章鱼胺的发酵制备及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
章鱼胺(Octopamine)作为重要的生物胺,在生物体内起了神经介质的作用,近年的研究发现它是一种天然的β3-肾上腺素能受体激动剂,有调节代谢与能量平衡的功效,在肥胖症的治疗和II型糖尿病的防治上有潜在的价值。章鱼胺可以单独或与其它原料联合用于减肥与糖尿病的治疗,可以作为食品、健康食品原料乃至临床药物的辅助制剂。枳实和鱼露是天然章鱼胺的主要来源,但枳实中章鱼胺的含量仅为0.01~0.03%,而鱼露中相对丰富的章鱼胺含量(0.01~0.1%),使从鱼露中提取章鱼胺开发健康产品成为可能。本课题旨在利用水产品加工的废弃物制备速酿鱼露,从中提取章鱼胺,并研究章鱼胺的生物活性。本论文利用智利外海茎柔鱼(Dosidicus gigass)的内脏为原料,采用保温、加曲保温、加酶保温等不同速酿方法制备鱼露,测定了鱼露酿造过程中章鱼胺含量的变化;并参照鱼露中章鱼胺的生成路径,尝试以酪胺为底物生物转化生成章鱼胺。本论文研究从鱼露中提取章鱼胺的有效方法,以探讨从鱼露中提取章鱼胺开发健康产品的可能性。在章鱼胺的应用实验中,研究了章鱼胺对营养肥胖小鼠的减肥作用。最后以章鱼胺为原料合成了十种章鱼胺衍生物,测定了它们的抗氧化活性,并与章鱼胺的前体化合物酪胺对比,以期对章鱼胺的生物活性做进一步研究。
     1.鱼露酿制过程中章鱼胺的产生
     以智利外海茎柔鱼内脏为原料,采用保温、加曲保温、加酶保温等不同速酿方法制备鱼露,测定鱼露在不同酿制阶段的pH值、氨基酸态氮和章鱼胺含量,并对最终样品作感官评价。结果表明:酿制20d内,pH值变化显著,上升速度较快,从弱酸性升至中性或弱碱性;在此期间,氨基酸态氮的变化也较为显著,其浓度增加了15mg·mL~(-1)以上,20d后趋于稳定;鱼露酿制前期,章鱼胺含量逐渐增加,15-20d时,达到最大值,高于5mg·mL~(-1),加酶保温速酿的样品中章鱼胺含量甚至超过7mg·mL~(-1)。20d后,鱼露中章鱼胺的含量呈下降趋势。为与速酿鱼露作对比,本研究测定了常温自然酿制鱼露在酿制过程中pH值、氨基酸态氮和章鱼胺含量的变化。结果显示,在常温自然酿制鱼露中的各种变化速度较速酿鱼露缓慢得多。30d后,pH值仍保持在酸性范围内,氨基酸态氮的浓度仅增加了5mg·mL~(-1)左右,章鱼胺含量为3.5mg·mL~(-1),仅为加酶保温速酿样品中章鱼胺含量峰值的一半。
     本研究利用茎柔鱼的不可食部分酿制鱼露,可以发现在酿制过程中章鱼胺含量明显提高,表明酿造过程可有效提高章鱼胺含量,这可为水产品加工的下脚料和废弃物的综合利用提供一条途径。本研究对于酿制半年以上的保温速酿鱼露样品中的章鱼胺含量也进行了测定,发现仍然高达4.5mg·mL~(-1)以上。说明鱼露可长期保持较高的章鱼胺水平。若将速酿鱼露做为提取章鱼胺的原料,可任选保温、加曲保温、加酶保温三种速酿方法之一,20d的酿制时间即可。
     感官评定的结果表明保温和加曲保温速酿的样品在气味上有较浓的鱼香气,而加酶保温速酿的样品腥气较重,气味不佳。对保温速酿鱼露中组胺和重金属含量测定的结果表明其中组胺及砷、镉的含量均已超标,因此,从安全性考虑,用智利外海茎柔鱼内脏酿制的鱼露不适于直接作为调味品食用。
     2.酪胺发酵生物合成章鱼胺
     鱼露在漫长的发酵过程中,细胞色素P450酶系(cytochrome P450s,CYP450)对章鱼胺的生物合成起了关键的作用。文献资料显示在研究细胞色素P450酶的活性时往往要使用价格昂贵的超速冷冻离心机提取动物肝脏中的微粒体。本文参照鱼露中章鱼胺的生成路径,用高速冷冻离心机提取了含有细胞色素P450酶的草鱼肝脏S-9部位,并以之为酶源,以维生素C为氢载体,异烟肼为单胺氧化酶抑制剂,以酪胺为原料生物转化生成章鱼胺。提取得到的S-9部位冷藏在4℃条件下,其中的细胞色素P450酶活性只能保持4小时左右,而-25℃冷藏条件下其活性可保持8-10天。生物合成实验的结果显示氢载体对生物合成章鱼胺是必需的,反应1h产生的章鱼胺为879.66μg/4.5mL反应液,章鱼胺的生物合成率为21.4%,酪胺代谢率为90.0%。这表明以草鱼肝脏S-9部位为酶源生物转化生成章鱼胺是可行的,但由于P450酶系的非专一性,章鱼胺的生物合成率较低,有待进一步改进。
     3.鱼露中章鱼胺的分离和提取
     鱼露中章鱼胺的含量较为丰富,高于其他许多水产品。从鱼露中有效提取章鱼胺并进行精制,可以为进一步开发利用天然章鱼胺打下基础。从智利外海茎柔鱼内脏速酿鱼露中提取章鱼胺,可使废弃物得以综合利用,减少资源浪费和环境污染。本文中采用静态吸附和动态吸附相结合的方法,综合考虑吸附量、解吸率等因素,研究硅胶分离提取鱼露中章鱼胺的吸附性能和洗脱参数。结果表明:60~100目硅胶对鱼露中章鱼胺有较好的吸附分离效果,静态饱和吸附量达3.837mg·g~(-1)(干硅胶),30%的乙醇水溶液为最佳洗脱剂,洗脱率达90.48%;60~100目硅胶对鱼露中章鱼胺动态吸附的最佳上样量为4BV,用1.1BV洗脱液可基本洗脱完全。得到的洗出液采用HPLC分离系统,在流动相0.02mol·L~(-1)柠檬酸-0.02mol·L~(-1)磷酸二氢钠(7∶3),PH=3、流速10mL min~(-1)、检测波长274nm的条件下被色谱柱SepaxHP-C18柱(21.2mm250mm,10μm)精制,真空冷冻干燥后得到白色粉末状固体。将此白色固体与标准品章鱼胺在同样的条件下进行质谱分析,可证明得到的白色粉末状固体为纯度较高的天然章鱼胺。
     4.章鱼胺和市售减肥药对营养性肥胖小鼠减肥作用的比较
     在章鱼胺的应用实验中,本实验比较了章鱼胺和市售减肥药对营养性肥胖小鼠的减肥作用。采用高脂饲料喂养4周构建营养性肥胖小鼠模型。再将小鼠分组喂养4周后发现,饲料中加入一定剂量章鱼胺和减肥药的小组中小鼠体重、Lee s指数、脂肪湿重、脂肪系数、血清总胆固醇(TC)、甘油三脂(TG)与模型组存在显著性差异(P <0.05)。以上结果表明章鱼胺对营养性肥胖小鼠有一定的减肥降脂作用。
     5.章鱼胺衍生物的合成及抗氧化活性研究
     关于章鱼胺的生物活性,文献报道大多为肥胖症的治疗和II型糖尿病防治方面的研究。既往研究指出,章鱼胺的前体化合物酪胺具有较高的抗氧化活性,且与其浓度呈正相关。本文以章鱼胺为原料合成十种衍生物,并对它们进行核磁共振氢谱和质谱定性分析,确证其结构。为比较章鱼胺、酪胺及章鱼胺衍生物的抗氧化活性,本文测定了这些物质对DPPH自由基、超氧阴离子自由基、羟基自由基的清除率。研究结果表明,章鱼胺及其两种衍生物OA07和OA08,即N-正十一烷基甲酰基-2-羟基-2-(4-羟基苯基)-乙胺和N-(2-硝基-3-甲基苯甲酰基)-2-羟基-2-(4-羟基苯基)-乙胺,清除DPPH自由基、超氧阴离子自由基和羟基自由基的能力均高于酪胺;另一章鱼胺衍生物OA05,即N-(4-硝基苯甲酰基)-2-羟基-2-(4-羟基苯基)-乙胺具有较高的超氧阴离子自由基清除能力,值得进一步关注和研究。
     由于国内目前有关章鱼胺的研究报告或产品较少,本课题的研究有可能进一步推动对章鱼胺的研究,为更好地生产和应用章鱼胺提供一定的理论依据和研究基础。本课题组之前的研究发现鳀鱼(Engraulis)和七星鱼(Channa asiatica)鱼露原液中章鱼胺含量较高,达到0.05-0.1%左右,考虑到我国当前鱿鱼加工业中存在资源利用率低和环境污染严重两个问题,本研究以智利外海茎柔鱼内脏为原料制备鱼露并探讨从中提取章鱼胺的有效方法,为天然章鱼胺的制取提供实验依据。同时,化学合成了章鱼胺的衍生物,将它们及章鱼胺的抗氧化活性与章鱼胺的前体化合物酪胺进行对比,旨在对章鱼胺的生物活性做进一步研究,拓展章鱼胺的开发和利用领域。
As an important biogenic amine, octopamine plays a role of neurotransmitter inorganism. Recent researches revealed that it is a natural β3-adrenergic receptor agonist(β3-ARA), which has effects on metabolism regulatinon and energy balance.Octopamine also has an important preventive function on obesity and typeⅡdiabetes.As raw materials of food and health food or auxiliary preparation for clinical medicine,octopamine can be used independently or jointly with other materials for weight lossand diabetes treatment. Natural octopamine mainly exists in Fructus aurantiiImmaturus (FaI), but the content in FaI is merely0.01~0.03%, and in fish sauce,however, relative abundant (0.01~0.1%). It is possible to extract octopamine fromfish sauce and develop health products. This paper aims at the rapid brewage of fishsauce by the waste of aquatic products, extraction of octopamine, and study on thebiological activity of octopamine and its derivatives. In this paper, visceral ofDosidicus gigass was used as raw material to produce fish sauce by3quick brewingmethods of insulation, adding either koji or enzyme under insulation. The change inoctopamine content during brewage was investigated. As the substrate, tyramine wasbioconverted to octopamine according to the formation path of octopamine in fishsauce. An effective method was studied to extract octopamine in fish sauce in order tofind the possibility of developing health food. In application experiments ofoctopamine, its effect on the anti-obesity in nutritive obesity mice was studiedcompared with weight loss pills. Finally, ten kinds of octopamine derivatives weresynthesized. For further study of the biological activity of octopamine, the antioxidantactivity of octopamine and its dereivatives were determined, and compared with that oftyramine, the precursor compound of octopamine.
     1. Octopamine production during fish sauce brewing process
     Fish sauce was brewed from the viscera of Dosidicus gigass in this study. Toshorten brewage period, methods such as insulation, adding enzyme or koji underinsulation was adopted. The changes in pH value, amino acid nitrogen and content ofoctopamine during brewage were investigated. The sensory characteristics were alsoevaluated. The results showed that in the first20days, the pH value increasedobviously and changed from acidic to neutral or weak alkaline, while the amino acidnitrogen rised significantly and had an increased by15mg·mL~(-1). They all becamestable after20days of brewage. Initially, the content of octopamine ascended graduallyand climbed to the top of more than5mg·mL~(-1)after15-20days of brewage. It reachedeven more than7mg·mL~(-1)in fish sauce added enzyme. After20days, the octopaminecontent showed a trend of decrease. With the speedy brewing fish sauce forcomparison, the changes in pH value, amino acid nitrogen and content of octopaminein natural brewing fish sauce were also measured. The results showed that all theabove changes in natural brewing fish sauce were much slower than those of in quickbrewing ones. After30days of natural brewage, the pH value was still acidic, theamino acid nitrogen increased only by5mg·mL~(-1). Meanwhile, the content ofoctopamine reached3.5mg·mL~(-1), which was only half of the content peak in fishsauce added enzyme.
     In this study inedible parts of Dosidicus gigass was used to make fish sauce. Itcan be found that octopamine content improved effectively in the brewing process,which indicates that octopamine will be produced during brewage. Maybe this is a newway for comprehensive utilization of waste during aquatic products processing. Theoctopamine content in fish sauce after half year s insulation brewage was rather stableand more than4.5mg·mL~(-1), which demonstrated that the content of octopamine in fishsauce can keep at high level for a long time. If only for octopamine extraction,20daysof brewage is enough, and any one of the3quick brewing methods can be chosen.
     The results of sensory evaluation showed that the smell of fish sauce addedenzyme was the most unpleasant among the three kinds of samples. The content ofhistamine and heavy metal in insulation brewing fish sauce were determined. Theresult indicated that the content of histamine, As and Cd were higher than national standard. Therefore, from the security considerations, the fish sauce is not suitable forhuman consumption as a condiment directly.
     2. Biotransformation from tyramine to octopamine by fermentation
     Cytochrome P450enzyme system (cytochrome P450s, CYP450) plays a key rolein the biosynthesis of octopamine during the long fermentation process of fish sauce.Most literature displayed that expensive speeding refrigerated centrifuge was oftenused to extract microsome from animal liver in the study of cytochrome450activities.In this study, hepatic S-9place containing cytochrome450in the liver of Grass Carpwas extracted by a high speed refreigerated contrifuge. When the hepatic S-9place wasstored at4℃, the cytochrom P450activity can only keep about4h, while it can bemaintained for8-10days at-25℃. According to the formation path of octopamine infish sauce, tyramine was bioconverted to octopamine with Grass Carp hepatic S-9place as the resource of cytochrome P450, ascorbic acid as hydrogen carrier andisoniazid as monoamine oxidase inhibitor. The results showed that hydrogen carrier isnecessary for the biosynthesis of octopamine, and the octopamine obtained after1hcatalysis was879.66μg in4.5mL reaction liquid. The biosynthesic rate of octopamineand metabolic rate of tyramine were21.44%and90.03%, respectively. This indicatedthat it is feasible to produce octopamine when hepatic S-9place of Grass Carp beingtaken as resource of enzyme. But because of the non-specifity of cytochrome P450thebiosynthesic rate of octopamine was relative low, which need to be further improved.
     3. Octopamine separation and extraction in fish sauce
     In fish sauce octopamine content is rather rich, higher than many other aquaticproducts. Extraction and refining of octopamine in fish sauce can lay the foundationfor further development and utilization of natural octopamine. It is a way ofcomprehensive utilization of aquatic litter to process fish sauce by squid viscera. It alsocan reduce the waste of resources and environmental pollution. The adsorption andelution parameters was studied during separation and extraction of octopamine in fishsauce, while the static and dynamic adsorption was combined and adsorption anddesorption rate were also be considered. The results demonstrated that60~100meshsilica gel has high efficiency in separate adsorption with the static saturated adsorption of3.837mg g-1(dry silica gel).30%ethanol was as eluent with its elutive power90.48%. The optimal value of the dynamic adsorption of octopamine in fish sauce on60~100mesh silica gel was4BV, and when the volume of eluent was1.1BV, theeluting process was basically completed. The eluate was refined by a HPLC separationsystem. A SepaxHP-C18column (21.2mm x250mm,10μm) was used. The mobilephase was0.02mol·L~(-1)citric acid-0.02mol·L~(-1)sodium dihydrogen phosphate (7:3,v/v) and detection wavelength was274nm. White solid powder was obtained aftervacuum freeze drying. This white powder and octopamine standard was analized byMass spectrometer in the same condition. It can be proved that the white powder washigh purity natural octopamine by almost the same spectra.
     4. Comparison of Anti-obesity effect of octopamine and commercial weight loss pillson nutritive obesity mice
     In application experiments, the effect of octopamine on the anti-obesity innutritive obesity mice was studied compared with commercial weight loss pills. Thealimentary obesity model was established by high fat diet for4weeks. Then the micewere grouped feeding for another4weeks. The body weight, Lee s index, fat wetweight, FC and the content of TC and TG in groups with a certain dose of octopamineor diet pills added in the feed were significantly different from those in alimentaryobesity model group (P <0.05). The above results demonstrated that there is a certainweight and fat reducing effect of octopamine on nutritional obesity mice.
     5. Synthesis of octopamine derivatives and study on antioxidant activity
     In the previous literature the biological activity of octopamine focused on thepreventive function on obesity and typeⅡdiabetes. Past researches indicated thattyramine, the precursor compound of octopamine, has comparative high antioxidantactivity which is positively related to its concentration. In this paper ten derivatives ofoctopamine were synthesized and their chemical structure were confirmed by Nuclearmagnetic resonance and mass spectroscopy. The antioxidant activity of octopamine,tyramine as well as octopamine derivatives were then tested by investigating theirscavenging effect against DPPH free radicals, superoxide anion radicals and hydroxylfree radicals. It it showed that the scavenging rate of octopamine and its two derivatives, OA07and OA08against the above three kinds of radicals were higherthan that of tyramine. OA05, another octopamine derivative had prominent scavengingeffect against superoxide anion radicals, which is worthy of further attention and study.
     At present there are less research report or product about octopamine. This papermay promote further research on octopamine and provide theoretical basis andresearch foundation for production and application of octopamine. Earlier studiesfound that octopamine content of fish sauce made from Engraulis and Channa asiaticais rather high, at around0.05-0.1%. Considering the actual conditions of low utilizationrate of resources and environmental pollution in squid processing, visceral ofDosidicus gigass was used to for preparation of fish sauce. Moreover, an effectivemethod was studied to extract octopamine in fish sauce. This also provides theexperimental basis for the industrial production of natural octopamine. Meanwhile,octopamine derivatives were synthesized. The antioxidant activity of octopamine andits derivatives were detected and compared with that of tyramine, the precursorcompound of octopamine. Further study on biological activity of octopamine is desiredto expand its field of development and utilization.
引文
[1] Brink B Ten, Damink C. Occurrence and formation of biologically active amines infoods[J]. J. Food Microbiol,1990(11):73-84.
    [2] Shalaby A R.Significance of biogenic amines to food safety and human health[J].Food Research International,1996(29):675-690.
    [3] Silla Santos. M. H, Biogenic amines:their importance in foods[J]. InternationalJournal of Food Microbiology,1996(29):213-231.
    [4] Suzzi G, Gardini F. Biogenic amines in dry fermented sausages: a review[J]. Int JFood Microbiol,2003(88):4l-54.
    [5]王燚,刘书亮.发酵香肠中生物胺的研究进展[J].肉类研究,2006(10):34-38.
    [6]李平兰,沈清武.干发酵香肠中生物胺的产生与控制[J].食品与发酵工业,2004,30(11):59-64.
    [7]刘培芝.谈谈提高鱼露质量的一些技术措施[J].中国调味品,1989(3):15-18.
    [8] Brilliantes S, Samosorn W. Determination of histamine in fish sauce from Thailandusing a solid phase extraction and high performance liquid chromatography (HPLC)[J].Fisheries Sci,2001,67(6):1163-l168.
    [9]荣艳萍,朱婷婷,陈舜胜等.鱼露中肾上腺素受体激动剂—章鱼胺分析方法的研究[J].中国海洋药物杂志,2008(27):43-45.
    [10]徐伟,石海英,朱奇等.鱿鱼加工废弃物鱼酱油发酵过程中的生物胺变化研究[J].安徽农业科学,2010,38(4):2055-2057.
    [11] TAN PST, POOLMAN B, KONINGS WH. Proteolytic enzymes of Lactococcuslactis[J]. J Dairy Res,1993,60:269-286.
    [12] Soufleros,E., Barrios,M., Bertrand,A. Correlation between the content of biogenicamines and other wine compounds[J]. American Journal of Enology and Viticulture,1998(49):266-278.
    [13]李志军.食品中多种生物胺同时测定方法研究进展[J].卫生研究,2006,35(5):670-674.
    [14]彭小勇,林琛.啤酒中的生物胺和多胺[J].啤酒科技,2004(2):50-53.
    [15]吴延东.生物胺对啤酒质量的影响[J].酿酒科技,2004(1):59-60.
    [16] Cinquina A, Caly A, Longo F, et al. Determination of biogenic amines in fishtissues by ion-exchange chromatography with conductivity detection[J]. Journal ofChromatography A.2004(1032):73-77.
    [17] Yen G C, Kao H H. Antioxidative effect of biogenic amine on the peroxidation oflinoleic acid [J]. Biosci Biotech Biochem,1993,57(1):115-116.
    [18] Lovaas E. Antioxidative effects of polyamines[J]. J Am Oil Chem Soc,1993,68:353-358.
    [19] Carpene C, et al. Selective activation of beta3-adrenoceptors by octopamine:comparative studies in mammalian fat cell[J].Naunyn Schmiedebergs Arch.Pharmacol,1999,359(4):310-321.
    [20] Galitzky J, et al. Specific stimulation of adipose tissue adrenergic beta3receptorsby octopamine[J]. C.R.Acad.Sci.III,1993,316(5):519-523.
    [21] Onal A. A review: Current analytical methods for the determination of biogenicamines in foods[J]. Food Chem.,2007,103(4):1475-1486.
    [22] Bodmer S, Imark C, Kneubühl M. Biogenic amines in foods: Histamine and foodproessing [J]. Inflammation Research,1999,48(2):296~300.
    [23] Mah J H, Han H K, Oh Y J, et a1. Biogenic amines in Jeotkals,Korean salted andfermented fish products[J]. Food Chemistry,2002(79):239-243.
    [24] Hemandez-Jover T, lzquierdo-Pulido M, Veciana-Nogues M T, et al. Biogenicamine and polyamine contents in meat and meat products[J]. Journal of AgriculturalFood Chemistry,1997(45):2098-2102.
    [25] Ordonez J A, Hierro E M, Bruna J M, et al. Changes in the components ofdry-fermented sausages during ripening[J]. Critical Reviews in Food Science an dNutrition,1999(39):329-367.
    [26]潘灿平,李维喜,张卢军等.昆虫体内章鱼胺的分布功能及其研究进展[J].昆虫知识,2005,42(4):369-374.
    [27]吴顺凡,郭建洋,黄佳,等.昆虫体内章鱼胺和酪胺的研究进展[J].昆虫学报,2010,53(10):1157-1166.
    [28]夏伟.细胞色素P450的研究进展[J].国外医学-卫生学分册,2000,27(1):41-45.
    [29]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001:56-69.
    [30]邱星辉,冷欣夫.细胞色素P450与癌症基因治疗[J].生命的化学,2000,20(5):238-239.
    [31] Nasci C, Campesan G, U. Fossato V, et al. Cristina Nasci, et al. Induction ofcytochrome P450and mixed function oxygenase activity by low concentrations of polychlorinated biphenyls in marine fish ostersessor ophiocehpalus[J]. AquaticToxicology,1991,19:281-290.
    [32]骆文香,张银娣.药物代谢中的肝细胞色素[J].药学进展,1998,12(6):13-20.
    [33] Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes[J]. JBiol Chem,1964,239:2370-2378.
    [34] Teunissen M.W.E., J.E.Meerburg, Vermeulen N.P.E., et al. Automated high-performance liquid chromatographic determination of antipyrine and its mainmetabolites in plasma, saliva and urine, including4,4′-dihydroxy-antipyrine. J ofChromatography B: Biomedical Sciences and Applications,1983,278:367-378.
    [35] Miota F., Siegfried B.D., Scharf M.E., et al. Atrazine induction of cytochromeP450in Chironomus tentans larvae [J]. Chemosphere,2000,40(3):285~291.
    [36]刘洁,韩晓文,李芹,等.灯盏花素对大鼠CYP3A4体内活性的影响[J].时珍国医国药,2011,22(9):2082-2084.
    [37] Bour S, Visentin V, Prevota D, et al. Moderate weigh-lowering effect ofoctopamine treatment in obese Zucker rats[J]. J.Physiol.Biochem,2003,59(3):175.
    [38] Mclver RC, Brooks RI, Reineccius GA. Flavor of fermented fish sauce [J]. J. AgricFood Chem,1982,30:1017.
    [39] Weyer C,De Souza CJ. Development of β3-adrenoceptor agonists as antiobesityand antidiabetes drugs in humans: current status and future prospects[J]. Drug Dev Res,2000,51(2):80-93.
    [40] Smith SA, Levy AL, Sennitt MV, etc. Effects of BRL26830, a novelβ3-adrenoceptor agonist, on glucose tolerance, insulin sensitivity and glucose turnover inZucker(fa/fa) rats[J].Biochem Pharmacol,1985,34(14):2425-2429.
    [41] Emorine LJ, Marullo S, Briend-Sutren MM, etc. Molecular charaterisation of thehuman β3-adrenergic receptor[J].Science,1989,241(4922):1118-1121.
    [42] David J. G., Coulon J. F. Octopamine in invertebrates and vertebrates[J].Prog.Neurobiol.1985,24:141-185.
    [43] Evans P. D., Davenport A. P., Elias M. S. Asssys for biogenic amines in insectnervous tissue. Neurocheml. Techn. In: Insect Research, Springer, Berlin,Heildelberg, New York,1986.1-35.
    [44]潘灿平.章鱼胺受体激动剂与拮抗剂的设计、合成及构效关系研究,中国农业大学博士论文,1998.
    [45]翟启慧.昆虫分子生物学的一些进展:神经递质和离子通道[J].昆虫学报,1995,38(3):370~379
    [46] Pellati F, Benvenuti S, Melegari M. High-performance liquid chromatographymethods for the Analysis of adrenergic amines and flavanones in citrus aurantium L.varamara [J]. Phytochemical Analysis,2004,15:220-225.
    [47] Jones. Methods for inducing weight loss in a human with materials derived fromCitrus varieties [P]. U.S.Patent,6340482.2002.
    [48]肖崇厚,杨松松,洪筱坤.中药化学[M].上海:上海科学技术出版社,1997:84–85.
    [49]王秀兰,白明刚,敖力布,等.蒙药忠伦-5汤提取工艺研究[J].中国民间医药杂志,2001,52:298-301.
    [50]张灿,张惠斌,黄文龙,等.蝙蝠葛粉性生物碱的提取工艺研究[J].中草药,1997,28(5):274-276.
    [51]黄新异,赵宇,柳军玺,等.逆流萃取法提取甘肃棘豆中的苦马豆素[J].精细化工,2007,24(4):341-344.
    [52]李立坤,夏建军,施荣富,等.天然植物中生物碱的提取及树脂法在其纯化中的应用[J].离子交换与吸附,2007,23(5):475-480.
    [53]王艳,张铁军.微波萃取技术在中药有效成分提取中的应用[J].中草药,2005,36(3):470-473.
    [54] Zhang Fei,Chen Bo,Xia Song.Optimization and comparison of differentextraction techniques for sanguinarine and chelerythrine in fruits of Macleaya cordata(Willd) R. Br.[J].Separation and Purification Technology,2005,42(3):283-290.
    [55]李慧,王剑峰.北草乌生物碱的超生辅助浸提及含量测定[J].大连民族学院学报,2002,4(1):1-12.
    [56]李卫民,金波,冯毅凡.中药现代化与超临界流体萃取技术[M].北京:中国医药科技出版社,2002:95-96.
    [57]朱自强.超临界流体技术:原理和应用[M].北京:化学工业出版社,2000:18-20.
    [58]周晶,冯淑华.中药提取分离新技术[M].北京:科学出版社,2000:18-20.
    [59]宁志刚,崔彦丹,刘春梅,等.超压提取技术应用于乌头注射液生产[J].吉林中医药,2006,26(11):68-69.
    [60]李建萍,邸丽芝,许和.粉防己中非酚性生物碱的提取与分离[J].中草药,2002,5:402.
    [61]卢艳花.中药有效成分提取分离技术[M].北京:化学工业出版社,2005:32-33.
    [62]董新荣,曾建国.北美黄连主要生物碱的提取与分离[J].精细化工中间体,2001,3:33-35.
    [63]郭幼莹,林连波,符小文,等.海南青牛胆生物碱的研究[J].海南医学院学报,2004,10(5):293-297.
    [64]尚庆坤,玄玉实,朱东霞,等.高效制备液相色谱法分离制备菱角壳中的生物碱[J].东北师大学报,2007,39(2):82-86.
    [65]袁黎明,傅若农,张天佑.高速逆流色谱在植物有效成分分离中的应用[J].药物分析杂志,1998,18(1):60-64.
    [66]字敏,袁黎明,刘频,等.高速逆流色谱分离青叶胆中的生物碱林[J].林产化学与工业,2002,22(1):74-76.
    [67]侯世详,田恒康.大孔吸附树脂在中药复方分离纯化工艺中的应用[J].中国新药与临床药理,2000,11(3):131.
    [68]米靖宇,宋纯清.大孔吸附树脂在中草药研究中的应用进展[J].中成药,2001,23(12):914-917.
    [69]王瑞芳,史作清,施荣富,等.超高交联吸附树脂柱色谱法分离提纯喜树碱及喜果甙[J].离子交换与吸附,2002,18(5):412-418.
    [70]谢朝晖,张梅,蒋立东.大孔吸附树脂对白芥子生物碱提取分离的应用研究[J].湖南中医杂志,2002,18(3):69-70.
    [71]迟玉明,赵晞瑛,吉泽丰吉,等.离子交换树脂用于角蒿总生物碱的纯化研究[J].天然产物研究与开发,2005,17(5):617-621
    [72]王洪新,王键.苦豆子种子生物碱离子交换分离的因素研究[J].中草药,2002,33(12):1080-1083.
    [73]隋军,于红,刘丽杰.新工艺技术在中药制剂中应用[J].中成药,2001,23(4):297-299.
    [74] Boyadzhiev L, Yordanov B. Pertraction of indole alkaloids from vinca minor L [J].Separ Sci and Technol,2004,39(6):1321-1329.
    [75]梁锋,张成功,马铭,等.乳状液膜分离提取荷叶中3种生物碱[J].精细化工,2007,24(6):565-570.
    [76]刘耀驰,项伟中,徐伟箭.分子印迹技术在固相萃取中的应用与展望[J].化工学报,2004,55(10):1602-1607.
    [77]刘岚,卢保森,郑军军,等.种子溶胀聚合法制备新型分子烙印聚合物[J].中山大学学报,2004,43(3):45-48.
    [78]黄晓冬,邹汉法,毛希琴,等.原位分子印迹毛细管电色谱柱的制备及其对非对映异构体的分离[J].色谱,2002,20(5):436-438.
    [79]陈晓青,蒋新宇,刘佳佳.中草药成分分离分析技术与方法[M].北京:化学工业出版社,2006:25-27.
    [80]邓松之.海洋天然产物的分离纯化与结构鉴定[M].北京:化学工业出版社,2007:79-154.
    [81] HU YJ, XIA W S, LIU X Y. Changes in biogenic amines in fermented silver carpsausages inoculated with mixed starter cultures[J]. Food Chem,2007,104:188-195.
    [82] Jean DC, Caterina C, Fabiano T, et al. Production of biogenic amines in salaminiitaliani alla cacciatore PDO [J]. Meat Sci,2004,67(2):343-349.
    [83] Shalaby A R. Simple, rapid and valid thin layer chromatographic method fordetermining biogenic amines in foods[J]. Food Chem,1999,65(1):117-121.
    [84] SHAKILA R J, VASUNDHARA T S, KUMUDAVALLY K V. A comparison ofthe TLC-densitometry and HPLC method for the determination of biogenic amines infish and fishery products[J]. Food Chem,2001,75:255-259.
    [85] Nouadje C, Simeon N, Dedieu F, et al. Determination of twenty eight biogenicamino acids during wine aging by micellar electrokinetic chromatography andlaser-induced fluorescence detection[J]. J Chromatogr A,1997,765(2):337-343.
    [86] Kovacs A, Simon-Sarkadi L, Ganzler K. Determination of biogenic amines bycapillary electrophoresis[J]. Journal of Chromatography A,1999(836):305-313.
    [87] Draisci R, Volpe C, Lucentini L, et al. Determination of biogenic amines with aneletrochemical biosensor and its application to salted anchovies[J]. Food Chem,1998,(62)2:225-232.
    [88] Tombelli S, Mascin M. Electrochemical biosensor for biogenic amines: acomparison between different approaches. Anal Chim Acta,1998,358(2):277-284.
    [89]钱卫国,陈新军,郑波,等.智利外海茎柔鱼资源密度分布与渔场环境的关系[J].上海水产大学学报,2008,17(1):98-103.
    [90]刘必林,陈新军,钱卫国.智利外海茎柔鱼生物学特性的初步研究[J].广东海洋大学学报,2009,29(1):1-5.
    [91]张新军,杨军勇,连大军.秘鲁外海茎柔鱼资源及渔业开发[J].齐鲁渔业,2005,22(3):44-45.
    [92]张雪花,齐凤兰.鲢鱼露发酵工艺的研究[J].食品与发酵工业,2001,27(1):37-41.
    [93] Jalali R. Sports nutrition for the natural health retailer[J]. Health Products Busness,2003(ASupplement to March).
    [94] Arch JRS. β3-Adrenoceptor agonists: potential, pitfalls and progress[J].European Journal of Pharmacology,2002,440(1):99.
    [95]王敏,陈舜胜,王锡昌,等.水产品可食部章鱼胺含量的研究[J].中国海洋药物杂志,2009,28(1):44-47.
    [96]张雪花,陈有容,内田基晴,等.鲢及其加工废弃物发酵鱼露的比较[J].上海水产大学学报,2000,9(3):226-230.
    [97]唐小丽,倪逸声,张宗炳,等.单胺氧化酶的抑制作为杀虫脒对澳氰菊酯的增效作用[J].昆虫学报,1987,30(3):232-246.
    [98]梁剑,江一帆,叶海峰.水产品中组胺含量测定方法的比较研究[J].安徽农业科学,2011,39(32):20033-20034.
    [99]江天久,徐轶肖,冷科明.深圳市场水产品中重金属与农药的含量及评价[J].暨南大学学报,2005,26(3):417-421.
    [100] Lieber C S. Cytochrome P-4502E1:its physiological and pathological role[J].Physio Rev,1997,77:517-544.
    [101] Sindhu R K, Koo J R, Sindhu K K, et al. Differential regulation of hepaticcytochrome P450monoxygenases in streptozotocin-induced diabetic rats[J]. FreeRadical Research,2006,40:921-928.
    [102]赵博,王中伟.细胞色素P450的研究进展[J].山东农业大学学报,2004,35(1):142-144.
    [103]张宁,喻文娟,王翔凌,等.草鱼肝微粒体的提取及CYP酶活性的测定[J].海洋渔业,2007,29(2):148-152.
    [104]徐叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002:1481.
    [105] Goks A, Forlin L. The cytochrome P450system in fish, aquatic toxicology andenvironmental monitoring[J]. Aquat Toxicol,1992,22:287-312.
    [106]马景,钱蓓丽,顾性初,等.人肝细胞色素P450含量及其同工酶1A1、2A6活性的测定[J].中国医药工业杂志,1999,30(10):449-452.
    [107]沈钧,徐佩佩,金锡鹏.肝脏中细胞色素P450测定方法的改进[J].工业卫生与职业病,1995,38(3):370-379.
    [108]许华夏,李培军,刘宛,等.生物细胞色素P450的研究进展[J].农业环境保护,2002,21(2):188-191.
    [109]杨海峰,江善祥.鸡肝微粒体细胞色素P450酶系检测方法的建立[J].中国兽医科学,2006,36(2):147-150.
    [110]杨中枢,吴德丰,罗逊,等.大鼠肝微粒体的提取及细胞色素P450和AHH活性的测定[J].中华肿瘤杂志,1980,2(3):183-185.
    [111]王莉娥,杨明学,谢广云,等.一种用聚乙二醇制备微粒体的方法[J].生物化学和生物物理进展.1995,22(5):462-464.
    [112]梁丽云.肝微粒体制备与细胞色素P450含量测定[J].长治医学院学报.1996,10(2):113-114.
    [113]冯超英,陈点点.单胺氧化酶抑制剂与药物及食物间的相互作用及其配伍[J].临床误诊误治,2010,23(4):384-385.
    [114]朱婷婷,荣艳萍,陈舜胜等.鱼露中章鱼胺分离方法的研究及对风味的影响[J].中国海洋药物杂志,2008,27(3):18-23.
    [115]王敏.水产品中章鱼胺含量的比较及D型章鱼胺的分离制备[学位论文].上海,上海海洋大学,2010.
    [116]向大雄,李焕德,朱叶超,等.大孔吸附树脂分离纯化葛根总黄酮的研究[J]中国药学杂志,2003,38(1):35-37.
    [117]李勇.营养与食品卫生学[M].北京:北京大学医学出版社,2005:356.
    [118]赵咏梅,李发荣,杨建雄等.连翘苷对营养性肥胖小鼠减肥作用的影响[J].中药材,2005,28(2):123-124.
    [119]陈沛,王雪青,宋文军.普洱茶茶色素减肥作用的研究[J].食品研究与开发,2011,32(7):169-171.
    [120]钟志勇,饶子壳,谢超敏,等.不同饲料诱发大、小鼠肥胖的比较观察[J].实验动物与比较医学,2011,31(3):203-206.
    [121]潘长玉主译:Joslin糖尿病学(第14版)),北京:人民卫生出版社,2007:208-222.
    [122]唐鹏程,焦士蓉,唐远谋,等.石榴皮提取物体外抗氧化活性比较研究[J].食品研究与开发,2012,33(1):12-15.
    [123]周昇昇.抗氧化能力体外评价方法的进展和比较[J].卫生研究,2010,39(2):164-167.
    [124]勾明玥,刘梁,张春枝.采用DPPH法测定26种植物的抗氧化活性[J].食品与发酵工业,2010(36):148-150.
    [125]方敏,王耀峰,宫智勇.15种水果和33种蔬菜的抗氧化活性研究[J].食品科学,2008,29(10):97-100.
    [126]王德才,高丽君,高艳霞.杭白芷多糖体外抗氧化活性的研究[J].时珍国医国药,2009,20(1):173-174.
    [127]莫正昌,邓靖,汲广泉,等.鹿蹄草提取物体外抗氧化活性评价[J].食品科
    学,2010,31(3):19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700