钛合金表面疏水的等离子体改性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域,但由于具有较高的表面自由能,显示为亲水性,不具备自清洁性能,长期在潮湿空气中会发生腐蚀现象,并且一些装备中的钛合金部件容易产生结冰等现象,这在一定程度上限制了钛合金的进一步应用。自然界中以荷叶为代表的生物表皮超疏水和自清洁现象给了我们重要启示,研究发现荷叶自清洁功能是由表面疏水的蜡状低表面能材料和微纳复合结构的乳突共同引起的,如果能够按照这种疏水原理研发出超疏水表面技术,并将其应用于钛合金等金属材料上,则可以起到自清洁、抑制表面腐蚀和氧化,增强防潮和防冰功能。目前除日常用品外,一些行业也急需长寿命超疏水表面技术,如航空领域,发动机进气道口处的防冰,用以防止发动机性能损失及可能引发的故障,另外还可用于大气数据传感器及机翼前缘等处的防冰,用以解决阻力增加等问题,而在电子元器件及医疗器械领域这种需要也很明显。
     目前,超疏水涂层多采用化学法制备,虽然工艺简单、易操作,但是制备的涂层结合力差、不耐冲击、环境适应性差,常面临涂层粉化、起泡、开裂以及疏水功能下降等失效行为。类金刚石膜(Diamond Like-carbon, DLC)具有优异力学性能,但是由于其表面能较高,因此疏水性能较差,如果通过元素对DLC薄膜的掺杂,将其表面能降低,在提高其疏水性能的同时,保障其具有良好的环境适应能力和使用寿命,将大大提高其可应用性,本文中将主要进行金属Ti和非金属F元素掺杂DLC薄膜研究,以揭示元素掺杂对薄膜疏水性能和力学性能的影响,同时注意到超疏水和良好综合性能表面的获得,通常是低表面能材料和粗糙表面形貌协同的结果,因此本文还研究了以超音速火焰喷涂(Supersonic Flame Spraying, HVOF) WC和纳秒激光制造的微盲孔为底层微结构,然后用低表面能掺杂DLC进行修饰的仿生疏水表面,具体研究内容及结果如下:
     (1)采用微波电子回旋共振(Microwave Electron Cyclotron Resonance, MW-ECR)等离子体反应磁控溅射技术制备Ti-DLC薄膜,研究了薄膜的化学结构及成分变化,重点考察了不同制备条件对薄膜力学性能和疏水性能的影响规律。制备的薄膜被证明是-种TiC纳米晶镶嵌的纳米复合结构薄膜,其纳米硬度最高达到33GPa,磨损量最小达到12μm3,临界载荷最大达50N,水接触角达到最大值106.5。,分析结果显示Ti-DLC膜的表面能随着Ti元素百分比含量的增加先减小后增加。分析表明薄膜疏水性能的改善,主要是由于化学键结构和成分发生了变化。
     (2)采用微波ECR等离子体化学气相沉积技术制备了F-DLC薄膜,主要研究不同能量、不同百分比的F元素掺杂对薄膜表面形貌和组织结构的影响,重点调查在此种变化下薄膜的疏水性能和力学性能变化规律。通过分析表明薄膜主要包含C-Fx(x=1,2,3)和C=C(F,H)交联结构,这种化学键结构导致其力学性能变差,如:纳米硬度一般在2-3GPa之间,临界载荷最高可达31N,而疏水性能大为提高,在优化工艺参数下,F-DLC薄膜最高水接触角可达159.2°。 F元素原子百分比含量对薄膜表面能有重要影响,含量的增加将使其逐渐降低,当含量为32.6%时,表面能降到最低(14.74mJ/m2)。
     (3)采用离子轰击、超音速火焰喷涂及纳秒激光加工三种手段对样品进行了表面微纳结构的制造,研究了不同形貌对样品疏水性能的影响,同时将微纳米结构制造与低表面能薄膜沉积工艺复合,制备了具有微纳二级结构的超疏水表面。测试结果表明:离子束轰击作用下,钛合金基体的接触角随轰击能量的增加,总体呈现逐渐升高趋势;超音速喷涂WC涂层为底层的系列样品接触角,随样品表面形貌复杂化的提高而不断升高,对WC涂层样品进行F-DLC修饰后,水接触角达到最高166°;周期性微盲孔为底层微结构的系列样品接触角变化趋势与WC涂层类似,F-DLC膜修饰后,水接触角达到165.60。
     (4)基于分形几何理论,采用投影覆盖法,利用Matlab软件,对以WC涂层为底层微结构的样品进行实际表面积和分形维数模拟计算,并对样品的实测接触角和模拟接触角进行对比分析。基于Wenzel和Cassie理论,建立了周期性微盲孔的数学物理模型,用于实际表面积和接触角计算,重点分析了微盲孔结构对钛合金表面疏水性能的影响。模拟结果表明采用上述两种微结构可以提高样品表面的实际表面积和分形维数,从使其疏水性能得到进一步提高。
Ti alloy has been widely used in various fields, according to high strength, good corrosion resistance and high heat resistance, but it has the high surface energy, shows a hydrophilic, and does not have self-cleaning performance. Ti alloy corrosion can occur in moist air for a long time, and some Ti alloy parts in equipment are easy to produce the icing phenomenon, which limits its application in some fields. Creature skin represented by the lotus leaf in nature shows super-hydrophobic and self-cleaning properties, which offers us an important idea. It is found that a waxy material with low surface energy and the mastoid with micro-and nano-composite structure result in the hydrophobicity and self-cleaning function of the lotus leaf. If the manufacturing technology of hydrophobic surface can be developed according to the hydrophobic theory, and can be applied in the titanium alloy and other metal materials, it will make them have self-cleaning, inhibition of corrosion and oxidation, moistureproof and anti-icing functions. Besides the daily items, at present, other fields also need the surface technology with long life, for example aviation, it can be applied for anti-icing of the engine intake, to prevent loss of engine performance and the failure, it also can be used for other parts such as air data sensors and wing leading edge for anti-icing, to solve the increased resistance. The need in the field of electronic components and medical equipment is also very obvious.
     Currently, super-hydrophobic coating usually is prepared by chemical method. Although the method is simple and easy to operate, the coating has some bad properties such as low adhesion strength, poor environmental adaptability and impact resistance, often produce some failure behaviors including powdering, blistering, cracking, etc. Diamond like-carbon (DLC) films possesses excellent mechanical propertis, but has higher surface energy and poor hydrophobic performance. If the surface energy of it could be reduced by the element doping, it will improve the hydrophobicity. At the same time, if the environmental adaptability and service life of the film could be enhanced, it will greatly improve the applicability. In this thesis, Ti metal and nonmetal F doped DLC films will mainly be studied, to reveal the element doping effect on hydrophobic performance and mechanical properties. It is noticed the super-hydrophobic surface and good comprehensive performance are usually the result of a low surface energy material combinded with the rough surface morphology. So, in this thesis, WC coating prepared by supersonic flame spraying (HVOF) and micro blind holes prepared by nanosecond laser manufacturing are used to generate the microstructure of super-hydrophobic surface. Finally the doped DLC film with low surface energy is deposited on the coarse surface.
     The concrete research contents and results are as follows:
     (1) Ti-DLC film was prepared by the microwave electron cyclotron resonance (MW-ECR) plasma reactive magnetron sputtering. The film's chemical structure and composition changing were studied, the effect of the different preparation conditions on the mechanical properties and hydrophobicity were focused on. The results showed the film was a nano-composite DLC film with TiC crystal, its nanohardness up to33GPa, abrasion losss down to12μm3, critical loading up to50, and water contact angle at a maximum of106.5°. It was found that the surface energy of Ti-DLC film increased firstly and then decreased with the increase of Ti element percentage, and the improving of the hydrophobicity was mainly owing to the changing of the chemical structure and composition.
     (2) The F-DLC film was prepared by the MW-ECR plasma chemical vapor deposition technique. The effect of different energy and percentage of F element on the surface morphology and chemical structure of F-DLC film was mainly studied. The change rules of the hydrophobic property and mechanical properties were focused on. The results showed that the film was composited of C-Fx (x=1,2,3) and C=C (F, H) crosslinking structure, which resulted in worse mechanical properties. For instance, the nano-hardness was generally between3GPa and2GPa, the maximal critical load was about31N, but the hydrophobic performance was greatly improved, under the optimized processing parameters, the water contact angle increased to159.2°. It was noticed that F atomic percentage content of the film had an important influence on the surface energy. With the increasing of F content, the surface energy gradually became low, when the content was32.6%, the surface energy achieved a minimum of14.74mJ/m2.
     (3) The influence of different morphology on the hydrophobic property was studied by three methods including ion bombardment, supersonic flame spraying and nanosecond laser processing. The super-hydrophobic surface with micro-nano secondary structure was fabricated by the micro-nano manufacturing combining with the film with low surface energy deposition. The results showed that the contact angle of the substrate showed a trend of rising with bombardment energy increasing. WC coating prepared by supersonic spraying was used as the bottom of the hydrophobic surface, and with complexity increasing of the surface morphology, the wacter contact angle of the sample gradually rose. After the microstructure was modified by the F-DLC film, the water contact angle of the sample reached the highest value of166°. The changing trend of the sample with periodic micro blind holes used as the underlying microstructure was similar to WC coating, after the modification of F-DLC film, the water contact angle reached165.6°.
     (4) Based on the fractal geometry theory, by projective covering method and Matlab software, the actual surface area and fractal dimension of WC coating was calculated, and the simulation value and the measured value of the water contact angle were compared and analyzed. Based on the theory of Wenzel and Cassie, the mathematical physics models of periodic micro blind hole were established, and were used for the actual surface area and water contact angle calculation. It was principally analyzed that the effect of micro blind hole structure on the hydrophobic properties of Ti alloy surface. Simulation results showed that the above microstructures could increase the actual surface area and fractal dimension of the samples, so the hydrophobic performance was further improved.
引文
[1]陈国琳,吴鹏炜,冷文军,等.钛合金的发展现状及应用前景[J].舰船科学技术,2009,31(12):110.
    [2]訾群.钛合金研究新进展及应用现状[J].钛工业进展,2008,25(2):23.
    [3]张喜燕,赵永庆,白晨光.钛合金及应用[M].北京:化学工业出版社,2005.
    [4]Nosonovsky M, Bhushan B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering[J]. Current Opinion in Colloid and Interface Science,2009,14:270-280.
    [5]Boinovich L B, Emelyanenko A M. Hydrophobic materials and coatings:principles of design, properties and applications[J]. Russian Chemical Reviews,2008,77:583.
    [6]Schvartzman M, Wind S J. Plasma fluorination of diamond-like carbon surfaces: mechanism and application to nanoimprint lithography[J]. Nanotechnology,2009, 20:145306.
    [7]Xue C H, Jia S T, Zhang J, et al. Large-area fabrication of superhydrophobic surfaces for practical applications:an overview[J], Science and Technology of Advanced Materials,2010,11:033002.
    [8]Zhang F, Chen S, Dong L, et al. Preparation of superhydrophobic films on titanium as effective corrosion barriers[J]. Applied Surface Science,2011,257:2587-2591.
    [9]Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces:from structural control to functional application[J]. Journal of Materials Chemistry,2008,18:621-633.
    [10]河南大学.纪念《金属制品》创刊40周年暨2012年金属制品行业技术信息交流会论文集[C].河南济源:[出版者不祥],2012.
    [11]Cao L, Jones A K, Sikka V K, et al. Anti-Icing Superhydrophobic Coatings[J]. Langmuir,2009,25:12444-12448.
    [12]Anderson D, Reich A D. Tests of the performance of coatings for low ice adhesion [J]. 35th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics,1997.
    [13]Kulinich S A, Farzaneh M. Ice adhesion on super-hydrophobic surfaces[J]. Applied Surface Science,2009,255:8153-8157.
    [14]Kulinich S A, Farzaneh M. On ice-releasing properties of rough hydrophobic coatings[J], Cold Regions Science and Technology,2011,65:60-64.
    [15]Young T. An Essay on the Cohesion of Fluids Philos, An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805, 95:65-87.
    [16]崔国文.表面与界面[M].北京:清华大学出版社,1990.
    [17](著)Roy Morrison S,(译)赵壁英,刘英骏,卜乃瑜等.表面物理化学[M].北京:北京大学出版社,1987.
    [18]Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28:988-994.
    [19]Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society,1944,40:546-551.
    [20]Adamson A W, Gast A P. Physical Chemistry of Surfaces[M]. New York:Wiley,1997.
    [21]Bico J, Marzolin, Quere D. Rough wetting[J]. Europhysics Letters,1999, 47:214-220.
    [22]Shibuichi S, Onda T, Satoh N, et al. Super-water-repellent surfaces resulting from fractal structure[J]. Journal of Chemical Physics,1996,100:19512-19517.
    [23]Johnson Jr R E, Dettre R H. Contact angle hysteresis, Part I, Study of an idealized rough surfaces[J]. Advances in Chemistry Series,1963,43:112.
    [24]Lafuma A, Quere D. Superhydrophobic states[J]. Nature materials,2003,2:457-460.
    [25]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007.
    [26]Barthlott W, Neinhuis C. Purity of the Sacried lotus or escape from contamination in biological surfaces [J]. Planta,1997,202:1-8.
    [27]孔祥清,吴承伟.蚊子腿表面多级微纳结构的超疏水特性[J].科学通报,2010,55(16)1589-1594.
    [28]Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on-CF3 alignment [J]. Langmuir,1999,15:4321-4323.
    [29]Patankar N A. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces [J]. Langmuir,2003,19:1249-1253.
    [30]Bhushan B, Koch K, Jung Y C. Fabrication and Characterization of the hierarchical Structure for Superhydrophobicity[J]. Ultramicroscopy,2009,109:1029-1034.
    [31]Bhushan B, Jung Y C, Niemietz A, et al. Lotus-like Biomimetic Hierarchical Structures Developed by Self-assembly of Tubular Plant Waxes[J]. Langmuir,2009, 25:1659-1666.
    [32]肖文佳.分形结构表面浸润性研究.中山大学博士论文,2008.
    [33]Feng L, Li S, Li Y, et al. Super-Hydrophobic Surfaces:From Natural to Artificial [J]. Advanced Materials,2002,14:1857-1860.
    [34]Minglin M, Randal M H. Superhydrophobic surface[J]. Current Opinion in Colloid and Interface Science,2006,11:193-202.
    [35]Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces:from structural control to functional application[J]. Journal of Materials Chemistry,2008,18:621-633.
    [36]Li X M, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews,2007,36:1350-1368.
    [37]Paul Roach, Neil J. Shirtcliffe and Michael I. Newton Progess in superhydrophobic surface development[J]. Soft Matter,2008,4:224-240.
    [38]Xue C H, Jia S T, Zhang J, et al. Large-area fabrication of superhydrophobic surfaces for practical applications:an overview[J]. Science and Technology of Advanced Materials,2010,11:033002.
    [39]Miwa M, Nakajima A, Fujishima A, et al. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces[J]. Langmuir,2010,16: 5754-5760.
    [40]Nakajima A, Hashimoto K, Watanabe T. Recent Studies on Super-Hydrophobic Films [J]. Monatshefte fuer Chemie,2001,132:31-41.
    [41]Shirtcliffe N J, McHale G, Atherton S, et al. An introduction to superhydrophobicity[J]. Advances in Colloid and Interface Science,2010,161: 124-138.
    [42]Nakajima A, Abe K. Hashimoto K.. Preparation of hard super-hydrophobic films with visible light transmission[J]. Thin Solid Films,2000,376(1):140-143.
    [43]Shirtcliffe N J, McHale G, Newton M L, et al. Intrinsically super-hydrophobic organosilica sol-gel foams[J]. Langmuir,2003,19:5626-5632.
    [44]Decher G, Hong J D. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process,I. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles on Charged Surfaces[J]. Makromolekulare Chemie. Macromolecular Symposia,1991, 46:321.
    [45]Decher G. Fuzzy Nanoassemblies:Toward Layered Polymeric[J]. Multicomposites Science,1997,277:1232-1237.
    [46]Chen W, McCarthy T J. Layer-by-Layer Deposition:a Tool for Polymer Surface Modification[J]. Macromolecules,1997,30:78.
    [47]Zhai L, Berg M C, Cebeci F C, et al. Patterned Superhydrophobic Surfaces:Toward a Synthetic Mimic of the Namib Desert Beetle [J]. Nano Letters,2006,6:1213.
    [48]Zhang X, Shi F, Yu X, et al. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:toward Super-Hydrophobic Surface [J]. J Am Chem Soc,2004,126:3064-3065.
    [49]Shirtcliffe N J, McHale G, Newton M I, et al. Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces[J]. Advance Materials,2004,16:1929.
    [50]Ming W, Wu D, Benthem R, et al. Superhydrophobic films from raspberry-like particles [J]. Nano letters,2005,5:2298-2301.
    [51]Qian B T, Shen Z Q. Fabrication of superhydrophobic surfaces by dislocation selective chemical etching On aluminum copper and zinc substrates[J]. Langmuir, 2005,21:9007-9009.
    [52]Khorasani M T, Mirzadeh K, Kermani Z. Wettability of porous polydimethylsiloxane Surface:morphology study[J]. Applied Surface Science,2005,242:339-345.
    [53]Sun T L, Wang G L, Feng L, et al. Reversible swithing superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition,2004, 43:357-360.
    [54]Martines E, Seunarine K, Morgan H, et al. Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns[J]. Nano Letters,2005,5:2097-2103.
    [55]Duparr A, Flemming M, Steinert J, et al. Optical coatings with enhanced roughness for ultrahydrophobic, low scatter application[J]. Applied optics,2002, 41(6):3294-3298.
    [56]Huang L, Lau S P, Yang H Y, et al. Superhydrophobic surface via carbon Nanotubes coated with a ZnO thin film[J]. Journal of Physical Chemisitry B,2005, 109:7746-7748.
    [57]Li H J, Wang X B, Song Y L, et al. Super-Amphiphobic aligned carbon nanotube films [J]. Angewandte Chemie International Edition,2001,40:1743-1746.
    [58]Favia P, Cicala G, Milella A, et al. Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges [J]. Surface and Coatings Technology,2003, 169-170:609-612.
    [59]Oiler D, McCarthy T J. Ultrahydrophobic surfaces effects of topography length scales on wettability[J]. Langmuir,2000,16:7777-7782.
    [60]Zhou Y, Song X, Yu M, et al. Super-hydrophobic surfaces prepared by plasma fluorination of lotus-leaf-like amorp-houscarbon films[J]. Surfaces Review and letters,2006,13(1):117-122.
    [61]Gao N, Yan Y. Modeling Superhydrophobic Contact Angles and Wetting Transition [J]. Journal of Bionic Engineering,2009,6:335-340.
    [62]Qian B, Shen Z. Fabrication of Superhydrophobic Surfaces by Dislocation-SelectiveChemical Etching on Aluminum, Copper and Zinc Substrates [J]. Langmuir, 2005,21:9007.
    [63]Torkkeli A, Saarilahti J, Basra A, et al. Electrostatic transportation of water droplets on super-hydrophobic surfaces[J]. IEEE Transactions on Industry Applications,1998,34(4):732-737.
    [64]Xu B, Cai Z, Wang W, et al. Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification[J], Surface and Coatings Technology,2010,204:1556-1561.
    [65]Xue C H, Yin W, Jia S T, et al. UV-durable superhydrophobic textiles with UV-shielding properties by coating fibers with ZnO/SiO2core/shell particles[J]. Nanotechnology,2011,22:415603.
    [66]Zhou Y, Wang B, Song X, et al. Control over the wettability of amorphous carbon films in a large range from hydrophilicity to super-hydrophobicity[J]. Applied Surface Science,2006,253:2690-2694.
    [67]Zhou Y, Wang B, Zhang X, et al. The modifications of the surface wettability of amorphous carbon films[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,335:128-132.
    [68]Golap K, Hare R A, Sudip A, et al. Fluorine incorporated amorphous carbon thin films prepared by SurfaceWave Microwave Plasma CVD[J]. Diamond and Related Materials,2008,17:1697-1701.
    [69]Chen G, Zhang J, Yang S. Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route[J]. Electrochemistry Communications, 2008,10:7-11.
    [70]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2005.
    [71]曹立礼.材料表面科学[M].北京:清华大学出版社,2007.
    [72]Robertson J. Diamond-like carbon[J]. Pure and applied chemistry,1994, 66:1789-1796.
    [73]丁晓峰,陈沛智,管蓉.接触角测量技术的应用[J].分析试验室,2008,27:72-77.
    [74]金丽萍,邬时清,陈大勇.物理化学实验.上海:华东理工大学出版社,2006.
    [75]Wan G J, Yang P, Fu R K Y, et al. Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition[J]. Diamond & Related Materials,2006,15:1276-1281.
    [76]周玉.材料分析方法[M].北京:机械工业出版社,2000.
    [77]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.
    [78]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展,2002,32(3):349-364.
    [79]谢存毅.纳米压痕技术在材料科学中的应用[J].物理,2001,30(7):432-435.
    [80]Chen C W, Robertson J. Doping mechanism in tetrahedral amorphous carbon[J]. Carbon, 1999,5:839-842.
    [81]Saha B, Liu E, Tor S B, et al. Anti-sticking behavior of DLC-coated silicon micro-molds[J]. Journal of Micromechanics and Microengineering,2009,19:105025.
    [82]Bokrons J C. Variation in the crystallinity of carbon deposited in fluidized beds[J]. Carbon,1997,15:335-371.
    [83]Zhou H, Xu L, Ogino A, et al. Investigation into the antibacterial property of carbon films[J]. Diamond and Related Materials,2008,17(7-10):1416.
    [84]Robertson J. Diamond-like amorphous carbon[J]. Materials Science and Engineering: R:Reports,2002,37:129-281.
    [85]Zhang S, Bui X L, Li X M. Thermal stability and oxidation properties of magnetron sputtered diamond-like carbon and its nanocomposite coatings[J]. Diamond and Related Materials,2006,15(4-8):972-976.
    [86]Inkin V N, Kirpilenko G G, Dementjev A A, et al. A superhard diamond-like carbon film[J]. Diamond and Related Materials,2000,9:715-721.
    [87]Papakonstantinou P, Zhao J F, Lemoine P, et al.The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films [J]. Diamond and Related Materials,2002,11:1074-1080.
    [88]居建华,夏义本,张伟丽等.氮对类金刚石薄膜的微观结构内应力与附着力的影响[J].物理学报,2000,49:2310-2314.
    [89]蔡千华.Me-DLC膜的开发[J].国外金属热处理,2003,24:44-47.
    [90]Baba K, Hatada R. Preparation and properties of metal containing diamond-like carbon films by magnetron plasma source ion implantation [J]. Surface and Coatings Technology,2002,158-159:373-376.
    [91]Tay B K, Sheeja D, Lau S P, et al. Study of energy of tetrahedral amorphous carbon films modified in various gas plasma[J]. Diamond and Related Materials,2003, 12:2072-2076.
    [92]Lzumi Y, Kamata K, Ohte T, et al. Stabilization of CF4 Plasma Treated Carbon Surface by Heat Treated During and after Plasma Treatment[J]. Journal of vacuum science & technology A,1997,15:1937-1942.
    [93]Leezenberg P B, Johnston W H, Tyndall G W. Chemical Modification of Sputtered Amorphous Carbon Surfaces[J]. Journal of Applied Physics,2001,89:3489-3507.
    [94]Chen J S, Lzu S P, Tay B K, et al. Surface Energy of Amorphous Carbon Films Containing Iron[J]. Journal of Applied Physics,2001,89:7814-7819
    [95]Dilou R O, Woolam J A, Katkanant V. The raman analysis of the diamond-like carbon film[J]. Physical Review B,1984,29:3482.
    [96]Tuinstra F, Koening J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53:1126.
    [97]Schroeder A, Francz G, Bruinink A, et al. Titanium containing amorphous hydrogenated carbon film (a-C:H/Ti):surface analysis and evaluation of cellular reactions using bone marrow cell cultures in vitro[J]. Biomaterials, 2000,21:449-456.
    [98]Sun M R, Xia L F. Composition and structure of TiC/DLC graded composite films[J]. Rans. Transactions of Nonferrous Metals Society of China,2002,12:246-250.
    [99]Yoshitake T, Nishiyama T, Aoki H, et al. Atomic force microscope study of carbon thin films prepared by pulsed laser deposition[J]. Applied Surface Science.1999, 141:129-137.
    [100]Ma F, Li G, Li H Q, et al. Diamond-like carbon gradient film prepared by unbalancedmagnetron sputtering and plasma immersion ion implantation hybrid technique[J]. Materials Letters,2002,57:82-86.
    [101]Huang L Y,'Xua K W, Lu J. Evaluation of scratch resistance of diamond-like carbon films on Ti alloy substrate by nano-scratch technique[J]. Diamond and Related Materials,2002,11:1505-1510.
    [102]Hauert R. An overview on the tribological behavior of diamond-like carbon in technical and medical applications[J]. Tribology International,2004, 37:991-1003.
    [103]Poliakov V P, Siqueira C J, Veigaa W, et al. Physical and tribological properties of hard amorphous DLC films deposited on different substrates[J]. Diamond and Related Materials,2004,13:1511-1515.
    [104]Nosonovsky M, Bhushan B. Roughness-induced superhydrophobicity:a way to design non-adhesive surfaces[J], Journal of Physics:Condensed Matter,2008,20:225009.
    [105]Wan G J, Yang P, Fu R K Y, et al. Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition [J]. Diamond and Related Materials,2006,15:1276-1281.
    [106]表面工程技术协会,第六届全国表面工程学术会议[C].兰州:[出版者不祥],2006.
    [107]Voevodin A A, Bantle R, Matthews A. Dynamic impact wear of TiC, N, and Ti-DLC composite coatings[J]. Wear,1995,185:151-157.
    [108]Chen J S, Lau S P, Sun Z, et al. Metal-containing amorphous carbon films for hydrophobic application[J]. Thin Solid Films,2001,398-399:110-115.
    [109]Thomson L A, Law F C, Rushton N, et al. Biocompatibility of diamond-like carbon coating[J]. Biomaterials,1991,12:37-40.
    [110]Tiainen V M. Amorphous carbon asio-mechanical coating mechanical properties and biological applications[J]. Diamond and Related Materials,2001,10:153-160.
    [111]Prins M W J, Welters W J J, Weekamp J W. Fluid control in multichannel structures by electrocapillary pressure [J]. Science,2001,291:277-280.
    [112]曲敬信,汪泓宏.表面工程手册[M].北京:化学工业出版社,1998.
    [113]黄峰,程珊华,宁兆元等.微波功率对a-C:F薄膜结构和光学性质的影响[J].材料科学与工程,2001,19:32-36.
    [114]Rubio-Roy M, Bertran E, Pascual E, et al. Fluorinated DLC deposited by pulsed-DC plasma for antisticking surface applications [J]. Diamond and Related Materials, 2008,17:1728-1732.
    [115]Milella A. Advanced plasama technology[M]. Germany:Wiley-VCH, Weinheim,2008.
    [116]Allen M, Hanert R, Chandra L, et al. Toxicity of particulate silicon carbide for macrophages, fibroblasts and osteoblast-like cells in vitro[J]. Bio-Medical Materials and Engineering,1995,5(3):151-159.
    [117]Haueft R, MOller U, Francz G, et al. Surface analysis and bioreactions of F and Si contmning a-C:H[J]. Thin Sofid Films,1997,309:191-194.
    [118]唐雄心,赵建生.搀杂氟对类金刚石薄膜性能的影响[J].材料导报,2002,16:47-49.
    [119]Antje Q, Martin P, Karsten S, et al. Formation of PTFE-like films in CF4microwave plasmas[J]. Thin Solid Films,2010,123:458-463.
    [120]Ji H, Cote A, Koshel D, et al. Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges [J]. Thin Solid Films,2002,405:104-108.
    [121]Trojan K, Grisehke M, Dimigen H, Network modification of DLC coating to adjust a defined surface energy[J]. Physica Status Solidi (a),1994,145:575-585.
    [122]Sarkar D K, Farzaneh M, Paynter R W. Wetting and superhydrophobic properties of PECVD grown hydrocarbon and fluorinated-hydrocarbon coatings[J]. Applied Surface Science,2010,256:3698-3701.
    [123]Xiao J R, Xu H, Deng C H, et al. Study on FN-DLC thin films:(Ⅲ) hydrophobic nature analysis[J]. Chinese Physics,2007,56:2998-3002.
    [124]Xiao J R, Xu H, Guo A M, et al. Study of FN-DLC thin films:(Ⅰ) sp structure and chemical bond analysis[J]. Chinese Physics,2007,56:1802-1808.
    [125]Marra D C, Aydil E S. Effect of H2 addition on surface reactions during CF4/H2 plasma etching of silicon and silicon dioxide films[J]. Journal of Vacuum Science & Technology A,1997,15:2508.
    [126]Sarkar D K, Farzaneh M, Paynter R W. Wetting and superhydrophobic properties of PECVD grown hydrocarbon and fluorinated-hydrocarbon coatings[J]. Applied Surface Science,2010,256:3698-3701.
    [127]Durrant S F, Rangel E C, Cruz N C, et al. Amorphous hydrogenated fluorinated carbon films produced by PECVD [J]. Surface and Coatings Technology,1996,86-87:443-448.
    [128]Yang S H, Liu C H, Hsu W T, et al. Preparation of super-hydrophobic films using pulsed hexafluorobenzene plasma[J]. Surface and Coatings Technology,2009, 203:379-1383.
    [129]Wei Z J, Liu W L, Tian D, et al. Preparation of lotus-like superhydrophobic fluoropolymer films[J]. Applied Surface Science,2010,256:3972-3976.
    [130]Huang C, Pan C H, Liu C H. Deposition of hydrophobic nano-coatings with low-pressure radio frequency CH2F2/Ar plasma processing[J]. Thin Solid Films,2010, 518:3570-3574.
    [131]Hsieh W J, Wang C H, Lai S H, et al. Cathodoluminescence of fluorine doped amorphous carbon nanoparticles deposited by a filtered cathodic arc plasma system[J]. Carbon, 2006,44:107-112.
    [132]Bottania C E, Lampertia A, Nobilib L, et al. Structure and mechanical properties of PACVD fluorinated amorphous carbon films[J]. Thin Solid Films,2003, 433:149-154.
    [133]Yao Z Q, Yang P, Huang N, et al. Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PⅢ-D) [J]. Applied Surface Science,2004, 230:172-178.
    [134]Butter R S, Waterman D R, Lettington A H, et al. Production and wetting properties of fluorinated diamond-like carbon coatings[J]. Thin Solid Films,1997, 311:107-113.
    [135]Koshela D, Jia H, Terreaulta B, et al. Characterization of CF, films plasma chemically deposited from C3F8/C2H2 precursors [J]. Surface and Coatings Technology, 2003,173:161-171.
    [136]Lee H J, Michielsen S. Preparation of a superhydrophobic rough surface [J]. Journal of Polymer Science Part B:Polymer Physics,2007,45:253-261.
    [137]Ma M, Hill R M, Rutledge G C. A Review of Recent Results on Superhydrophobic Materials Based on Micro-and Nanofibers[J]. Journal of Adhesion Science and Technology,2008,22:1799-1817.
    [138]徐蕊,马英子,肖新颜.仿生超疏水涂层材料研究新进展[J].化工新型材料,2009,37:1-4.
    [139]崔晓松,姚希,刘海华等.超疏水表面微纳结构设计与制备及润湿行为调控(Ⅰ)[J].中国材料进展,2009,28:41-52.
    [140]崔晓松,姚希,刘海华等.超疏水表面微纳结构设计与制备及润湿行为调控(Ⅱ)[J].中国材料进展,2010,29:31-44.
    [141]Seemann R, Brinkmann M, Herminghaus S, et al. Wetting morphologies and their transitions in grooved substrates[J]. Journal of Physics:Condensed Matter,2011, 23:184108.
    [142]Chen T H, Chuang Y J, Chieng C C, et al. A wettability switchable surface by microscale surface morphology change[J]. Journal of Micromechanics and Microengineering,2007,17:489.
    [143]Courbin L, Bird J C, Reyssat M, et al. Dynamics of wetting:from inertial spreading to viscous imbibitions [J]. Journal of Physics:Condensed Matter,2009,21:464127.
    [144]褚武扬.材料科学中的分形[M].北京:化学工业出版社,2004.
    [145]Xie H, Zhou H W, Feng Z. Further research on the Projective Covering Method[J]. International Journal of Solids and Structures,2000,37(33):4627-4630.
    [146]Xie H, Wang J A, Xie W H. Fractal effect of surface roughness on the mechanical behavior of rock joints[J]. Chaos, Solitons and Fractals,1997,8(2):221-252.
    [147]Clark K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method[J]. Computers and Geoscience,986, 12(5):713-722.
    [148]Xie H, Wang J A, Kwasniewski M A. Multifractal characterization of rock fracture surfaces[J]. International Journal of Rock Mechanics and Mining Sciences,1999, 35(1):19-27.
    [149]Zhou H W, Xie H. Direct estimation of the fractal dimensions of a fracture surface of rock[J]. Surface Review and Letters,2003,10(5):751-762.
    [150]张亚衡,周宏伟,谢和平.粗糙表面分形维数估算的改进立方体覆盖法[J].岩石力学与工程学报,2005,24(17):3192-3196.
    [151]Xie H, Wang J, Stein E. Direct fractal measurement and multifractal properties of fracture surfaces[J]. Physics Letters A,1998,242(1-2):41-50.
    [152]袁长松.钛合金表面微纳结构对其超疏水性能的影响研究[D].哈尔滨:哈尔滨工业大学机电工程学院,2010.
    [153]连峰,张会臣,庞连云等.超疏水Ti6A14V表面的制备及其润湿性[J].纳米技术与精密工程,2011,9(1):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700