铅酸电池用沥青基炭泡沫集流体的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅酸电池至今仍然是世界上应用最为广泛的一种可充电电池,但与其他新型电池相比,却存在比能量低等问题。为此,采用炭泡沫集流体材料代替铅合金板栅的研究倍受注目。然而,由于受自身结构和制备成本的限制,发泡法制备的炭泡沫材料在作为铅酸电池集流体的推广应用方面尚面临诸多的困难。本论文的目的即是开发一种适合于铅酸电池集流体用途的新型炭泡沫材料制备技术,并系统考察该炭泡沫集流体对组装的铅酸电池性能的影响。
     采用木素磺酸铵为分散剂制备水基沥青浆料,研究了该分散剂对沥青浆料分散稳定性的影响,以及pH值、固含量、分散剂用量对浆料流变特性的影响,发现沥青颗粒对木素磺酸铵具有较强的的吸附能力,沥青悬浮液中加入1wt%的木素磺酸铵就能使其Zeta电位发生明显变化,在pH=8附近,含木素磺酸铵分散剂的沥青粉体颗粒悬浮液的沉降体积最小。在固含量低于60%的范围内,pH值为8,分散剂用量为1.2%的沥青浆料粘度最低,流动性最好。
     提出了采用有机多孔模板浸渍水基沥青浆料成型来制备沥青基炭泡沫的新方法,筛选出了一种RPC表面活性剂,采用该表面活性剂对模板进行改性处理能够提高模板的挂浆量;选择木素磺酸铵为分散剂,聚乙二醇为粘结剂,羧甲基纤维素为触变剂配制沥青粉体浆料,当浆料固含量和流变剂用量分别为55%和1.5%,模板挤压应变为75%时,所制备的沥青多孔素坯具有良好的三维开口结构和合适的孔筋厚度。该沥青多孔素坯经350℃氮气氛中预处理30分钟,950℃炭化180分钟后得到了具有三维连通开口网络结构的沥青基炭泡沫。
     循环伏安测试发现,在H_2SO_4溶液中,上述炭泡沫在-1.2~0V处于电化学稳定状态,可作为理想的铅酸电池负极集流体材料,但其表面析氧电位大约在0.8V左右,远低于铅酸电池正极在充电过程中发生电化学反应时的电位(>1.4V),难以直接用作铅酸电池正极集流体材料。
     研究了炭泡沫作为铅酸电池负极集流体对电池性能的影响,发现采用炭泡沫作为负极集流体不仅能够提高电池的充电接受能力和负极活性物质利用率,而且还能改善电池的部分荷电循环性能。在放电电流为1/20C和1/10C条件下,炭泡沫负极的活性物质利用率比铅板栅负极分别提高15%和27%;在部分荷电状态窗口为40%~70%的情况下,经50次循环的炭泡沫电池放电截止电压仍高于2V,而铅板栅电池只能完成30次循坏。计算发现该炭泡沫集流体具有较低的设计参数,其γ参数大约为传统铅板栅的1/40~1/100。
     考察了炭泡沫作为集流体材料对铅酸电池负极阻抗特性的影响,提出了描述铅酸电池负极交流阻抗的数学模型和等效电路模型。交流阻抗谱测试和等效电路拟合结果表明,两种电极无论在充电或放电状态下均由电化学极化和浓度极化混合控制,但处在完全充电状态时,浓度极化起主导作用,而处于完全放电状态时电化学极化起主要作用。无论处于完全充电或完全放电状态,炭泡沫电极均具有比铅板栅电池更高的交换电流密度和双电层电容。
     初步研究了炭泡沫表面改性对其电化学特性的影响,循环伏安和SEM测试发现,采用循环伏安法电沉积的聚苯胺致密性较差,靠单一的聚苯胺涂层很难提高炭泡沫表面的氧析出电位,而经表面电沉积铅后的炭泡沫(Pb/CFM)具有较高的氧析出电位。以Pb/CFM为正极集流体的铅酸电池能够改善正极活性物质利用率,在放电电流为1/25C和1/10C时,Pb/CFM电池正极活性物质利用率比铅板栅电极高24.8%和40%。计算发现Pb/CFM电池的Peuker系数达到1.18,远低于目前铅酸电池1.33的水平。
Lead acid batteries are still the most prevalent rechargeable batteries in today's application markets.However,compared to other advanced rechargeable batteries,lead acid batteries have some drawbacks such as lower specific energy etc.To overcome these disadvantages,carbon foams attract much attention as substitutes for conventional lead-alloy grids in lead acid batteries.But due to the structure and production costs of carbon foams prepared by foaming method,these materials still face many difficulties in commercial application as current collectors in lead acid batteries.The aim of this paper is to develop a new method for preparation of carbon foams suitable for use as current collectors in lead acid batteries,and investigate the effects of the carbon foams as current collectors on properties of lead acid batteries.
     A water-based pitch powder slurry was prepared using ammonium lignosulfonate as the dispersant,and influence of the dispersant on the stability and fluidity of the slurry was investigated.The results show that pitch particles have good adsorbability for ammonium lignosulfonate.The Zata potential of pitch powder suspension varies obviously when 1wt%of ammonium lignosulfonate is added to the suspension,and the lowest sendimental volume can be observed in the suspension at pH=8.Slurries with 1.2%of dispersant and less than 60%of solid content at pH=8 exhibite the lowest viscosity and best fluidity.
     A new method for preparation of carbon foams using porous organic templates to form green pitch foam bodies was proposed.Pitch powder slurries were prepared using ammonium lignosulfonate as the dispersant,polyglycol as the binder and sodium carboxy methyl cellulose as the thickener.It was found that suface modification of polyurethane foam templates with a surfactant RPC can improve the loading of pitch powder slurry on the templates.The effects of the solid content,dosage of thickener and compressive strain of templates on the structure of green porous pitch bodies were evaluated.The results show that the obtained pitch bodies have 3D open-pore structure and suitable lignament thickness when the solid content,dosage of thickener and compressive strain are 55%,1.5%and 75%,respectively.The bodies can convert to carbon foams by preheating at 350℃in nitrogen for 30 minutes and then carbonizing at 1000℃for 3 hours.
     Cyclic voitamethy were performed on the pitch-based carbon foams.The results show that the carbon foam is electrochemically stable in the voltage range from -1.2 V to 0 V,while oxygen evolution at the foam occurs at ca.0.8 V which is below the voltage related to the oxidation of PbSO_4 to PbO_2(>1.4V).As a result,it is proposed that the carbon foam is suitable for use as the negative current collectors but can not be directly used as the positive current collectors in lead acid batteries.
     The effect of carbon foam negative current collectors on the properties of lead acid batteries was also investigated.It was found that using pitch-based carbon foams as negative current collectors can improve not only the charge acceptance and negative mass utilization efficiencies but also partial-state-of-charge(PSoC) cyclibilities of lead acid batteries.Comparative charge-discharge tests show that the utilization efficiencies of the active material on the carbon foam negative current collector are 15%and 27% higher than those of the material on a lead grid at 1/20 C and 1/10 C,respectively. Through a PSoC window of 70%~40%,lead acid batteries with carbon foam negative current collectors can experience 50 cycles,and the end-of-discharge voltage is still above 2 V at the end of 50~(th) cycle,while the batteries with lead grids as the negative current collectors can only experience 30 cycles.Calculation shows that carbon foam current collectors have lowerαandγparameters when compared to conventional lead grids.Theγparameter of carbon foam collectors is 1/40~1/100 of conventional lead grids.
     The effect of carbon foams as negative current collectors on the impedance characteristics of lead acid batteries was evaluated.A mathematic model and an equivalent circuit model were proposed to describe the faradic and total impedance of lead acid battery negative electrodes,respectively.The obtained impedance spectrascopes and fitting results show that whether at fully charged or discharged state,both electrochemical reaction and diffusion steps play roles in determining the polarization of lead acid battery negative electrodes.The diffusion step plays a much more important role in determining the polarization of the electrodes at fully charged state,while the electrochemical reaction step is much more important at fully discharged state.At both states,carbon foam electrodes have much higher exchange current densities and double-layer capacities than lead grid ones.
     To use these carbon foams as positive current collectors in lead acid batteries,initial surface modification of the foam material was carried out.The CV and SEM test results show that electroplated polyaniline(PANI) is not compact,and thus it is difficult to increase the oxygen evolution potential at the carbon foams by electroplating a single layer of PANI on the surfaces of carbon foams.On the other hand,electroplating a lead layer on the lignment surfaces of carbon foams can increase the oxygen evolution potential effectively.Charge-discharge test results show that lead acid batteries using carbon foams electroplated with lead as the positive current collectors can improve the utilization efficiencies of positive active materials.The utilization efficiencies of the active material on lead coated carbon foam positive current collectors are 24.8%and 40%higher than those on lead grids at 1/25 C and 1/10 C,respectively.Calculation shows that Peuker coefficient for batteries with lead coated carbon foams as the positive current collectors is 1.18,which is much lower than 1.33 for today's commercial lead acid batteries.
引文
[1]Rainer Wagner.High-power lead-acid batteries for different applications.J.Power Sources,2005,144(2):494-504
    [2]M.L.Soda,F.Trinidad,J.M.Lacadena,et al.Advanced valve-regulated lead-acid batteries for hybrid vehicle applications.J.Power Sources,2007,168(1):12-21
    [3]马洪斌.阀控铅酸蓄电池发展现状.蓄电池,2004,1(3):137-142
    [4]S.K.Martha,B.Hariprakash,S.A.Gaffoor,et al.Performance characteristics of a gelled-electrolyte valve-regulated lead-acid battery.Bull.Mater.Sci.,2003,26(5):465-469.
    [5]Patrick T.Moseley.The advanced lead-acid battery consortium-a worldwide cooperation brings rapid progress.J.Power Sources,1999,80(2):1-6
    [6]J.Garche.On the Historical Development of the Lead/Acid Battery Especially in Europe.J.Power Sources,1990,31(1-4):401-406
    [7]刘广林.铅酸蓄电池工艺技术.北京:物资出版社,1992.2-3
    [8]邹智敏.镀铅泡沫碳化硅作为铅酸电池正极集流体的研究:[博士学位论文].沈阳:中国科学院沈阳金属所,2004
    [9]刘军贤.铅酸蓄电池的进展.蓄电池,1994,1(4):33-36
    [10]N.E.Bagshaw,K.P.Wilson.M icroscopicex aminationo fac tivem aterials from lead-acid cells.Electrochim.Acta,1965,10(8):867-873
    [11]J.J.Lander.Anodic corrosion of lead in H_2SO_4 Solutions.J.Electrochem.Soc.,1951,98(6):213-219
    [12]G.W.Viral.Storage batteries.New York:Wiley,1955.10-24
    [13]R.De Marco,J.Liesegang.Surface analysis of commercial lead/acid battery grids.Appl.Surf.Sci.,1995,84(3):237-244
    [14]J.Furukawa,Y.Nehyo,S.Shiga.Development of new positive-grid alloy and its application to long-life batteries for automotive industry.J.Power Sources,2004,133(1):25-31
    [15]P.T.Moseley.Characteristics of a high-performance lead/acid battery for electric vehicles—an ALABC view.J.Power Sources,1997,67,(1-2):115-119
    [16]T.Isoi,H.Furukawa.Valve-regulated lead/acid batteries for SLI use in Japan.J.Power Sources,1996,59(1-2):143-14
    [17]D.Berndt.Valve-regulated lead-acid batteries.J.Power Sources,2001,100(1-2): 29-46
    [18]吴寿松.国内阀控式铅蓄电池的生产技术经验.电池,1996,26(4):184-188
    [19]郭炳馄,李新海,杨松青.化学电源—电池原理及制造技术.第一版.长沙:中南大学出版社,2003.138-142
    [20]D.Berndt.Valve-regulated lead acid batteries.J.Power Sources,2001,100(1-2):29-46
    [21]D.Pavlov,S.Zanava,G.Papazov.Photoelectrochemical properties of the lead electrode during anodic oxidation in sulfuric acid solution.J.Electrochem.Soc.,1977,124(10):1522-1528.
    [22]R.D.Marco,J.Jones.Changes in positive lead/acid batery plates during charge/discharge cycling.J.Appl.Electrochem.,2000,30(3):77-83
    [23]D.Pavlov.The lead-acid battery lead dioxide active mass:a gel-crystal system with proton and electron conductivity.J.Electrochem.Soc.,1992,139(11):3075-3080
    [24]J.N.Harb,M.Lafollette.Mathematical model of the discharge behavior of a spirally wound lead-acid cell.J.Electrochem.Soc.,1999,146(3):809-818
    [25]F.E.Varela,M.E.Vela,J.R.Vilche.Kinetics and mechanism of PbSO_4 electrofomation on Pb electrodes in H_2SO_4 aqueous solutions.Electrochim.Acta,1993,38(11):1513-1520
    [26]A.C.Henry,F.B.Joseph,R.Andrew.Modelling and simulation of lead-acid battery charging.J.Power Sources,1999,80(1-2):1720-1726.
    [27]M.G.Semenenko.Effective-medium approximation in studies of the diffusion discharge of the positive electrode in a lead-acid battery.Russ.J.Electrochem.,2001,37(6):56-57
    [28]E.Jullian,L.Albert,J.L.Caillerie.New lead alloys for high-performance lead-acid bateries.J.Power Sources.2003,116(1-2):185-192
    [29]Ken Sawai,Yuichi Tsuboi,Masashi Shiota,Nobumitsu Hirai,Shigeharu Osumi.Corrosion of Pb-Ca-Sn alloy during potential step cycles.J.Power Sources,2008,175(1):604-612
    [30]J.WANG,Z.P.GUO~*,S.ZHONG,H.K.LIU and S.X.DOU.Lead-coated glass fibre mesh grids for lead-acid batteries.J.App.Electrochem.,2003,33(2):1057-1061
    [31]A.Caballero,M.Cruz,L.Herna'n,et al.Preparation and characterization of thin electrodes for lead-acid batteries.J.Power Sources,2003,113(2):376-381
    [32]M.Lushina,Y.Kamenev,V.Leonov,et al.Use of expanded copper mesh grid for negative electrodes of sealed lead storage batteries.J.Power Sources,2005,148(1):95-104
    [33]B.Hariprakash,S.A.Gaffor.Lead-acid cells with lightweight,corrosion-protected,corrosion-protected,flexible graphite grids.J.Power Sources,2007,173(1):565-569
    [34]孔德龙,王泽力,李中奇.从9ABC看铅酸电池的发展动向(一).蓄电池,2002,1(1):36-40
    [35]Y.M.Wu,W.S.Li,X.M.Long,et al.Effect of bismuth on hydrogen evolution reaction on lead in sulfuric acid solution.J.Power Sources,2005,144(2):338-345
    [36]P.T.Moseley,R.F.Nelson,A.F.Hollenkamp.The role of carbon in valve-regulated lead-acid battery technology.J.Power Sources,2006,157(1):3-10
    [37]G.Petkova,P.Nikolov,D.Pavlov.Influence of polymer additive on the performance of lead-acid battery negative plates.J.Power Sources,2006,158(2):841-845
    [38]I.Paleska,R.Pruszkowska-Drachal,J.Kotowski,et al.Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions.J.Power Sources,2003,113(2):308-317
    [39]D.W.H.Lambert,P.H.J.Greenwood,M.C.Reed.Advances in gelled-electrolyte technology for valve-regulated lead-acid batteries.J.Power Sources,2002,107(2):173-179
    [40]J.Wang,H.K.Liu.Enhanced performance of VRLA batteries with a novel spirally wound electrode design.J.Power Sources,2003,113(2):241-244
    [41]M.L.Soria,F.Trinidad,J.M.Lacadena,et al.Spiral wound valve-regulated lead-acid batteries for hybrid vehicles.J.Power Sources,2007,174(1):41-48
    [42]M.Saakes,R.Woortmeijer,D.Schmal.Bipolar lead-acid battery for hybrid vehicles.J.Power Sources,2005,144(2):536-545
    [43]H.Karami,M.Shamsipur,S.Ghasemi,et al.Lead-acid bipolar battery assembled with primary chemically formed positive pasted electrode.J.Power Sources,2007,164(2):896-904
    [44]A.Rochliadi,R.D.Marco.Synergistic effects of novel batrery manufacturing processes for lead-acid batteries.Part1:Charge/discharge cycling of bateries.J.Appl.Electrochem.,2002,32(9):1039-1042
    [45]L.T.Lam,N.P.Haigh,C.G.Phyland,et al.Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation.J.Power Sources,2004,133(1):126-134
    [46]K.S.N.Murthy,M.Latha,B.Vijayanthi,et al.An optimized pretreatment method in the analysis of negative plate of lead acid battery.J.Power Sources,2007,163(2):1087-1090
    [47]D.Pavlov,A.Kirchev and B.Monahov.Mechanism of the oxygen cycle reactions proceeding at the negative plates of VRLA batteries.J.Power Sources,2005,144(2):521-527
    [48]Z.Takehara.Dissolution and precipitation reactions of lead sulfate in positive and negative electrodes in lead acid battery.J.Power Sources,2000,85(1):29-37
    [49]D.Berndt.VRLA batteries,advances and limitations.J.Power Sources,2006,154(2):509-517
    [50]I.Ban,Y.Yamaguchi,Y.Nakayama,N.Hirai and S.Hara.In situ EC-AFM study of effect of lignin on performance of negative electrodes in lead-acid batteries.J.Sources,2002,107(2):167-172
    [51]G.Archdale,J.A.Harrison.The electrochemical dissolution of Pb to form PbSO_4 by a solution-precipitation mechanism.J.Electroanal.Chem.,1972,34(1):21-26
    [52]N.A.Hampson,J.B.Lakeman.Fundamentals of lead-acid cells.Part Ⅵ:phase formation at solid and porous lead electrodes.J.Electroanal.Chem.,1980,107(1):177-189
    [53]N.A.Hampson,J.B.Lakeman.Fundamentals of lead-acid cells.J.Electroanal.Chem.,1980,108(3):347-354
    [54]K.Kanamura,Z.Takehara.Microscopic reaction site model for cathodic reduction of lead sulfate to lead.J.Electrochem.Soc.,1992,139(2):345-351
    [55]D.Pavlov.Processes in solid state at anodic oxidation of a lead electrode in H_2SO_4solution and their dependence on the oxide structure and Properties.Electrochim.Acta,1978,23(11):845-854
    [56]F.E.Varela,M.E.Vela,J.R.Vilche,et al.Kinetics and mechanism of PbSO_4electro-reduction on Pb electeodes in aqueous solutions.Electrochim.Acta,1993,38(11):1513-1520
    [57]戴长松.动力电池泡沫铅负极的制备及其电化学行为的研究:[学博士学位论文].哈尔滨:哈尔滨工业大学,2004
    [58]D.Pavlov,A.Kirchev,M.Stoycheva,et al.Influence of H_2SO_4 concentration on the mechanism of the processes and on the electrochemical activity of the Pb/PbO_2/PbSO_4 electrode.J.Power Sources,2004,137(2):288-308
    [59]B.Monahov,D.Pavlov,A.Kirchev,et al.Influence of pH of the H_2SO_4 solution on the phase composition of the PbO_2 active mass and of the PbO_2 anodic layer formed during cycling of lead electrodes.J.Power Sources,2003,113(2):281-292
    [60]D.Pavlov,E.Bashtavelova,D.Simonsson,et al.Processes at the micro-level in the oxidation of PbSO_4 to PbO_2 during charging of lead/acid battery positive plates.J.Power Sources,1990,30(1-4):77-97
    [61]D.Pavlov,I.Balkanov.Hydration and Amorphization of Active Mass PbO_2Particles and Their Influence on the Electrical Properties of the Lead-Acid Battery Positive Plate.J.Electrochem.Soc.,1989,136(11):3189-3197
    [62]D.Pavlov.The Lead-Acid Battery Lead Dioxide Active Mass:A Gel-Crystal System with Proton and Electron Conductivity.J.Electrochem.Soc.,1992,139(11):3075-3080
    [63]D.Pavlov,I.Balkanov.The PbO_2 Particle:Exchange Reactions Between Ions of the Electrolyte and the PbO_2 Particles of the Lead-Acid Battery Positive Active Mass.J.Electrochem.Soc.,1992,139(7):1830-1835
    [64]D.Pavlov,I.Balkanov P.Rachev.Orthorhombic PbO Formation during the Discharge of Lead Acid Batteries PbO_2 Active Mass.J.Electrochem.Soc.,1987,134(10):2390-2398
    [65]D.Pavlov,G.Petkova.Phenomena That Limit the Capacity of the Positive Lead Acid Battery PlatesⅡ.Electrochemical Impedance Spectroscopy and Mechanism of Discharge of the Plate.J.Electrochem.Soc.,2002,149(5):A654-A661
    [66]朱松然.蓄电池手册.天津:天津大学出版社.1998.78-105
    [67]R.David Prengaman.New low-antimony alloy for straps and cycling service in lead-acid batteries.J.Power Sources,2006,158(2):1110-1116
    [68]A.Tizpar and Z.Ghasemi.Influence of silver on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloys as positive grids in lead acid batteries.Appl.Surf.Sci.,2006,252(22):7801-7808
    [69]R.K.Shervedani,A.Z.Isfahani,R.Khodavisy,et al.Electrochemical investigation of the anodic corrosion of Pb-Ca-Sn-Li grid alloy in H_2SO_4 solution.J.Power Sources,2007,164(2):890-895
    [70]D.G.Li,G.S.Zhou,J.Zhang et al.Investigation on characteristics of anodic film formed on PbCaSnCe alloy in sulfuric acid solution.Electrochim.Acta,2007,52(5):2146-2152
    [71]J.Z.Liang,H.Y.Chen,M.C.Tang,et al.Properties and application of lead-calcium-tin-aluminium-bismuth alloys for positive grids.J.Power Sources,2006,158(2):908-913
    [72]J.Furukawa,Y.Nehyo,S.Shiga.Development of new positive-grid alloy and its application to long-life batteries for automotive industry.J.Power Sources,2004,133(1):25-31
    [73]H.Y.Chen,S.Li,A.J.Li,et al.Lead-samarium alloys for positive grids of valve-regulated lead-acid batteries.J.Power Sources,2007,168(1):79-89
    [74]L.A.Yolshina,V.Y.Kudyakov,V.G.Zyryanov.Development of an electrode for lea acid batteries possessing a high electrochemical utilization factor and invariable cycling characteristic.J.Power Sources,1997,65(1-2):71-761
    [75]I.A.Carlos,T.T.Matsuo,J.L.P.Siqueira,et al.Voltammetric and morphological study of lead electrodeposition on copper substrate for application of a lead acid batteries.J.Power Sources,2004,132(1-2):261-2651
    [76]Y.Cartigny,J.M.Fiorani,A.Ma(?)tre,et al.Pb-based composites materials for grids of lead acid battery.Mater.Chem.Phys.,2007,103(2-3):270-277
    [77]G.Barkleit,A.Grahl,M.Maccagni,et al.Electrodeposited,dispersion-hardened,lightweight grids for lead-acid batteries.J.Power Sources,1999,78(1-2):73-78
    [78]T.Blanyer.Coated elongated core material.US Patent,6027822,2000-11-2
    [79]J.Hrinevich.Composite materials and methods of forming.US Patent,6858350,2005-6-2
    [80]I.Kurisawa,M.Shiomi,S.Ohsumi,et al.Development of positive electrodes with an SnO_2 coating by applying a sputtering technique for lead-acid batteries.J.Power Sources,2001,95(1-2)125-129.
    [81]J.Wang,Z.P.Guo,S.Zhong,et al.Lead-coated glass fibre mesh grids for lead-acid batteries.J.Appl.Electrochem.,2003,33(11):1057-1061.
    [82]S.K.Martha,B.Hariprakash,S.A.Gaffoor,et al.High specific-energy lead-acid batteries through organic metals.Electrochem.Solid St.Let.,2005,8(7):A353-A356
    [83]M.L.Soria,J.Fullea,F.Saez,et al.Lead-acid batteries with polymer-structured electrodes for electric-vehicle applications.J.Power Sources,1999,78(1-2):220-230
    [84]B.Hariprakash,S.A.Gaffoor.Lead-acid cells with lightweight,corrosion-protected,flexible-graphite grids.J.Power Sources,2007,173(1):565-569
    [85]刘荣培,左孝青.渗流铸造法制备多孔泡沫金属电极.云南冶金,2000, 29(1):37-39
    [86]刘荣培,左孝青,杨晓源.泡沫铅的制备及预制快的研究.兵器材料科学与工程,2001,24(4):3841
    [87]伊廷锋,戴长松,胡信国,等.铅酸电池泡沫铅板栅材料的研究进展.电池,2006,36(3):229-230
    [88]E.Gyenge,J.Jung,S.Splinter,et al.High specific surface area,reticulated current collectors for lead-acid batteries.J.Appl.Electrochem.,2002,32(3):287-295
    [89]S.M.Tabaatabaai,M.S.Rahmanifar,S.A.Mousavi,et al.Lead-acid batteries with foam grids.J.Power Sources,2006,158(2):879-884
    [90]戴长松,王殿龙,伊廷锋,等.泡沫铅对电池负极活性物质结构及性能影响.无机化学学报,2005,21(12):1875-1879
    [91]邹智敏,刘旭东,曹小明,等.铅酸电池镀铅泡沫碳化硅正极集流体的性能.材料研究学报,2004,18(6):635-640
    [92]W.Ford.Method of making cellular refractory insulating material.US patent,3121050,1964-4-2.
    [93]R.Klett.High temperature insulating carbonaceous material.US Patent,3914392,1975-10-21.
    [94]R.Marek,W.Udichak.Foam Carbonization and Resulting Structure.US Patent,3922334,1975-2-3
    [95]C.Vinton,C.Franklin,Method for the Preparation of Carbon Structures.US Patent,3927186,1975-4-13
    [96]J.Klett,A.McMillan,N.Gallego,et al.The role of structure on the thermal properties of graphitic foams.J.Mater.Sci.,2004,39(11):3659-3676
    [97]J.Klett.Process for Making Carbon Foam.US Patent,6033506,2000-6-2
    [98]J.Klett.Pitch-Based Carbon Foam and Composites.US Patent,6261485,2001-2-2
    [99]J.Klett.Pitch Based Foam with Particulate.US Patent,6287375,2001-12-20
    [100]J.Klett.Method for Extruding Pitch Based Foam.US Patent,6344159,2002-9-23
    [101]A.Stiller,J.Plucinski,A.Yocum.Methods of making a carbon foam.US Patent,6544491,2003-8-9
    [102]D.K.Rogers.Cellular coal products and processes.US Patent,6814765,2004-5-6
    [103]C.Chen,E.B.Kennel,A.H.Stiller,et al.Carbon foam derived from various precursors.Carbon,2006,44(8):1535-1543
    [104]M.Calvo,R.Garcla,A.Arenillas,et al.Carbon foams from coals.A preliminary study.Fuel,2005,84(17) 2184-2189
    [105] J. Klett, R. Hardy, E. Romine, et al. High-thermal-conductivity,mesophase-pitch-derived carbon foams: effect of precursor on structure and properties. Carbon, 2000, 38(7): 953-973
    [106] K. Kanno, H. Tsuruya, R. Fujiura, et al. Carbon foam, graphite foam and production process of these. US Patent, 6689336,2004-4-5
    [107] T.Q. Li, C.Y. Wang, B.X. An, et al. Preparation of graphitic carbon foam using size-restriction method under atmospheric pressure. Carbon, 2005, 43(9):2013-2032
    [108] B. Maruyama, J. E. Spowart, D. J. Hooper, et al. A new technique for obtaining three-dimensional structures in pitch-based carbon foams. Scripta Mater., 2006, 54(9):1709-1713
    [109] M. Inagaki, T. Morishita, A. Kuno, et al. Carbon foams prepared from polyimide using urethane foam template. Carbon, 2004,42 (3):497-502
    [110] J. M. Friedrich, C. Ponce-de-Leon, G. W. Reade, et al. Reticulated vitreous carbon as an electrode material. J. Electroanal. Chem., 2004, 561(1): 203-217
    [111] A. Czerwihki, M. Zelazowska. Electrochemical behavior of lead dioxide deposited on reticulated vitreous carbon (RVC). J. Power Sources, 1997, 64(1-2): 29-34
    [112] A. Czerwiiiski, M. Zelazowska. Electrochemical behavior of lead deposited on reticulated vitreous carbon. J. Electroanal. Chem., 1996, 410(1): 55-60
    [113] E. Gyenge, J. Jung, B. Mahato. Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: opportunities and challenges. J. Power Sources,2003, 113(2): 388-395
    [114] K.C. Kelly, J.J. Votoupal. Battery including carbon foam current collectors. US Patent, 6979513,2005-9-7
    [115] Y.I. Jang, N.J. Dudney, T.N. Tiegs, et al. Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries. J. Power Sources, 2006,161(2): 1392-1399
    [116] L. Prout. Aspects of lead/acid battery technology: 9. Grids. J. Power Sources, 1994,50(1-2): 193-257
    [117] D. Pavlov. A theory of the grid/positive active-mass (PAM) interface and possible methods to improve PAM utilization and cycle life of lead/acid batteries. J. Power Sources, 1995, 53(1): 9-21
    [118] Y. Kamenev, A. Kiselevich, E. Ostapenko. Evaluation of criteria for design of current collectors of the lead-acid battery. J. Power Sources. 2002. 110(1): 133-137
    [119]S.R.Zbigniew.Avanced shaping techniques in advanced ceramics.Cfi/Ber.DKG,2000,77(6):6-16
    [120]E.M.V.Hoek,G.K.Agarwal.Extended DLVO interactions between spherical particles and rough surfaces.J.Colloid Interf.Sci.,2006,298(1):50-58
    [121]T.E.Petroff,M.Sayer,S.A.Hesp.Moification of ceramic dispersion using zirconium hydrogel.Colloids Surfaces A,1993,78(10):235-243
    [122]T.E.Petroff,M.Sayer,S.A.Hesp.Zeta potential modification of ceramic powders using zirconium hydrogel.Colloids Surfaces A,1995,79(2-3):151-159
    [123]Q.Yang,T.Trocsynskl.Dispersion of alumina and silicon carbide powders in alumina sol.J.Am.Ceram.Soc.,1999,82(7):1928-1930
    [124]R.M.Turian,J.F.Attali,D.J.Sung,et al.Properties and rheology of coal-water mixtures using different coals.Fuel,2002,81(16):2019-2033
    [125]邹立壮,朱书全,王晓玲,等.不同水煤浆分散剂与煤之间的相互作用规律研究-X分散剂在煤粒表面上的吸附作用特征.燃料化学学报,2006,34(1):10-14
    [126]任兰柱,崔凤禄,王毅,等.异种煤的精细水煤浆制备及其成浆性研究.洁净煤技术,2006,12(1):49-52
    [127]沈钟,王果庭.胶体与表面化学.北京:化学工业出版社,1997.45-51
    [128]二卢开森一闰德斯.阴离子表面活性剂—表面活性剂作用的物理化学.北京:轻工业出版社,1988.156-157
    [129]张开.高分子界面化学.北京:中国石化出版社,1996.34-87
    [130]胡岳华,邱冠周,王淀佐.细粒浮选体系中扩展DLVO理论及应用.中南工业学院学报,1994,25(3):310-314。
    [131]张延霖.木素磺酸盐用作水煤浆添加剂的性能及其分散稳定机理研究:[博士学位论文].广州:华南理工大学,2005
    [132]K.Bremmell,G.J.Jameson,S.Biggs.Adsorption of ionic surfactants in particulate systems:flotation,stability,and interaction forces.Colloids and Surfaces A:Physiochemical and Engineering Aspects,1999,146(2):75-87
    [133]P.R.Tudor,D.Atkinson,R.J.Crawford,et al.The effect of adsorbed and non-adsorbed additives on the stability of coal-water suspensions.Fuel,1996,75(4):443-452
    [134]A.Trokhymchuk,D.Henderson,A.Nikolov,et al.Depletion and Structural Forces between Two Macrosurfaces Immersed in a Bidiseperse Colloidal Suspension.J. Colloid Interf.Sci.,2001,243(1):116-127
    [135]S.Yamazaki,M.Kawaguchi,T.Kato.Polymer Depletion-induced instability of silica suspensions in the presence of flexible and semiflexible polymers.J.Colloid Interf.Sci.,2002,254(2):396-401
    [136]Y.C Liang,N.Hilal,P.Langston,et al.Interaction forces between colloidal particles in liquid:Theory and experiment.Adv.Colloid Interfac.,2007,134-135(10):151-166
    [137]A.Schwartzwalder,A.V.Somers.Method of making porous ceramic.US Patent,3090094,1963-8-4
    [138]L.M.Sheppard.Corrosion-resistant ceramics for sever environments.Am.Ceram.Soc.Bull.,1991(7):1146-1158
    [139]方禹声,朱铝民.聚氨酯泡沫塑料.北京:化学工业出版社,1994.861-875
    [140]芦艾,黄锐,王建华,等.水发泡聚氨酯泡沫的热分解.中国塑料,1999,13(10):38-42.
    [141]V.G.Rocha,M.Granda,R.Santamaria,et al.Pyrolysis behaviour of pitches modified with different additives.J.Anal.Appl.Pyrol.,2005,73(2):276-283
    [142]C.Blanco,V.Prada,R.Santamaria,et al.Pyrolysis behaviour of mesophase and isotropic phases isolated from the same pitch.J.Anal.Appl.Pyrol.,2002,63(2):251-265
    [143]L.Sima,C.Blanco,R.Santamaria,et al.Relationship between chemical composition and pyrolysis behaviour of a medium temperature pitch(or Lurgi-gasifier pitch).Fuel Process.Technol.,2003,84(1-3):63-77
    [144]M.Perez,M.Granda,R.Santamaria,et al.A thermoanalytical study of the co-pyrolysis of coal-tar pitch and petroleum pitch.Fuel,2004,83(9):1257-1265
    [145]F.E.G.Ravault.Production of porous ceramic materials.US Patent,4004933,1977-10-3
    [146]P.M.Hargus,J.A.Mula.M.K.Redden.Process for forming a ceramic foam.US Paternt,4866011,1989-7-5
    [147]徐峰.流变剂的使用及其发展.现代涂料与涂装,2000,4(5):30-33
    [148]T.C.巴顿著,郭隽奎,王长卓译。涂料流动和颜料分散:流变学方法探讨涂料及油墨工艺学.北京:化学工业出版社(第二版),1988.535-545
    [149]K.Carstets,E.Daguerre,X.Py.Pitches pyrolysis kinetics:non-isothermal heat treatments,experiments and model.Fuel,2001,80(14):2075-2083
    [150]吴碧英,张雪红,王薇,等.炭材料生产用煤沥青热解缩聚行为的分析.炭 素工艺与装备, 2006, 11(2): 1-5
    [151] L.G. Gibson, M.F. Ashby. Cellular Solids: Structure and properties. Carbridge:Carbridge University Press, 1997
    [152] A. Czerwinski, M. Zelazowska, M. Grden, et al. Electrochemical behavior of lead in sulfuric acid solutions. J. Power Sources, 2000, 85(1): 49-55
    [153] L.T. Lam, L. Ceylan, N.P. Haigh,et al. Influence of bismuth on the charging ability of negative plates in lead-acid batteries. J. Power Sources, 2002,107(2): 156-161
    [154] E. Gygenge, J. Jung, S. Splinter, A. Snaper. Proceedings of the 17~(th) Annual Battery Conference on Appliecations and Advance. Proc. IEEE 02TH8576, CA: Long beach, 2002.19-24
    [155] A. Jossen. Fundamentals of battery dynamics. J. Power Sources, 2006, 154(2):530-538
    [156] A. Lasia. Impedance of porous electrodes. J. Electroanal. Chem., 1995, 397(1-2):27-33
    [157] J. Ross Macdonald. Impedance Spectroscopy. Annals of Biomedical Engineering,1992,20(3): 289-305
    [158] N. A. Hampson, S. A. G. R. Karunathilaka, R. Leek. The impedance of electrical storage cells. J. Appl. Electrochem., 1980,10(1): 3-11
    [159] M. Keddam, Z. Stoynov, H. Takenout. Impedance measurement on Pb/H_2SO_4 batteries. J. App. Electrochem., 1977, 7(6): 539-544
    [160] S. Brinid, M. Metikog-Hukovid, R. Babid. Characterization of anodic films on lead and lead alloys by impedance spectroscopy. J. Power Sources, 1995, 55(1): 19-24
    [161] M.L. Gopikanth, S. Sathyanarayana. Impedance parameters and the state-of-charge.II.Lead-acid battery. J. Appl. Electrochem. 1979, 9(3): 369-379
    [162] A. Tenno, R. Tenno, T. Suntio. A Method for Battery Impedance Analysis. J.Electrochem. Soc, 2004, 151(6): A806-A824
    [163] M.Q. Chen, H.Y. Chen, D. Shu, et al. Effects of preparation condition and particle size distribution on fumed silica gel valve-regulated lead-acid batteries performance. J. Power Sources, 2008,181(1): 161-171
    [164] A. Kirchev, A. Delaille, F. Karoui, et al. Studies of the pulse charge of lead-acid batteries for PV applications: Part III. Electrolyte concentration effects on the electrochemical performance of the positive plate. J. Power Sources, 2008, 179(2):808-818
    [165] H. Blanke, O. Bohlen. S. Buller, et al. Impedance measurements on lead-acid batteries for state-of-charge,state-of-health and cranking capability prognosis in electric and hybrid electric vehicles.J.Power Sources,2005,144(2):418-425
    [166]Alvin J.Salkind,Pritpal Singh,A.Cannone,et al.Impedance modeling of intermediate size lead-acid batteries.J.Power Sources,2003,116(1-2):174-184
    [167]张允诚,胡如南,向荣,等.电镀手册.北京:国防工业出版社,1997.427-428
    [168]P.K.H.Ho,J.S.Kim,J.H.Burroughest,et al.Molecular-scale interface engineering for polymer light-emitting diodes.Nature,2000,404(3):481-484
    [169]S.Holdcroft,Patterning pi-conjugated polymers.Adv.Mater.,2001,13(23):1753-1765
    [170]S.Virji,J.Huang,R.B.Kaner,et al.Polyaniline nanofiber gas sensors:examination of response mechanisms.Nano Lett.,2004,4(3):491-496
    [171]J.Janata,M.Josowicz,Conductor polymers in electronic chemical sensors.Nature Mater.,2003,2(1):19
    [172]J.Liu,S.Tian,W.Knoll,Properties of polyaniline/carbon nanotube multilayer films and their application for stable low potential detection of reduced nicotinamide adnine dinucleotide.Langmuir,2005,21(12):5596-5599
    [173]M.Sipahi,E.A.Parlak,A.Gul,et al.Electrochemical impedance study of polyaniline electrocoated porous carbon foam.Progress in Organic Coatings,2008,62(1):96-104
    [174]E.T.Kang,K.G.NEOH,K.L.Tan.Polyaniline:A polymer with many interesting intrinsic redox states.Prog.Poly.Sci.,1998,23(2):277-324
    [175]M.Raghavan,D.C.Trivedi.Use of polyaniline in lead acid battery.Synthetic Met.,2001,119(1-3):285-286
    [176]S.K.Martha,B.Hariprakash,S.A.Gaffoor,et al.High specific-energy lead acid batteries through organic metals.Electrochem.Solid St.Let.,2005,8(7):A353-A356
    [177]D.Doerffel,S.A.Sharkh.A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries.J.Power Sources,2006,155(2):395-400
    [178]A.A.K.Vervaet,D.H.J.Baert.The lead acid battery:semiconducting properties and Peukert's law.Electrochim.Acta,2002,47(20):3297-3302
    [179]D.Baert,A.Vervaet.Lead-acid battery model for the derivation of Peukert's law.Electrochim.Acta,1999,44(20):3491-3504
    [180]D.Pavlov,G.Petkova.Phenomena That Limit the Capacity of the Positive Lead Acid Battery Plates.J.Electrochem.Soc.,2002,149(5):A664-653
    [181]D.Pavlov,E.Bashtavelova,D.Simonsson,et al.Processes at the micro-level in the oxidation of PbSO4 to PbO2 during charging of lead/acid battery positive plates.J.Power Sources,1990,30(1-4):77-97
    [182]L.T.Lam,I.G.Mawston,D.Pavlov.Aspects of lead/acid battery manufacture and performance,J.Power Sources,1994,48(1-2):257-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700