discov Today 2004; 9 (7):328-336.
    [100]Yu CN, Ye SS, Sun HY, Liu Y, Gao LB, Shen C, Chen SQ, Zeng S. PXR-mediated transcriptional activation of CYP3A4 by cryptotanshinone and tanshinone IIA. Chem Biol Interact.2009; 177 (1):58-64.
    [101]王君燕,余露山,曾苏.人孕烷x受体介导的UGT1A1报告基因模型的建立及初步应用.中国药学杂志2012;47(14):1105-1110.
    [102]徐聪,徐思云,胡海红,余露山,曾苏.CYP2B6体外诱导活性评价模型的建立及其在中药活性成分筛选的应用.药学学报2013;48(1):119-124.
    [103]Luo G, Cunningham M, Kim S, Burn T, Lin JR, Sinz M, Hamilton G, Rizzo C, Jolley S, Gilbert D, Downey A, Mudra D, Graham R, Carroll K, Xie JD, Madan A, Parkinson A, Christ D, Selling B, LeCluyse E, Gan LS.CYP3A4 induction by drugs:Correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 2002; 30 (7): 795-804.
    [104]Rushmore TH, Kong ANT. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 2002; 3 (5):481-490.
    [105]Yu CN, Chai XJ, Yu LS, Chen SQ, Zeng S. Identification of novel pregnane X receptor activators from traditional Chinese medicines.J Ethnopharmacol,2011; 136(1):137-143.
    [106]Yoshizato K, Tateno C. In vivo modeling of human liver for pharmacological study using humanized mouse. Expert Opin Drug Meta 2009; 5 (11):1435-1446.
    [107]Juurlink DN. Drug-induced hepatotoxicity. New Engl J Med 2003; 349 (20): 1974-1975.
    [108]邓颖,陈杰,毕惠嫦,黄民.原代肝细胞培养及其在药物代谢和毒理学研究中的应用进展.中国药理学通报.2006;22(8):900-903.
    [109]Yamamoto Y, Yamazaki H, Ikeda T, Watanabe T, Iwabuchi H, Nakajima M, Yokoi T Formation of a novel quinone epoxide metabolite of troglitazone with cytotoxic to HepG2 cells. Drug Metab Dispos 2002; 30 (2):155-160.
    [110]Asai A, Sugawara T, Ono H, Nagao A. Biotransformation of fucoxanthinol into amarouciaxanthin A in mice and HepG2 cells:Formation and cytotoxicity of fucoxanthin metabolites. Drug Metab Dispos 2004; 32 (2):205-211.
    [111]Martin P, Riley R, Back DJ and Owen A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br. J. Pharmacol.2008; 153 (4):805-819.
    [112]Ueda R, Iketaki H, Nagata K, Kimura S, Gonzalez FJ, Kusano K, Yoshimura T, Yamazoe Y. A Common Regulatory Region Functions Bidirectionally in Transcriptional Activation of the Human CYP1A1 and CYP1A2 Genes. Mol. Pharmacol.2006; 69 (6):1924-1930.
    [113]张霞,狼毒乙素和新狼毒素A的药物代谢及动力学研究.2011,浙江大学.
    [114]Green PS, Perez EJ, Calloway T, Simpkins JW. Estradiol attenuation of beta-amyloid-induced toxicity:A comparison of MTT and calcein AM assays. J Neurocyto 2000; 29 (5-6):419-423.
    [115]Fotakis G, Timbrell JA. In vitro cytotoxicity assays:Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 2006; 160 (2):171-177.
    [116]郭晓培,李艾芳,张宝旭,王旗.白鲜碱对HepG2细胞的毒性作用及其机制.中国药理学与毒理学杂志2013;27(01):95-100.
    [117]Jang JS, Seo EG, Han C, Chae HB, Kim SJ, Lee JD, Wang JH. Four cases of toxic liver injury associated with Dictamnus dasycarpus. The Korean journal of hepatology 2008; 14 (2):206-212.
    [118]Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties. Drug Metab Dispos 2003; 31 (8):1035-1042.
    [119]Hewitt NJ, Lechon MJG, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GMM, Hengstler JG Primary hepatocytes:Current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 2007; 39 (1):159-234.
    [120]Walter MA Westerink, Willem GEJ. Schoonen. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol. In Vitro.2007; 21 (8):1592-1602.
    [121]陈莹,季莉莉,史辑,王峥涛.细胞内谷胱甘肽对吡咯里西啶生物碱肝细胞生长抑制的重要作用.中国毒理学会第五次全国学术大会.2009.中国贵州贵阳.
    [122]陈西敬,王广基.药物转运蛋白在药物吸收、分布和排泄中的作用及对新药研发的意义.中国药科大学学报2003;34(06):2-5.
    [123]刘瑶,曾苏.MDCK-MDR1细胞模型及其在药物透过研究中的应用进展.药学学报2008;43(06):559-564.
    [124]刘瑶,俞春娜,曾苏.P-糖蛋白高表达马丁达比狗肾上皮细胞系的建立.中国药学杂志2009;44(21):1608-1613.
    [125]田野,屈伯宣,姚艳,曾苏.LLC-PK1/BCRP细胞系的建立及其生物学特征.药学学报2012;47(12):1599-1604.
    [126]Matsson P, Pedersen JM, Norinder U, Bergstrom CAS, Artursson P. Identification of Novel Specific and General Inhibitors of the Three Major Human ATP-Binding Cassette Transporters P-gp, BCRP and MRP2 Among Registered Drugs. Pharm Res 2009; 26 (8):1816-1831.
    [127]Sun SY, Chen ZJ, Li LP, Sun DL, Tian Y, Pan H, Bi HC, Zeng S,Jiang HD The two enantiomers of tetrahydropalmatine are inhibitors of P-gp, but not inhibitors of MRP1 or BCRP. Xenobiotica 2012; 42 (12):1197-1205.
    [128]Benet LZ, Izumi T, Zhang YC, Silverman JA, Wacher VJ. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release 1999; 62 (1-2):25-31.
    [129]Kwatra D, Budda B, Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Transfected MDCK Cell Line with Enhanced Expression of CYP3A4 and P-Glycoprotein as a Model To Study Their Role in Drug Transport and Metabolism. Mol Pharm 2012; 9 (7):1877-1886.
    [130]刘瑶,MDCK转染MDR1作为血脑屏障药物透过的快速筛选模型的研究.2008,浙江大学.
    [131]Wang XD, Meng MX Gao LB, Liu T, Xu Q, Zeng S. Permeation of astilbin and taxifolin in Caco-2 cell and their effects on the P-gp. Int J Pharm 2009; 378 (1-2): 1-8.
    [132]Holtzman CW, Wiggins BS, Spinler SA. Role of P-glycoprotein in statin drug interactions. Pharmacotherapy 2006; 26 (11):1601-1607.
    [133]Luker GD, Pica CM, Kumar AS, Covey DF, Piwnica-Worms D. Effects of cholesterol and enantiomericcholesterol on P-glycoprotein localization and function in low density membranedomains. Biochemistry 2000; 39 (29):8692.
    [134]Tang FX, Horie K, Borchardt RT. Are MDCK cells transfected with the Human MDR1 gene a good model of the human intestinal mucosa?. Pharm Res.2002; 19 (6):765-772.
    [135]Yee S. In vitro permeability across Gaco-2 cells (clonic) can predict in vivo (small intestinal), absorption in man-fact or myth. Pharm Res 1997; 14 (6):763-736.
    [136]F Feng B, Mills JB, Davidson RE, Mireles RJ, Janiszewski JS, TroutmanMD, de Morais SM. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 2008; 36 (2):268-275.
    [137]Krajcsi P, Jani M, Toth B, Erdo F, Kis E, Beery E, Sziraki I Effluxtransporters in the blood-brain interfaces-in vitro and in vivo methods and correlations. Expert Opin Drug Met 2012; 8 (4):419-431.
    [138]Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, Roden MM, Belas F, Chaudhary AK, Roden DM, Wood AJJ, Wilkinson GR. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res1999; 16 (3):408-414.
    [139]毛晓琴,谢海棠,周宏灏.多药耐药蛋白和CYP3A4介导的中草药-西药相互作用中国临床药理学与治疗学2007;12(07):728-734.
    [140]邓鸣,李联,张兰华.ABCG2转运蛋白的研究进展.中国新药与临床杂志2009;28(06):405-410.
    [141]Haimeur A, Conseil G, Deeley RG, Cole SPC. The MRP-related and BCRP/ABCG2 multidrug resistance proteins:Biology, substrate specificity and regulation. Curr Drug Metab 2004; 5 (1):21-53.
    [142]刘庆,王旗,杨秀伟,张宝旭.基于MDCK Ⅱ细胞的中药成分体外肾毒性评价.中国药理学与毒理学杂志,2007,21(6):521-528.
    [143]Hecker H, Johannisson R, Koch E, Siegers CP. In vitro evaluation of the cytotoxic potential of alkylphenols from Ginkgo biloba L. Toxicology 2002; 177 (2-3):167-177.
    [144]Zheng Y, Xu J, Ma G, Zhang J, Zhu Q, Liu H, Zhang P, Zhu Y, Cai W. Bioavailability and pharmacokinetics of S-propargyl-L-cysteine, a novel cardioprotective agent, after single and multiple doses in Beagle dogs. Xenobiotica 2012; 42 (3):304-309.
    [145]Tsai TH, Tsai TR, Chou CJ, Chen CF. Determination of dicentrine in rat plasma by high-performance liquid chromatography and its application to pharmacokinetics. J Chromatogr B 1996; 681 (2):277-281.
    [146]Woelkart K, Frye RF, Derendorf H, Bauer R, Butterweck V. Pharmacokinetics and Tissue Distribution of Dodeca-2E,4E,8E,10E/Z-tetraenoic Acid Isobutylamides after Oral Administration in Rats. Planta Med 2009; 75 (12): 1306-1313.
    [147]Roy B, Das A, Bhaumik U, Sarkar AK, Bose A, Mukharjee J, Chakrabarty US, Das AK, Pal TK Determination of gemifloxacin in different tissues of rat after oral dosing of gemifloxacin mesylate by LC-MS/MS and its application in drug tissue distribution study. J Pharmaceut Biome 2010; 52 (2):216-226.
    [148]Byrdwell WC.Atmospheric Pressure Chemical Ionization Mass Spectrometry for Analysis of Lipids. Lipids.2001; 36 (4):327-346.
    [149]Wang XD, Xia HJ, Xing F, Deng GF, Shen Q, Zeng S. A highly sensitive and robust UPLC-MS with electrospray ionization method for quantitation of taxifolin in rat plasma. J Chromatogr B 2009; 877 (18-19):1778-1786.
    [150]Kwak JO, Lee SH, Lee GS, Kim MS, Ahn YG, Lee JH, Kim SW, Kim KH, Lee MG Selective inhibition of MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel. Eur J Pharmaco2010; 627 (1-3):92-98.
    [151]Takakusa H, Masumoto H, Yukinaga H, Makino C, Nakayama S, Okazaki O, Sudo K. Covalent binding and tissue distribution/retention assessment of drugs associated with idiosyncratic drug toxicity. Drug Metab Dispos 2008; 36 (9): 1770-1779.
    [152]Tse FLS, Ballard F, Skinn J. Estimating the fraction reabsorbed indrugsundergoing enterohepatic circulation J Pharmacokinet Biop 1982; 10 (4): 455-461.
    [153]谭玮,李燕.有机阴离子转运肽在药物转运中的作用.国际药学研究杂志 2007;34(05):364-368..
    [154]孙进,孙勇兵,何仲贵.转运蛋白在药物肝胆转运中的重要作用.药学学报2005;40(08):680-685.
    [155]Schmitt U, Abou El-Ela A, Guo LJ, Glavinas H, Krajcsi P, Baron JM, Tillmann C, Hiemke C, Langguth P, Hartter S. Cyclosporine A (CsA) affects the pharmacodynamics and pharmacokinetics of the atypical antipsychotic amisulpride probably via inhibition of P-glycoprotein (P-gp). J NeuralTransm 2006; 113 (7):787-801.
    [156]Bansal T, Mishra G, Jaggi M, Khar RK, Talegaonkar S. Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats. Eur J Pharm Sci 2009; 36 (4-5):580-590.
    [157]Malingre MM, Beijnen JH, Rosing H, Koopman FJ, Jewell RC, Paul EM, Huinink WWT, Schellens JHM. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients. Brit J Cancer 2001; 84(1):42-47.
    [158]Breedveld P, Beijnen JH, Schellens JHM. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 2006; 27 (1):17-24.
    [159]Silis GJ, Kwan P, Butler E, de Lange ECM, van den Berg DJ, Brodie MJ. P-glycoprotein-mediated efflux of antiepileptic drugs:preliminary studies in mdrla knockout mice. Epilepsy Behav 2002; 3 (5):427-432.
    [160]Vlaming MLH, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP):Recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev 2009; 61 (1):14-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700